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X.1 Introduction

This annex specifies C language support for the IEEE floating-point standard. The
IEEE floating-point standard is specifically IEEE Standard for Binary Floating-Point
Arithmetic (ANSIVIEEE Std 754-1985), AKA Binary floating-point arithmetic for
microprocessor systems (IEC 559:1989). IEEE Standard for Radix-Independent
Floating-Point Arithmetic (ANSI/IEEE Std 854-1987) generalizes ANSIV/IEEE Std 754-
1985 to remove dependencies on radix and word length. IEEE generally refers to the
floating-point standard, as in IEEE operation, IEEE format, etc..

X.2 Types

The C floating types match the IEEE formats as follows:
— The C f1oat type matches the IEEE single format.
— The C double type matches the IEEE double format.

— The C 1long double type matches the IEEE extended format!, else a non-IEEE
extended format, else the IEEE double format.

Any non-IEEE extended format used for the 1ong double type has more precision than
IEEE double and at least the range or IEEE double.

[The primary objective of this specification is to facilitate writing portable code that exploits
the IEEE standard, including its standardized single and double data formats. Bringing the C
data types and the IEEE formats into line advances this objective.

Minimal conformance to the IEEE standard does not require a format wider than single.
The narrowest C double type allowed by Standard C (ISO 5.2.4.2) is wider than IEEE single,
and wider than the minimum IEEE single-extended format. (IEEE single-extended is an
optional format intended only for those implementations that don’t support double; it has at
least 32 bits of precision.) Both Standard C and the IEEE standard would be satisfied if
float were IEEE single and double were an IEEE single-extended format with at least 35
bits of precision. However, this specification goes slightly further by requiring double to be
IEEE double rather than just a wide IEEE single-extended.

1 Extended is the IEEE standard’s double-extended data format. Extended refers to both the common 80-
bit and so-called quadruple 128-bit IEEE formats.
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Because of Standard C’s bias toward double, extended-based architectures might appear
to be better served by associating the C double type with IEEE extended. However, such an
approach would not allow standard C types for both IEEE double and single and would go
against current industry naming, in addition to undermining this specification’s portability
goal. The type definitions float_t and double_t in <£p.h>, are intended to allow effective
use of architectures with more efficient, wider formats.

The long double type is not required to be IEEE extended because
1. some of the major IEEE architectures for C implementations do not support extended,
2. double precision is adequate for a broad assortment of numerical applications, and

3. extended is less standard than single or double in that only bounds for its range and
precision are specified in IEEE standard 754.

For implementations without extended in hardware, non-IEEE extended arithmetic written in
software, exploiting double in hardware, provides some of the advantages of IEEE extended
but with significantly better performance than true IEEE extended in software. [???] explains
advantages of extended precision.

| What to do about bibliography references? |

This specification accommodates what are expected to be the most important IEEE
architectures for general C implementations—see Rationale 5.2.4.2.2.

Specification for a variable-length extended type—one whose width could be changed by the
user—was deemed premature. However, not unduly encumbering experimentation and future
extensions, for example for variable length extended, is a goal of this specification.

Some narrow-format C implementations, namely ones for digital signal processing, provide
only the IEEE single format, possibly augmented by single-extended, which may be narrower
than IEEE double or Standard C double, and possibly further augmented by double in
software. These non-conforming implementations might generally adopt this specification,
though not matching its requirements for types.

One approach would be: match Standard C float with single; match Standard C
double with single-extended, else single; and match Standard C long double with double,
else single-extended, else single. Then most of this specification could be applied
straightforwardly. Users should be clearly warned that the types may not meet expectations.

Another approach would be to refer to a single-extended format as long float and then
.not recognize any C types not truly supported. This would provide ample warning for
programs requiring double. The translation part of porting programs could be accomplished
easily with the help of type definitions. In the absence of a double type, most of this
specification for double could be adopted for the 1ong float type. Having distinct types for
long float and double, previously synonyms, requires more imagination.]

X.2.1 Infinities, signed zeros, and NaNs

IEEE formats provide representations for signed infinities, signed zeros, and quiet and
signaling NaNs. A quiet NaN propagates through almost every arithmetic operation
without raising an exception. A signaling NaN generally raises an exception when
occurring as an arithmetic operand. This specification adopts by reference the IEEE-
specified behavior for infinities, signed zeros, and quiet NaNs. This specification does
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not define the behavior of signaling NaNs.2 It generally uses the term NaN to denote
quiet NaNs.

The NAN and INFINITY macros and the nan function in <£p.h> provide designations
for NaNs and infinities. Any meaning associated with arguments to the nan function is
implementation defined. An implementation might interpret nan function arguments to
determine extra information to be represented in the NaN’s significand.

[Signaling NaNs are not created by any standard operations or functions, but can be created as
bit patterns. Operations that trigger a signaling NaN argument generally return a quiet NaN
result provided no trap is taken; neither traps nor any other facility for signaling NaNs is
required by the IEEE standard. True support for signaling NaNs implies restartable traps,
such as the optional traps specified in the IEEE standard.

This specification fully supports the primary utility of quiet NaNs—*“to handle otherwise
intractable situations, such as providing a default value for 0.0/0.0” [11] and thereby provide
closure for the arithmetic.

Other applications of NaNs may prove useful. Available parts of NaNs have been used
to encode auxiliary information, for example about the NaN’s origin [4]. Signaling NaNs are
good candidates for filling uninitialized storage; and their available parts could distinguish
uninitialized floating objects. IEEE signaling NaNs and trap handlers potentially provide
hooks for maintaining diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for auxiliary information that could be
encoded in NaNs, is problematic. Trap handling varies widely among implementations.
Implementation mechanisms may trigger signaling NaNs, or fail to, in mysterious ways. The
IEEE standard requires that NaNs propagate, but not all implementations faithfully propagate
the entire contents. And even the IEEE standard fails to specify the contents of NaNs through
format conversion, which is pervasive in some C implementation mechanisms. For these
reasons this specification does not specify the behavior of signaling NaNs nor the
interpretation of NaN significands.

An early draft of the Floating-Point C Extensions part of the X3J11 Numerical C
Extensions Technical Report contains specification for signaling NaNs, which could serve as
a guide for extensions in support of signaling NaNs.]

X.3 Operators and functions

C operators and functions provide IEEE required and recommended facilities as listed
below. Except where noted, this specification adopts by reference their IEEE-specified
behavior.

— The C +, -, *, and / operators provide the IEEE add, subtract, multiply, and divide
operations.

— The C sqgrt function in <£p.h> provides the IEEE square root operation.

— The C rem function in <£p.h> provides the IEEE remainder operation. The remquo
function in <£p.h> provides the same operation but with additional information.

— The C rint function in <£p.h> provides the IEEE operation that rounds a floating-
point number to an integral value (in the same precision). The C nearbyint function
in <£p.h> provides the similar nearbyinteger function recommended in the Appendix
to IEEE standard 854.

2 Since NaNs created by IEEE operations are always quiet, quiet NaNs (along with infinities) are sufficient
for closure of the arithmetic.
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— The C conversions for floating types provide the IEEE conversions between floating-
point precisions.

— The C conversions from integral to floating types provide the IEEE conversions from
integer to floating point.

— The C conversions from floating to integral types provide IEEE-like conversions but
always round toward zero.

— The C rinttol function in <£p.h> provides the IEEE conversions, which honor the
directed rounding mode, from floating point to the 1ong integer format. The rinttol
function can be used in conjunction with casts to provide IEEE conversions from
floating to other integer formats.

— The C translation time conversion of floating constants and the strtod, fprintf, and
related C library functions in <std1ib.h> and <stdio.h> provide IEEE binary-
decimal conversions. The strtold function in <stdlib.h> provides the conv
function recommended in the Appendix to IEEE standard 854.

— The C relational and equality operators provide IEEE comparisons. The IEEE
standard identifies a need for additional comparison predicates to facilitate writing
code that accounts for NaNs. The relational macros (isgreater, isgreaterequal,
isless, islessequal, islessgreater, and isunordered) in <£fp.h> supplement
the C language operators to address this need. The islessgreater and
isunordered macros provide a quiet version of the <> predicate and the unordered
predicate recommended in the Appendix to the IEEE standard.

— The feclearexcept, feraiseexcept, and fetestexcept functions in <fenv.hs
provide the facility to test and alter the IEEE floating-point exception flags. The
fegetexcept and fesetexcept functions in <fenv.h> provide the facility to save
and restore all five status flags at one time. These functions are used in conjunction
with the fexcept_t typedef and the exception macros (FE_INEXACT, FE_DIVBYZERO,
FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID) also in <fenv.h>.

— The fegetround and fesetround functions in <fenv.h> provide the facility to select
among the IEEE directed rounding modes represented by the rounding direction
macros (FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO) also in
<fenv.h>.

— The fegetenv, feholdexcept, fesetenv, and feupdateenv functions in <fenv.h>
provide a facility to manage the floating-point environment, composing the IEEE
status flags and control modes.

— The copysign function in <£p.h> provides the copysign function recommended in
the Appendix to the IEEE standard.

— The C unary minus (-) operator provides the minus (-) operation recommended in the
Appendix to the IEEE standard.

— The sca1b function in <£p.h> provides the scalb function recommended in the
Appendix to the IEEE standard.

4 IEEE standard floating-point arithmetic
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— The 1ogb function in <£p.h> provides the logb function recommended in the
Appendix to the IEEE standard, but following the newer specification in IEEE
Standard 854.

— The nextaftert, nextafterd, and nextafterl functions in <£p.h> provide the
nextafter function recommended in the Appendix to the IEEE standard (but with a
minor change to better handle signed zeros). The nextafter function in <£p.h>
provides the same function but in a manner reflecting the implementation’s evaluation
method.

— The isfinite macro in <£p.h> provides the finite function recommended in the
Appendix to the IEEE standard.

— The isnan macro in <£p.h> provides the isnan function recommended in the
Appendix to the IEEE standard.

— The signbit macro and the £pclassify macro, used in conjunction with the number
classification macros (FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, FP_ZERO),
in <£p.h>provide the facility of the class function recommended in the Appendix to
the IEEE standard (except that £pclassify does not distinguish signaling from quiet
NaNs).

X.4 Floating to integral conversion

If the floating value is infinite or NaN or if the integral part of the floating value
exceeds the range of the integer type, then the invalid exception is raised and the resulting
value is unspecified. Whether conversion of nonintegral floating values whose integral
part is within the range of the integer type raises the inexact exception is unspecified.3

X.5 Binary-decimal conversion

Conversion from the widest supported IEEE format to decimal with pEc IMAL_DIG
digits and back is the identity function.4

The implementation follows the accuracy recommendations in 7.9.5.7 and 7.10.1.4.
In particular, conversion between any supported IEEE format and decimal with
DECIMAL_DIG or fewer significant digits is correctly rounded.

[The IEEE standard requires perfect rounding for a large though incomplete subset of decimal
conversions. This specification goes beyond the IEEE standard by requiring perfect rounding
for all decimal conversions, involving DECIMAL_DIG or fewer decimal digits and a supported
IEEE format, because practical methods are now available (see 777). Although not requiring

3 IEEE standard 854, though not 754, directly specifies that floating-to-integral conversions raise the
inexact exception for nonintegral in-range values. In those cases where it matters, library functions can be
used to effect such conversions with or without raising the inexact exception. See rint, rinttol, and
nearbyint in <fp.h>.

4 If the minimum-width IEEE 754 extended format (64 bits of precision) is supported, DECIMAL_DIG must
be at least 21. If IEEE 754 double (53 bits of precision) is the widest [EEE format supported, then
DECIMAL_DIG must be at least 17. (By contrastLDBL_DIG and DBL_DIG are 19 and 15, respectively, for
these formats.)
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correct rounding for arbitrarily wide decimal numbers, this specification is sufficient in the
sense that it ensures that every internal numeric value in an IEEE format can be determined as
a decimal constant.]

X.6 Contracted expressions

Contracted expressions treat infinities, NaNs, signed zeros, subnormals, and the
rounding directions in a manner consistent with the basic arithmetic operations covered
by the IEEE standard. Contracted expressions should raise exceptions in a manner
generally consistent with the basic arithmetic operations.

A contracted expressions should deliver the same value as its uncontracted
counterpart, else be correctly rounded (once).

X.7 Environment

The floating-point environment defined in <fenv.h> includes the IEEE exception
status flags and directed-rounding control modes. It includes also IEEE dynamic
rounding precision and trap enablement modes, if the implementation supports them.5

[The exception flags—invalid, overflow, underflow, divide-by-zero, and inexact—can be
queried at execution time to determine whether a floating-point exception has occurred since
the beginning of execution or since its flag was explicitly cleared. (The flags are sticky.)

The rounding direction modes—to-nearest, toward-zero, upward (toward +oo), and downward
(toward -e<)—can be altered at execution time to control the rounding direction for floating-
point operations.

The IEEE standard prescribes rounding precision modes as a means for a system whose
results are always double or extended to shorten the precision of its results, in order to mimic
systems that deliver results to single or double precision. An implementation of C can meet
this goal in any of the following ways:

1. By supporting the method of evaluating expressions to their semantic type.

2. By providing translation options to shorten results by rounding to IEEE single or double
precision.

3. By providing functions to set and get dynamic rounding-precision modes which shorten
results by rounding to IEEE single or double precision. Functions fesetprec and
fegetprec and macros FE_FLTPREC, FE_DBLPREC, and FE_LDBLPREC, analogous to the
functions and macros for the rounding direction modes, would serve the purpose.

This specification does not include a portable interface for precision control because the IEEE
standard is ambivalent on whether it intends for precision control to be dynamic (like the
rounding direction modes) or static. Indeed, some floating-point architectures provide control
modes, suitable for a dynamic mechanism, and others rely on instructions to deliver single-
and double-format results, suitable only for a static mechanism.

The traps recommended by the IEEE standard require modes for enabling and disabling.]

5 This specification does not require dynamic rounding precision nor trap enablement modes.

6 IEEE standard floating-point arithmetic
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X.7.1 Environment management

The IEEE standard requires that floating-point operations implicitly raise exception
status flags, and that rounding control modes can be set explicitly to affect result values
of floating-point operations. When the state for the fenv_access macros (defined in

<fenv.h>) is on, these changes to the floating-point state are treated as side effects which
respect sequence points.6

X.7.2 Translation
During translation the IEEE default modes are in effect:
— The rounding direction mode is rounding to nearest.
— The rounding precision mode (if supported) is set so that results are not shortened.
— Trapping or stopping (if supported) is disabled on all exceptions.

The implementation should provide a warning for each translation-time floating-point
exception, other than inexact.

lIs there a need for the term warning for the rest of the C standard? 1

[An implementation is not required to provide a facility for altering the modes for translation-
time arithmetic, or for making exception flags from the translation available to the executing
program. The language and library provide facilities to cause floating-point operations to be
done at execution time, when they can be subjected to varying dynamic modes and their
exceptions detected. The need does mot seem sufficient to require similar facilities for
translation.]

As floating constants are converted to appropriate internal representations at

translation time, the default rounding modes are in effect and execution-time exceptions
are not raised (even when the state of fenv_access in on).”

X.7.3 Execution

At program startup the floating-point environment is initialized as prescribed by the
IEEE standard:

— All exception status flags are clear.
— The rounding direction mode is rounding to nearest.

— The dynamic rounding precision mode (if supported) is set so that results are not
shortened.

— Trapping or stopping (if supported) is disabled on all exceptions.

6 If the state for the fenv_access macros is off, the implementation is free to assume the modes will be the
default ones and the flags will not be tested, which allows certain optimizations—see X.9.

7 Library functions, for example strtod, provide execution-time conversion of numeric strin gs.

IEEE standard floating-point arithmetic 7
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X.7.4 Constant expressions

An arithmetic constant expression of floating type, other than one in an initializer for
an object that has static storage duration or in an initializer list for an object that has
aggregate or union type, is evaluated (as if) during execution. As execution-time
evaluation, it is affected by any operative modes and raises exceptions as required by the
IEEE standard (provided the state for fenv_access is on).8

Example

#include <fenv.h>
fenv_access_on
void f(void) (

float w[] = { 0.0/0.0 }; /* does not raise an exception */
static float x = 0.0/0.0; /* does not raise an exception */
float y = 0.0/0.0; /* raises an exception */
double z = 0.0/0.0; /* raises an exception */

For the aggregate and static initializations, the division is done at translation time, raising
no (execution-time) exceptions. On the other hand, for the two automatic scalar
initializations the invalid division occurs at execution time.

[A previous approach allowed translation-time constant arithmetic, but empowered the unary
+ operator, when applied to an operand, to inhibit translation-time evaluation of constant

expressions.]

X.7.5 Initialization

All computation for automatic scalar initialization is done (as if) at execution time.
As execution-time evaluation, it is affected by any operative modes and raises exceptions
as required by the IEEE standard (provided the state for fenv_access is on). All
computation for initialization of objects that have static storage duration or that have
aggregate or union type is done (as if) at translation time.

Example

#include <fenv.h>
fenv_access_on
void f(void) {

float ul] = { 1.1e75 }; /* does not raise exceptions */
static float v = 1.1e75; /* does not raise exceptions */
float w = 1.1e75; /* may raise exceptions */
double x = 1.1e75; /* may raise exceptions */
float y = 1.1e75f; /* may raise exceptions */
long double z = 1.l1le75; /* does not raise exceptions */

The aggregate and static initializations of u and v raise no (execution-time) exceptions
because their computation is done at translation time. The automatic initialization of w
requires an execution-time conversion to £loat of the wider value 1.1e75, which raises

8 Results of inexact expressions like 1.0/3.0 can be affected by rounding modes set at execution time,
and expressions such as 0.0/0.0and 1.0/0. 0 can be used reliably to generate execution-time exceptions.
Or, the efficiency of translation-time evaluation can be achieved by using static initialization, such as

const static double one_third = 1.0/3.0;

8 IEEE standard floating-point arithmetic
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exceptions. The automatic initializations of x and y entail execution-time conversion,
but, in some expression evaluation methods, not to a narrower format, in which case no
exception is raised.® The automatic initialization of z entails execution-time conversion,
but not to a narrower format, so no exception is raised. Note that the conversions of the
floating constants 1.1e75 and 1.1e75f to their internal representations occur at
translation time in all cases.

[This specification does not suit C++, whose static and aggregate initializers need not be
constant. Specifying all floating-point constant arithmetic and initialization to be (as if) at
execution time would be consistent with C++ and, given the fenv_access mechanism, still
would allow the bulk of constant arithmetic to be done, in actuality, at translation time.]

X.7.6 Changing the environment

Operations defined in 6.3 and functions and macros defined for the standard libraries
change flags and modes just as indicated by their specification (including conformance to
the IEEE standard). They do not change flags or modes (so as to be detectable by the
user) in any other cases.

If the argument to the feraiseexcept function in <fenv.h> represents IEEE valid
coincident exceptions for atomic operations—namely overflow and inexact, or underflow
and inexact—then overflow or underflow is raised before inexact.

[IEEE operations order exceptions this way.]

X.8 Predefined macro name

An implementation that follows this specification defines the macro name
__1eEe_FP__ which expands to the decimal constant 1.

X.9 Optimization

This section identifies code transformations that might subvert IEEE-specified
behavior, and others that do not.

X.9.1 “Global” transformations

Floating-point arithmetic operations and external function calls may entail side effects
which optimization must honor, at least where the state for fenv_access is on. The flags
and modes in the floating-point environment may be regarded as global variables;
floating-point operations (+, *, etc.) implicitly read the modes and write the flags.

Concern about side effects may inhibit code motion and removal of seemingly useless
code. For example, in

9 Use of £10at_t and double_t variables increases the likelihood of translation-time computation. For
example, the automatic initialization

double_t x = 1.1e75;
could be done at translation time, regardless of the expression evaluation method.

IEEE standard floating-point arithmetic 9
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#include <fenv.h>

fenv_access_on

void f(double x) {
[¥ceos*/
for (1 = 0; 1 < n; i++) x + 1;
7%...%/

x + 1 might raise exceptions, so cannot be removed. And since the loop body might not
execute (maybe 02n), x + 1 cannot be moved out of the loop. Of course these
optimizations are valid if the implementation can rule out the nettlesome cases.

This specification does not require support for trap handlers that maintain information
about the order or count of exceptions. Therefore, between function calls exceptions
need not be precise: the actual order and number of occurrences of exceptions (> 1) may
vary from what the source code expresses. Thus the preceding loop could be treated as

if (0 < n) x + 1;

X.9.2 Expression transformations

x / 2¢ox * 0.5 Although similar transformations involving inexact constants
generally do not yield numerically equivalent expressions, if the
constants are exact then such transformations can be made on
IEEE machines and others that round perfectly.

1*x,x/1->x Theexpression1 * xandx, andx / 1 and x are equivalent (on —
IEEE machines, among others).10

x - ¥y e x + (-y) The expressions x - y,x + (-y),and (-y) + x are equivalent
(on IEEE machines, among others).

x - y¢> -(y - x) Theexpressions x - yand -(y - x) are not equivalent because
1-11is+0but-(1 - 1)is -0 (in the default rounding direction).11

X - x—0.0 The expressions x - x and 0.0 are not equivalent if x is a NaN or
infinite.

0 * x—>0.0 The expressions 0 * x and 0.0 are not equivalent if x is a NaN or
infinite.

X+ 0-ox The expressions x + 0 and x are not equivalent if x is -0, because

(-0) + (+0) yields +0 (in the default rounding direction), not -0.

x - 0-5x (+0) - (+0) yields -0 when rounding is downward (toward -ee), but
+0 otherwise, and (-0) - (+0) always yields -0; so, if the state for

10 Serict support for signaling NaNs—not required by this specification—would invalidate these and other
transformations that remove arithmetic operators.

11 The IEEE standard prescribes a signed zero to preserve mathematical identities across certain
discontinuities. Examples include

1/(1/ (£o0)) is too
complex_conjugate(sqrt(z)) is sqrt(complex_conjugate(z))

10 IEEE standard floating-point arithmetic
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fenv_access is off, promising default rounding, then the
implementation can replace x - 0 by x, even if x might be zero.

-x o 0 - x The expressions -x and 0 - x are not equivalent if x is +0,

because - (+0) yields -0, but 0 - (+0) yields +0 (unless rounding
is downward).

X.9.3 Relational operators

x 1= x— false The statement x 1= x1is true if x is a NaN.
X == x> Irue The statement x == x is false if x is a NaN.
x < y— isless(x,y) (and similarly for <=, >, >=) Though numerically equal,

these expressions are not equivalent because of side effects when x
or y is a NaN and the state for fenv_access is on. This
transformation, which would be desirable if extra code were
required to cause the invalid exception for unordered cases, could
be performed provided the state for fenv_access is off.

The sense of relational operators must be maintained. This includes handling
unordered cases as expressed by the source code.

Example

if (a < b) £(); else g():; /* calls g and raises invalid if a and
b are unordered */

is not equivalent to

if (a >= b) g(); else £(); /* calls £ and raises invalid if a and
b are unordered */

nor to

if (isgreaterequal(a, b)) g(); else f(); /* calls £ without
raising invalid if a and b are unordered */

nor, unless the state of fenv_access is off, to

if (isless(a, b)) £(); else g(); /* calls g without raising
invalid if a and b are unordered */

but is equivalent to

if (!(a < b)) g(); else £();

X.9.4 Constant arithmetic

The implementation must honor exceptions raised by execution-time constant
arithmetic wherever the state for fenv_access is on. (See X.7.4 and X.7.5.) An
operation on constants that raises no exception can be folded during translation, except if
the state for fenv_access is on, then a further check is required to assure that changing

IEEE standard floating-point arithmetic 11
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the rounding direction to downward does not alter the sign of the result.l2 —
Implementations that support dynamic rounding precision modes should assure further

that the result of the operation raises no exception when converted to the semantic type of

the operation.

X.10 <fp.h>

This section contains specification of <£p.h> facilities that is particularly suited for
IEEE implementations.

The Standard C macro HUGE_VAL and its float and long double analogs,
HUGE_VALF and HUGE_VALL, expand to expressions whose values are positive infinities;
their evaluations raise no exceptions.13

Special cases for functions in <£p.h> are covered directly or indirectly by the IEEE
standard. X.3 identifies the functions that the IEEE standard specifies directly. This
specification recommends that the other functions in <£p.h> honor infinities, NaNs,
signed zeros, subnormals, and the exception flags in a manner consistent with the basic
arithmetic operations covered by the IEEE standard.

Does ISO 7.5.1 need amending, as exceptions will be visible by means of
<fenv.h> functions?

The overflow exception is raised whenever an infinity—or, because of rounding
direction, a maximal-magnitude finite number—is returned in lieu of a value whose —~
magnitude is too large.

The underflow exception is raised whenever a result is tiny (essentially subnormal or
zero) and suffers loss of accuracy.14 This specification for transcendental functions
allows raising the underflow (and inexact) exception when a result is tiny and probably
inexact.

The inexact exception is raised whenever the rounded result is not identical to the
mathematical result. Except as noted, this specification for transcendental functions
allows raising the inexact exception when a result is probably inexact.

[For some functions, for example pow, determining exactness in all cases may be too costly.]

As implied by X.7.6, the <fp.n> functions do not raise spurious exceptions
(detectable by the user).15

12 9.9 yields -0 instead of +0 just when the rounding direction is downward.
3 HUGE_vAL could not be implemented as

#define HUGE_VAL (1.0/0.0)

whose use raises the divide-by-zero exception.

14 The [EEE standard allows different definitions of underflow. All resulting in the same values, the
options differ only in that the thresholds when the exception is raised may differ by a rounding error.

15 For example, the implementation must hide an underflow generated by an intermediate computation of
a non-tiny result.

12 IEEE standard floating-point arithmetic
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Whether transcendental functions honor the rounding direction mode is
implementation-defined.

[Although correct rounding for transcendentals is desirable, costs may be prohibitive at this
time.]
Generally, one-parameter functions of a NaN argument return that same NaN and
raise no exception.

The specification in the following subsections appends to the definitions in <£p.h>.
X.10.1 Trigonometric functions (so 7.5.2)

X.10.1.1 The acos function (ISO 7.52.1)
floating-type acos(floating-type x);

® acos(1l) returns +0.
* acos(x) returns a NaN and raises the invalid exception for |x| > 1.

X.10.1.2 The asin function (ISO 7.5.2.2)
floating-type asin(floating-type x);

¢ asin(%0) returns 0.
* asin(x) returns a NaN and raises the invalid exception for |x| > 1.

X.10.1.3 The atan function (ISO 7.5.2.3)
floating-type atan(floating-type x);

® atan(*0) returns +0.
¢* atan(XINFINITY) returns +x/2.

X.10.1.4 The atan2 function (ISO 7.5.2.4)
floating-type atan2(floating-type y, floating-type x);

* If one argument is a NaN then atan2 returns that same NaN: if both arguments are
NaNs then atan2 returns one of its arguments.
atan2(+0, x) returns +0, for x > 0.

atan2(+0, +0) returns +0.16

atan2 (0, x) returns #x, for x < 0.

atan2(+0, -0) returns #mx.

atan2(y, *0) returns /2 fory > 0.

atan2(y, +0) returns -n/2 fory < 0.

atan2(ty, INFINITY) returns +0, for finite y > 0.
atan2 (*INFINITY, x) returns +r/2, for finite x.
atan2(ty, -INFINITY) returns +r, for finite y > o.
atan2 (*INFINITY, INFINITY) returns +m/4.

atan2 (XINFINITY, -INFINITY) returns +3w/4.

e o o o o

e © o o o o

16 atan2(0, 0) does not raise the invalid exception, nor does atan2 (y, 0) raise the divide-by-zero
exception.
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[The more contentious cases are y and x both infinite or both zeros. See [7] for a justification
of the choices above.]

X.10.1.5 The cos function (ISO 7.5.2.5;)

floating-type cos(floating-type x);
* cos(fINFINITY) returns a NaN and raises the invalid exception.
X.10.1.6 The sin function (ISO 7.5.2.6)

floating-type sin(floating-type x);

¢ sin(+0) returns +0.
* sin(XINFINITY) returns a NaN and raises the invalid exception.

X.10.1.7 The tan function (ISO 7.5.2.7)
floating-type tan(floating-type x):;

* tan(+0) returns 0.
* tan(*INFINITY) returns a NaN and raises the invalid exception.

X.10.2 Hyperbolic functions so 7.5.3)

X.10.2.1 The acosh function -
floating-type acosh(floating-type x):
® acosh(1) returns +0.

® acosh(+INFINITY) returns +INFINITY.
* acosh(x) returns a NaN and raises the invalid exception if x < 1.

X.10.2.2 The asinh function

floating-type asinh(floating-type Xx);

asinh (+0) returns +0.
L4 asinh (XINFINITY) returns +INFINITY.

X.10.2.3 The atanh function
floating-type atanh(floating-type x);
* atanh(+0) returns +0.
* atanh(+1) returns +INFINITY.
* atanh(x) returns a NaN and raises the invalid exception if |x| > 1.
X.10.2.4 The cosh function (ISO 7.5.3.1)

floating-type cosh(floating-type x);

® cosh(*INFINITY) returns +INFINITY.

14 IEEE standard floating-point arithmetic
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X.10.2.5 The sinh function (ISO 7.5.3.2)
floating-type sinh(floating-type Xx):

* sinh(+0) returns 0.
* sinh(fINFINITY) returns +tINFINITY.

X.10.2.6 The tanh function (ISO 7.5.3.3)
floating-type tanh(floating-type X);

tanh (+0) returns *0.
® tanh(*INFINITY) returns +1.

X.10.3 Exponential and logarithmic functions 1so7.5.4)

X.10.3.1 The exp function (ISO 7.5.4.1;)
floating-type exp(floating-type X):;

exp (+INFINITY) returns +INFINITY.
® exp(-INFINITY) returns +0.

X.10.3.2 The exp2 function
floating-type exp2(floating-type x);

® exp2(+INFINITY) returnS +INFINITY.
® exp2(~-INFINITY) returns +0.

X.10.3.3 The expml function
floating-type expml (floating-type X);
expml (+0) returns *0.
®*  expml (+INFINITY) returns +INFINITY.
® expml (-INFINITY) returns -1.
X.10.3.4 The frexp function (ISO 7.5.4.2)
floating-type frexp(floating-type value, int *exp):;
e frexp(+0, exp) returns +0, and returns 0 in *exp.
* frexp(+INFINITY, exp) returns+INFINITY, and returns an unspecified value in
*axp.
* frexp of a NaN argument is that same NaN, and returns an unspecified value in *exp.
e Otherwise, frexp raises no exception.
On a binary system, frexp is equivalent to the comma expression

( (*exp = (value == 0) ? 0 : (int) (1 + logb(value))),
scalb(value, -(*exp)) )

IEEE standard floating-point arithmetic 15
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X.10.3.5 The Idexp function (ISO 7.5.4.3;)
floating-type ldexp(floating-type x, int exp) ;
On a binary system, 1dexp is equivalent to
scalb(x, exp)
[Note that 1dexp may not provide the full functionality of scalb for extended values, because
the power required to scale from the smallest (subnormal) to the largest extended value
exceeds the minimum INT_MAX allowed by Standard C.]
X.10.3.6 The log function (ISO 7.5.4.4)

floating-type log(floating-type x);

* log(+0) returns -INFINITY and raises the divide-by-zero exception.
* log(x) returns a NaN and raises the invalid exception if x < 0.
* log(+INFINITY) returns +INFINITY.

X.10.3.7 The logl0 function (ISO 7.5.4.5)
floating-type loglO(floating-type x);

* 1logl0(+0) returns -INFINITY and raises the divide-by-zero exception.
* log1l0(x) returns a NaN and raises the invalid exception if x < o.
* 1o0gl0(+INFINITY) returns +INFINITY.

X.10.3.8 The loglp function

floating-type loglp(floating-type %) ;

loglp (+0) returns +0.

loglp(-1) returns -INFINITY and raises the divide-by-zero exception.

loglp (x) returns a NaN and raises the invalid exception if x < -1.
loglp (+INFINITY) returns +INFINITY.

e o o o

X.10.3.9 The log2 function
floating-type log2(floating-type Xx);
* log2(+0) returns -INFINITY and raises the divide-by-zero exception.
* log2(x) returns a NaN and raises the invalid exception if x < 0.
* 1log2(+INFINITY) returns +INFINITY.
X.10.3.10 The logb function

floating-type logb(floating-type x);

logb (*INFINITY) returns +INFINITY.
® logb(+0) returns -INFINITY and raises the divide-by-zero exception.

16 IEEE standard floating-point arithmetic
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X.10.3.11 The modf functions (ISO 7.5.4.6)

double modf (double value, double *iptr);
float modff (float value, float *iptr);
long double modfl(long double value, long double *iptr);

* modf(value, iptr) returns a result with the same sign as the argument value.
* modf (INFINITY, iptr) returns+0 and stores +INFINITY through iptr.
* modf of a NaN argument returns that same NaN and also stores it through iptr.

mod£ behaves as though implemented by

#include <fp.h>

#include <fenv.h>

fenv_access_on

double modf (double value, double *iptr)

{
int save_round = fegetround();
fesetround (FE_TOWARDZERO) ;
*iptr = nearbyint (value);
fesetround(save_round);
return copysign(
(fabs(value) == INFINITY) ? 0.0 : value - (*iptr),

value) ;
}
X.10.3.12 The scalb function
floating-type scalb(floating-type x, long int n):
* scalb(x, n) returns x if x is infinite, zero, or a NaN.

* scalb handles overflow and underflow like the basic IEEE standard arithmetic
operations.

X.10.4 Power and absolute value functions 150 7.s.5,7.5.6)

X.10.4.1 The fabs function (ISO 7.5.6.2)
floating-type fabs(floating-type x);

* fabs(+0) returns +0.
b4 fabs (XINFINITY) returns +INFINITY.

X.10.4.2 The hypot function
floating-type hypot (floating-type x, floating-type Vv);

* hypot(x, y),hypot(y, x),and hypot (x, -y) are equivalent.
* hypot(x, y) returns +INFINITY if x is infinite.

* If both arguments are NaNs then hypot returns one of its arguments; otherwise, if x

is a NaN and y in not infinite then hypot returns that same NaN.
* hypot(x, +0) is equivalent to fabs (x).

[bypot (INFINITY, NAN) returns + INFINITY, under the justification that
hypot (INFINITY, y) i$ INFINITY for any numeric value y.]

IEEE standard floating-point arithmetic
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X.10.4.3 The pow function (ISO 7.5.5.1)
floating-type pow(floating-type x, floating-type V):;

pow(x, *0) returns 1 for any x.

pow(x, +INFINITY) returns +INFINITY for |x| > 1.

pow(x, +INFINITY) returns +0 for |x| < 1.

pow(x, -INFINITY) returns +0 for |x| > 1.

pow(x, -INFINITY) returns +INFINITY for |x| < 1.

pow (+INFINITY, y) returns +INFINITY fory > 0.

pow (+INFINITY, y) returns +0 fory < 0.

pow (-INFINITY, y) returns -INFINITY fory an odd integer > 0.

pow (-INFINITY, y) returns +INFINITY fory > 0 and not an odd integer.

pow (-INFINITY, y) returns -0 fory an odd integer < 0.

pow (-INFINITY, y) returns +0 fory < 0 and not an odd integer.

pow (x, y) returns one of its NaN arguments if y is a NaN, or if x is a NaN and y is

nonzero.

pow(t1, +INFINITY) returns a NaN and raises the invalid exception.

* pow(x, y) returns a NaN and raises the invalid exception for finite x < 0 and finite
nonintegral y.

* pow (%0, y) returns +INFINITY and raises the divide-by-zero exception for y an odd
integer < 0.

* pow (%0, y) returns +INFINITY and raises the divide-by-zero exception for y < 0,
finite, and not an odd integer.

* pow(*0, y) returns +0 for y an odd integer > o.

* pow(*0, y) returns +0 fory > 0 and not an odd integer.

[See [7].

pow(NaN, 0). [7] provides extensive justification for the value 1. An opposing point of view
is that any return value of a function of a NaN argument should be a NaN, even if the function
is independent of that argument—as, in the IEEE standard, NAN <= +INFINITY is false and
raises the invalid exception.]
X.10.4.4 The sqrt functions (ISO 7.5.5.2)
floating-type sqrt(floating-type x);

sqrt is fully specified as a basic arithmetic operation in the IEEE standard.

X.10.5 Error and gamma functions

X.10.5.1 The erf function
floating-type erf(floating-type x);

* erf (*0) returns *+0.
® erf (xINFINITY) returns +1.

X.10.5.2 The erfc function

floating-type erfc(floating-type x);

18 IEEE standard floating-point arithmetic
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* erfc(+INFINITY) returns +0.
L erfc (-INFINITY) returns 2.

X.10.5.3 The gamma function
floating-type gamma (floating-type x);

¢ gamma (+INFINITY) returns +INFINITY.

* gamma (x) returns a NaN and raises the invalid exception if x is a negative integer or
Zero.

* gamma (-INFINITY) returns a NaN and raises the invalid exception.

X.10.5.4 The Igamma function
floating-type lgamma(floating-type x):

* lgamma (+INFINITY) returns +INFINITY.

* lgamma(x) returns +INFINITY and raises the divide-by-zero exception if x is a
negative integer or zero.

* lgamma(-INFINITY) returns a NaN and raises the invalid exception.

X.10.6 Nearest integer functions @so 7.5.6)

X.10.6.1 The ceil function (ISO 7.5.6.1)

floating-type ceil (floating-type x);

* ceil(x) returns x if x is *INFINITY Or +0.
The @ouble version of ceil behaves as though implemented by

#include <fp.h>

#include <fenv.h>

fenv_access_on

double ceil(double x)

{
double result;
int save_round = fegetround();
fesetround (FE_UPWARD) ;
result = rint(x); /* or nearbyint instead of rint */
fesetround(save_round);
return result;

}

X.10.6.2 The floor function (ISO 7.5.6.3)
floating-type floor(floating-type x);
* floor(x) returns x if x is +INFINITY or +0.

See the sample implementation for ceil in X.10.6.1.

IEEE standard floating-point arithmetic 19
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X.10.6.3 The nearbyint function
floating-type nearbyint (floating-type x);

The nearbyint function differs from the rint function only in that the nearbyint
function does not raise the inexact flag.

X.10.6.4 The rint function

floating-type rint(floating-type x);

The rint function use IEEE standard rounding according to the current rounding
direction. It raises the inexact exception if its argument differs in value from its result.

X.10.6.5 The rinttol function
long int rinttol(long double x);

The rinttol function provides floating-to-integer conversion as prescribed by the IEEE
standard. It rounds according to the current rounding direction. If the rounded value is
outside the range of long int, the numeric result is unspecified and the invalid exception
is raised. When it raises no other exception and its argument differs from its result,
rinttol raises the inexact exception.

X.10.6.6 The round function
floating-type round(floating-type x);
The double version of round behaves as though implemented by

#include <fp.h>
#include <fenv.h>
fenv_access_on
double round(double x) {
double result;
fenv_t save_env;
feholdexcept (&save_env) ;
result = rint(x);
if (fetestexcept (FE_INEXACT)) {
fesetround (FE_TOWARDZERO) ;
result = rint(copysign(0.5 + fabs(x), x)):;
}
feupdateenv(&save_env) ;
return result;

}

round may but is not required to raise the inexact exception for nonintegral numeric
arguments, as this implementation does.

X.10.6.7 The roundtol function

long int roundtol(long double x);

20 IEEE standard floating-point arithmetic
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roundtol differs from rinttol with the default rounding direction just in that roundtol
(1) rounds halfway cases away from zero and (2) may but need not raise the inexact
exception for nonintegral arguments that round to within the range of 1ong int.

X.10.6.8 The trunc function
floating-type trunc(floating-type x);
The trunc function uses IEEE standard rounding toward zero (regardless of the current

rounding direction).

X.10.7 Remainder functions so 7.s.6)

X.10.7.1 The fmod function (ISO 7.5.6.4)
floating-type fmod(floating-type x, floating-type y);

* If one argument is a NaN then £mod returns that same NaN; if both arguments are
NaNs then £mod returns one of its arguments.

* fmod(+0, y) returns +0 if y is not zero.
fmod(x, y) returns a NaN and raises the invalid exception if x is infinite or y is zero.
fmod (x, *INFINITY) returns x if x is not infinite.

The double version of £mod behaves as though implemented by

#include <fp.h>

#include <fenv.h>
fenv_access_on

double fmod(double x, double y)
{

double result;
result = remainder(fabs(x), (y = fabs(y))):;
if (signbit(result)) result += y;
return copysign(result, x):
}
X.10.7.2 The remainder function
floating-type remainder(floating-type x, floating-type y);

remainder is fully specified as a basic arithmetic operation in the IEEE standard.
X.10.7.3 The remquo function

floating-type remquo(floating-type x, floating-type y, int *quo);

remquo follows the specification for remainder. It has no further specification special to
IEEE implementations.

X.10.8 Manipulation functions

X.10.8.1 The copysign function

floating-type copysign(floating-type x, floating-type v);
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copysign is specified in the Appendix to the IEEE standard.

X.10.8.2 The nan functions

double nan(const char *tagp);
float nanf(const char *tagp):;
long double nanl(const char *tagp):;

All IEEE implementations support quiet NaNs, hence declare all the nan functions.
X.10.8.3 The nextafter functions

floating-type nextafter(floating-type x, long double Y):
float nextafterf(float x, float y);

double nextafterd(double x, double y);

long double nextafterl(long double x, long double y);

* If one argument is a NaN then nextafter returns that same NaN ; if both arguments
are NaNs then nextafter returns one of its arguments.

* nextafter(x, y) raises the overflow and inexact exceptions if x is finite and the
function value is infinite.

* nextafter(x, y) raises the underflow and inexact exceptions if the function value is
subnormal andx t= y.

X.10.9 Maximum, minimum, and positive difference functions
X.10.9.1 The fdim function
floating-type fdim(floating-type x, floating-type y):;

* If one argument is a NaN then £dim returns that same NaN; if both arguments are
NaNs then £dim returns one of its arguments.

X.10.9.2 The fmax function
floating-type fmax(floating-type x, floating-type y);

* If just one argument is a NaN then fmax returns the other argument; if both
arguments are NaNs then £max returns one of its arguments.

fmax might be implemented as
{ return (isgreaterequal(x, y) || isnan(y)) ? x : y; }17

Ideally, £max would be sensitive to the sign of zero, for example fmax(-0.0, +0.0)
should return +0; however, implementation in software may be impractical.

17 Some applications might be better served by a max function that would return a NaN if one of its
arguments were a NaN:

{ return (isgreaterequal(x, y) || isnan(x)) ? x : y; }
Note that two branches still are required, for symmetry in NaN cases.

22 IEEE standard floating-point arithmetic
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X.10.9.3 The fmin function
floating-type fmin(floating-type x, floating-type Vy):

fmin is analogous to fmax. See X.10.9.2.

IEEE standard floating-point arithmetic 23

fas



