Floating-point environment <fenv.h>
WG14/N468 X3J11/95-069 (Draft 8/23/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim thomas@taligent.com

7.x Floating-point environment <fenv.h>

The header <fenv.h> declares two types and several macros and functions to provide
access to the floating-point environment. The floating-point environment refers
collectively to any floating-point status flags and control modes supported by the
implementation.! A floating-point status flag is a system variables signifying some
occurrence in the floating-point arithmetic. A floating-point control mode is a system
variable that affects floating-point arithmetic.

[The floating-point environment as defined here includes only execution-time modes, not
the myriad of possible translation-time options that may affect a program's results.
Examples of such translation-time options include: chopped or rounded multiplication on
CRAY Y-MP systems, D or G format for VAX, and fast or correctly-rounded divide on the
Intel 860. Each option's implementation-defined or deviant properties, relative to this
specification, should be well documented.]

Certain programming conventions support the intended model of use for the floating-
point environment?2:

— A function call must not alter its caller’s modes, clear its caller’s flags, nor depend on
the state of its caller’s flags unless the function is so documented.

— A function call is assumed to require default modes, unless its documentation
promises otherwise or unless the function is known not to use floating-point.

— A function call is assumed to have the potential of raising floating-point exceptions,
unless its documentation promises otherwise, or unless the function is known not to

use floating-point.

[Libraries are encouraged to document their use, or non-use, of floating-point and their
raising of floating-point exceptions.

Names in this header consistently include an FE_ or fe prefix and employ certain
abbreviations. The prefix calls attention to environmental access functions, which require

1 This header is designed to support the exception status flags and directed-rounding control modes
required by ANSIIEEE 754 (AEC 559), and other similar floating-point state. Also it is designed to
facilitate code portability among all systems. Implementation is trivial for systems that do not provide
access to floating-point state.

2 With these conventions, a programmer can safely assume default modes (or be unaware of them).
Responsibilities, and (ordinarily modest) overhead, associated with accessing the floating-point
environment fall on the programmer or program that does so explicitly.

Library 1

5. g



WG14/N468 X3J11/95-069 Draft 8/23/95

an enabling fenv_access macro. The abbreviations env and except are used in Standard
C and UNIX System V, respectively.

The interface described here is not intended to support floating-point trap handlers.]
The typedef

fenv_t
is a type for representing the entire floating-point environment.
The typedef

fexcept_t

is a type for representing the floating-point exception flags collectively, including any
status the implementation associates with the flags.

Each macro

FE_INEXACT
FE_DIVBYZERO
FE_UNDERFLOW
FE_OVERFLOW
FE_INVALID

is defined if and only if the implementation supports the exception by means of the
functions in 7.x.1.3 The defined macros expand to int constant expressions whose
values are distinct powers of 2.

The macro
FE_ALL_EXCEPT
is simply the bitwise OR of all exception macros defined by the implementation.
Each macro
FE_TONEAREST
FE_UPWARD
FE_DOWNWARD
FE_TOWARDZERO

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of the fegetround and fesetround functions. The defined

3 Unsupported macros are not defined in order to assure their use results in a translation error. A program
might explicitly define such macros, to allow translation of code (perhaps never executed) containing the
macros. The program could define the unsupported exception macros to be 0, for example

#ifndef FE_INEXACT
#define FE_INEXACT 0
#tendif
so that a bitwise OR of macros has a reasonable effect.

2 Library

554



Draft 8/23/95 WG14/N468 X3J11/95-069

macros expand to int constant expressions whose values are distinct nonnegative
values.4

The macro
FE_DFL_ENV

represents the default floating-point environment—the one installed at program startup—
and has type pointer to fenv_t. It can be used as an argument to <fenv.h> functions that
manage the floating-point environment.

The macros

fenv_access_on
fenv_access_off
fenv_access_default

provide a means to inform the implementation when a program might access the floating-
point environment to test flags or run under non-default modes.5 Each macro can occur
outside external declarations and takes effect from its occurrence until another
fenv_access macro is encountered, or until the end of the translation unit. The effect of
one of these macros appearing inside an external declaration is undefined. If part of a
program tests flags or runs under non-default mode settings, but the state for the
fenv_access macros is not on, then the behavior of that program is undefined. The
default state (on or off) for the macros is implementation-defined.

[Previous versions of this specifications used pragmas instead of macros for this
mechanism. Macros were preferred because of general limitations with pragmas and
because of the wish not to require standard pragmas.]

Example

#include <fenv.h>
fenv_access_on
void f(double x)
{
void g(double);
void h(double);
Y Sl St S §
g(x + 1);
h(x + 1);
1% S50
}

If the function g might depend on status flags set as a side effect of the first x + 1, orif
the second x + 1 might depend on control modes set as a side effect of the function call

4 The rounding direction macros might expand to constants corresponding to the values of FLT_ROUNDS,
the inquiry for the rounding direction of addition, but need not.

5 The purpose of the fenv_access macros is to allow certain optimizations, for example global common
subexpression elimination, code motion, and constant Jolding, that could subvert flag tests and mode

changes. In general, if the state of fenv_access igff then the translator can assume that default modes are
in effect and the flags are not tested.

Library 3

AEA



WG14/N468 X3J11/95-069 Draft 8/23/95

g, then this specification says the program must contain an appropriately placed
invocation to fenv_access_on. 6

[The performance of code under the effect of an enabling fenv_access macro may well be
important; in fact, an algorithm may access the floating-point environment specifically for
performance. The implementation should optimize as aggressively as the fenv_access
macros allow. (See §X.9.)

An implementation could simply honor the floating-point environment in all cases and
ignore the fenv_access macros.

Dynamic modes are potentially problematic because

1. the programmer may have to defend against undesirable mode settings—which imposes
intellectual, as well as time and space, overhead.

2. the translator may not know which mode settings will be in effect or which functions
change them at execution time—which inhibits optimization.

This specification attempts to address these problems without changing the dynamic nature
of the modes. :

An alternate approach would have been to present a model of static modes, with
explicit utterances to the translator about what mode settings would be in effect. This
would have avoided any uncertainty due to the global nature of dynamic modes or the
dependency on unenforced conventions. However, some essentially dynamic mechanism
still would have been needed in order to allow functions to inherit (honor) their caller’s
modes. The IEEE standard requires dynamic rounding direction modes. For the many
architectures that maintain these modes in control registers, implementation of the static
model would be more costly. Also, Standard C has no facility, other than macros and
pragmas, for supporting static modes.

An implementation on an architecture that provides only static control of modes, for
example through opword encodings, still could support the dynamic model, by generating
multiple code streams with tests of a private global variable containing the mode setting.
Only modules under an enabling fenv_access macro would need such special treatment.
To further limit the problem, the implementation might employ additional translation
options specifically to indicate where non-default modes would be admissible.]

7.x.1 Exceptions

The following functions provide access to the exception flags.” The int input
argument for the functions represents a subset of floating-point exceptions, and can be
constructed by bitwise ORs of the exception macros, for example
FE_OVERFLOW | FE_INEXACT. For other argument values the behavior of these functions
is undefined.

(In previous drafts of this specification, several of the exception functions returned an int
indicating whether the excepts argument represented supported exceptions. This facility

6 The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other hand,
without the fenv_access_on macro, and assuming the default state is off; just one evaluation ok + 1
would suffice.

7 The functions fetestexcept, feraiseexcept, aifbclearexcept support the basic abstraction of
flags that are either set or clear. An implementation may endow exception flags with more information—
for example, the address of the code which first raised the exception; the functions fegetexcept and
fesetexcept deal with the full content of flags.

4 Library

(r

VLY

~



Draft 8/23/95 WG14/N468 X3J11/95-069

was deemed unnecessary because excepts & ~FE_ALL_EXCEPT can be used to test
invalidity of the except s argument.]

7.x.1.1 The feclearexcept function
Synopsis

#include <fenv.h>
void feclearexcept (int excepts);

Description

The feclearexcept function clears the supported exceptions represented by its
argument. The argument excepts represents exceptions as a bitwise OR of exception
macros.
7.x.1.2 The fegetexcept function
Synopsis

#include <fenv.h>
void fegetexcept(fexcept_t *flagp, int excepts);

Description

The fegetexcept function stores an implementation-defined representation of the
exception flags indicated by the argument excepts through the pointer argument f£lagp.

7.x.1.3 The feraiseexcept function
Synopsis

#include <fenv.h>
void feraiseexcept(int excepts);

Description

The feraiseexcept function raises the supported exceptions represented by its
argument.® The argument excepts represents exceptions as a bitwise OR of exception
macros. The order in which these exceptions are raised is unspecified, except as stated in
X.7.6.

[The function is not restricted to accept only IEEE valid coincident expressions for atomic
operations, so that the function can be used to raise exceptions accrued over several
operations.]

7.x.1.4 The fesetexcept function

Synopsis

#include <fenv.h>
void fesetexcept(const fexcept_t *flagp, int excepts);

8 The effect is intended to be similar to that of exceptions raised by arithmetic operations. Hence, enabled
traps for exceptions raised by this function are taken. The specification in X.7.6 is in the same spirit.

Library 5

L34,



WG14/N468 X3J11/95-069 Draft 8/23/95

Description

The fesetexcept function sets the complete status for those exception flags
indicated by the argument excepts, according to the representation in the object pointed
to by £1agp. The value of *fl1agp must have been set by a previous call to
fegetexcept; if not, the effect on the indicated exception flags is undefined. This
function does not raise exceptions, but only sets the state of the flags.

7.x.1.5 The fetestexcept function
Synopsis

#include <fenv.h>
int fetestexcept (int excepts);

Description

The fetestexcept function determines which of a specified subset of the exception
flags are currently set. The excepts argument specifies—as a bitwise OR of the
exception macros—the exception flags to be queried.?

[The argument is a mask because querying all flags may be more expensive on some
architectures.]

Returns

The fetestexcept function returns the bitwise OR of the exception macros
corresponding to the currently set exceptions included in excepts.

Example
Call £ if invalid is set, g if overflow is set:

#include <fenv.h>

fenv_access_on

int set_excepts;

ARSI 4

set_excepts = fetestexcept (FE_INVALID | FE_OVERFLOW) ;
if (set_excepts & FE_INVALID) f():

if (set_excepts & FE_OVERFLOW) g();

7.x.2 Rounding

The fegetround and fesetround functions provide control of rounding direction
modes.

9 This mechanism allows testing several exceptions with just one function call.

6 Library

o~

§8



—

Draft 8/23/95 WG14/N468 X3J11/95-069

7.x.2.1 The fegetround function
Synopsis

#include <fenv.h>
int fegetround(veoid);

Description
The fegetround function gets the current rounding direction.
Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction.

7.x.2.2 The fesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argument round. If the argument does not match a rounding direction macro, the
rounding direction is not changed.

Returns

The fesetround function returns a nonzero value if and only if the argument matches
a rounding direction macro (that is, if and only if the requested rounding direction can be
established).

Example

Save, set, and restore the rounding dlrecuon Report an error and abort if setting the
rounding direction fails.

#include <fenv.h>

#include <assert.h>

fenv_access_on

int save_round;

int setround_ok;

save_round = fegetround():;
setround_ok = fesetround(FE_UPWARD);
assert (setround_ok) ;

7=y,

fesetround(save_round) ;

Library 7



WG14/N468 X3J11/95-069 Draft 8/23/95

7.x.3 Environment

The functions in this section manage the floating-point environment—status flags and
control modes—as one entity.

7.x.3.1 The fegetenv function
Synopsis

#include <fenv.h>
void fegetenv(fenv_t *envp);

Description

The fegetenv function stores the current floating-point environment in the object
pointed to by envp.

7.x.3.2 The feholdexcept function
Synopsis

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Description

The feholdexcept function saves the current environment in the object pointed to by
eavp, clears the exception flags, and installs a non-stop (continue on exceptions) mode, if
available, for all exceptions. 10

Returns

The feholdexcept function returns nonzero if and only if non-stop exception
handling was successfully installed.

[More appropriate for the user model prescribed in 7.x, feholdexcept supersedes
feprocentry which was equivalent to

fegetenv(envp) ;
fesetenv (FE_DFL_ENV) ;

]

7.x.3.3 The fesetenv function
Synopsis

#include <fenv.h>
void fesetenv(const fenv_t *envp);

10 ANSVEEE 754 (IEC 559) systems have a default non-stop mode, and typically at least one other mode
for trap handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For
such systems, the feholdexcept function can be used in conjunction with the feupdateenv function to
write routines that hide spurious exceptions from their callers.

8 Library



Draft 8/23/95 WG14/N468 X3J11/95-069

Description

The fesetenv function establishes the floating-point environment represented by the
object pointed to by envp. The argument envp must point to an object set by a call to
fegetenv, Or equal the macro FE_DFL_ENV or an implementation-defined value of type
pointer to fenv_t. Note that fesetenv merely installs the state of the exception flags
represented through its argument, and does not raise these exceptions.

7.x.3.4 The feupdateenv function
Synopsis

#include <fenv.h>
void feupdateenv(const fenv_t *envp);

Description

The feupdateenv function saves the current exceptions in its automatic storage,
installs the environment represented through envp, and then raises (actually re-raises) the
saved exceptions.

[feupdateenv was calleEeprocexit in earlier drafts of this specification.]
Example
Hide spurious underflow exceptions:

#include <fenv.h>

fenv_access_on

double f (double x)

{
double result;
fenv_t save_env;
feholdexcept (&save_env) ;
/*compute result¥*/
if (/*test spurious underflow*/) feclearexcept (FE_UNDERFLOW) ;
feupdateenv(&save_env);
return result;

Library 9

Lol



