—

Floating-point <fp.h>
WG14/N467 X3J11/95-068 (Draft 8/24/95)

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim thomas@taligent.com

7.x Floating-point <fp.h>

The header <£p.h> declares several types, macros and functions to support general
floating-point programming. The header <£p.h> is intended to supersede <math.h>.

The typedefs

float_t
double_t

are defined to be the implementation’s most efficient floating types at least as wide as
float and doublae, respectively.!

[Facility to use wider types is needed for writing portable efficient code. Previously
Standard C gave no way of asking for the most efficient floating type with at least a given
width. Efficiency on different floating-point architectures requrired different prototypes.

architecture most efficient prototype

(see rationale 5.2.4.2.2)

extended-based long double f(long double)
double-based double f(double)
single/double float f(float)
single/double/extended float f(float)

Differences may involve whether values can be kept in registers, hence are substantial.
Implementations for the various floating-point architectures might use these type

definitions:
architecture float_t double_t
extended-based long double 1long double
double-based double double
single/double float double
single/double/extended float double

An alternate approach of modifying the semantics of the register storage-class
specifier, when applied to a floating type, to mean that the associated value may be wider
than the type, was rejected as inconsistent with existing use of register in Standard C.]

1 1t is intended that float_t anddouble_t fit the implementation’s (default) expression evaluation

method: float_t anddouble_t are float and double respectively HLT_EVAL_METHOD equals 0, are both
double if FLT_EVAL_METHOD equals 1, and are bothong double if FLT EVAL_METHOD equals 2. Note that
float_t is the narrowest type used by the implementation to evaluate floating expressions.

Library 1
rY

WG14/N467 X3J11/95-068 Draft 8/24/95

The macro
HUGE_VAL
is as defined in <math.h>.
The macros

HUGE_VALF
HUGE_VALL

are float and long double analogs of HUGE_VAL.2 They expand to positive £1oat and
long double expressions, respectively.

The macro
INFINITY
expands to a floating expression of type float_t representing an implementation-defined

positive or unsigned infinity, if available, else to a positive floating constant of type
float_t that overflows at translation time.

The macro
NAN
is defined if and only if the implementation supports quiet NaNs. It expands to a
floating-point expression of type £loat_t representing an implementation-defined quiet
NaN.
[Ideally the INFINITY and NAN macros would be suitable for static and aggregate

initialization, as would similar macros in <float .h>, though such is not required by this
specification.]

Should macros like INFINITY and NAN be guaranteed suitable for
initializations?

The macros

FP_NAN
FP_INFINITE
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutually exclusive kinds of floating-
point values. They expand to int constant expressions with distinct values.

[Some prior art uses a finer classification: FP_POS_INFINITE, FP_NEG_INFINITE, etc. The
consensus was that those specified, in conjunction with the signbit macro, are generally
preferable.]

2 1ike HUGE_VAL, the macros HUGE_VALF and HUGE_VALL can be a positive infinity in an implementation
that supports infinities.

2 Library

Pl

Draft 8/24/95 WG14/N467 X3J11/95-068

The macros

fp_contract_on
fp_contract_off
fp_contract_default

can be used to allow (if the state is on) or disallow (if the state is off) the implementation
to contract expressions (6.3). An fp_contract macro can occur outside external
declarations, and allows or disallows contracted expressions from its occurrence until
another fp_contract macro is encountered, or until the end of the translation unit. The
effect of one of these macros appearing inside an external declaration is undefined. The
default state (on or off) for the macros is implementation-defined.

[Previous versions of this specifications used pragmas instead of macros for this
mechanism. Macros were preferred because of general limitations with pragmas and
because of the wish not to require standard pragmas.]

The macro

DECIMAL_DIG

expands to an int constant expression. Its value is an implementation-defined number of
decimal digits which is supported by conversion between decimal and all internal
floating-point formats.3 Conversion from (at least) double to decimal with pECIMAL_DIG
digits and back should be the identity function.4

[DECIMAL_DIGis distinct from DBL_DIG, which is defined in terms of conversion from
decimal to double and back.

DECIMAL_DIG was deemed more useful than FP_CONV_DIG, which previous versions of
this specification defined as the number of decimal digits for which the implementation
guaranteed correctly rounded conversion.]

7.x.1 Classification macros

In the synopses in this subclause, floating-type indicates a parameter of the same
floating type as the argument. The result is undefined if an argument is not of floating

type.

[Requiring the arguments to be of floating type allows efficient implementation.]

3 pEcIMAL_DIG is intended to give an appropriate number of digits to carry in canonical decimal
representations.

4 In order that correctly rounded conversion from an internal floating-point format with precision m to
decimal with DECIMAL DIG digits and back be the identity functionpECIMAL_DIG should be a positive
integer n satisfying

n=m, if PLT_RADIXis 10
107 - 1> pLT RADIX™, otherwise

Library 3

§25

WG14/N467 X3J11/95-068 Draft 8/24/95

7.x.1.1 The fpclassify macro
Synopsis

#include <fp.h>
int fpclassify(floating-type x);

Description

The £fpclassify macro classifies its argument value as NaN, infinite, normal,
subnormal, or zero. First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then classification is based on the type of the

argument.’ :
Return

The fpclassify macro returns the value of the number classification macro
appropriate to the value of its argument.

[£pclassify might be implemented as

#define fpclassify(x) ((sizeof(x) == sizeof (float)) ? __ fpclassifyf(x) \
: (slzeof (x) == sizeof(double)) ? __ fpclassifyd(x) \
: __fpclassifyl (x))

]
7.x.1.2 The signbit macro

Synopsis

#include <fp.h>
int signbit(floating-type x);

Description
The signbit macro determines whether the sign of its argument value is negative.
Return

The signbit macro returns a nonzero value if and only if the sign of its argument
value is negative.

7x.1.3 The isfinite macro
Synopsis

#include <fp.h>
int isfinite(floating-type x);

5 Since an expression can be evaluated with more range and precision than its type has, it is important to
know the type that classification is based on. For example, a normal long double value might become
subnormal when converted to double, and zero when converted to £1oat.

6 The signbit macro is intended to faithfully report the sign of all values, including infinities, zeros, and
NaNs.

4 Library

Draft 8/24/95 WG14/N467 X3J11/95-068

Description

The isfinite macro determines whether its argument has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then determination
is based on the type of the argument.
Return

The isfinite macro returns a nonzero value if and only if its argument has a finite
value.

7x.1.4 The isnormal macro
Synopsis

#include <fp.h>
int isnormal(floating-type x);

Description
The isnormal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its

semantic type is converted to its semantic type. Then determination is based on the type
of the argument.

Return

The isnormal macro returns a nonzero value if and only if its argument has a normal
value.

7x.1.5 The isnan macro

Synopsis

#include <fp.h>
int isnan(floating-type x);

Description

The isnan macro determines whether its argument value is a NaN. First, an
argument represented in a format wider than its semantic type is converted to its semantic
type. Then determination is based on the type of the argument.”

Return

The isnormal macro returns a nonzero value if and only if its argument has a NaN
value.

7 The type for determination doesn’t matter unless the implementation supports NaNs in the evaluation
type but not in the semantic type.

Library 5

53/

WG14/N467 X3J11/95-068 Draft 8/24/95

7.x.2 Overloading

The overloading macros in subsequent subclauses 7.x.3-7.x.12 are function-like
macros with parameter types determined by argument types and the implementation’s
expression evaluation method. For each macro, the overloading parameters, indicated
with floating-type in the synopsis, have the type that is the wider of

— the types of floating arguments for designated overloading parameters
— the narrowest floating type used for expression evaluation

A return type indicated with floating-type in the synopsis matches the type for the
overloading parameters.

Suppression of an overloading macro definition makes available an ordinary function
with type double for the parameters corresponding to the overloading parameters and for
return value.

Examples
1. The square root macro has the form
floating-type sqrt(floating-type x);
x is an overloading parameter.

If FLT_EVAL_METHOD equals 0, then float is the narrowest floating type used for
expression evaluation. The type for sqrt is £loat if its argument is integral or
float, double if its argument is double, and long double if its argument is
long double.

If FLT_EVAL_METHOD equals 1, then double is the narrowest floating type used for
expression evaluation. The type for sqrt is long double if its argument is
long double, and double in all other cases.

If PLT_EVAL_METHOD equals 3, then long double is the narrowest floating type
used for expression evaluation. The type for sqrt is always long double.

2. The remquo macro has the form
floating-type remquo(floating-type x, floating-type y, int *Qquo) ;

x and y are the overloading parameters. In the following fragment remquo has type
float, double, Or long double, according as FLT_EVAL_METHOD equals 0, 1, or 2,
respectively:

float a, b, r;

long n;

int q;

1%*60%/

r = remquo(n, a * b, &q);

Rationale on overloading still needs to be moved over from the TR and
updated.

6 Library

¥V

Draft 8/24/95 WG14/N467 X3J11/95-068

7.x.3 Comparison macros

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships—Iess, greater, and equal—is true. Relational operators may raise the
invalid exception when argument values are NaNs. For a NaN and a numeric value, or
for two NaNs, just the unordered relationship is true.® This subclause provides macros
that are quite (non exception raising) versions of the relational operators, and other
comparison macros that facilitate writing efficient code that accounts for NaNs without
suffering the invalid exception. :

7x.3.1 The isgreater macro
Synopsis

#include <fp.h>
int isgreater(floating-type x, floating-type Y):;

Description

The isgreater macro determines whether its first argument is greater than its second
argument. The value of isgreater(x,y) is always equal to (x) > (y); however,
unlike (x) > (y), isgreater(x,y) does not raise the invalid exception when x and y
are unordered. :
Returns

The isgreater macro returns a nonzero value if and only if its first argument is
greater than its second argument.

7x.3.2 The isgreaterequal macro
Synopsis

#include <fp.h>
int isgreaterequal(floating-type x, floating-type Y);

Description
The isgreaterequal macro determines whether its first argument is greater than or
equal to its second argument. The value of isgreaterequal(x,y) is always equal to

(x) >= (y); however, unlike (x) >= (y), isgreaterequal(x,y) does not raise the
invalid exception when x and y are unordered.

Returns

The isgreaterequal macro returns a nonzero value if and only if its first argument
is greater than or equal to its second argument.

8 ANSLEEE 754 (IEC 559) requires that the built-in relational operators raise the invalid exception if the
operands compare unordered, as an error indicator for programs written without consideration of NaNss.

Library 4

WG14/N467 X3J11/95-068 Draft 8/24/95

7.x.3.3 The isless macro
Synopsis

#include <fp.h>
int isless(floating-type x, floating-type y):;

Description
The isless macro determines whether its first argument is less than its second
argument. The value of isless(x,y) is always equal to (x) < (y); however, unlike

(x) < (y),1isless(x,y) does not raise the invalid exception when x and y are
unordered.

Returns

The isless macro returns a nonzero value if and only if its first argument is less than
its second argument.

7.x.3.4 The islessequal macro
Synopsis

#include <fp.h>
int islessequal(floating-type x, floating-type Yy);

Description
The islessequal macro determines whether its first argument is less than or equal to
its second argument. The value of islessequal(x,y) is always equal to (x) <= (y);

however, unlike (x) <= (y), islessequal(x,y) does not raise the invalid exception
when x and y are unordered.

Returns

The islessequal macro returns a nonzero value if and only if its first argument is
less than or equal to its second argument.

7x.3.5 The islessgreater macro
Synopsis

#include <fp.h>
int islessgreater(floating-type x, floating-type y);

Description
The islessgreater macro determines whether its first argument is less than or
greater than its second argument. The islessgreater(x,y) macro is similar in spirit to

(x) < (¥) Il (x) > (y); however, islessgreater(x,y) does not raise the invalid
exception when x and y are unordered (nor does it evaluate x and y twice).

8 Library

Draft 8/24/95 WG14/N467 X3J11/95-068

Returns

The islessgreater macro returns a nonzero value if and only if its first argument is
less than or greater than its second argument.

7x.3.6 The isunordered macro
Synopsis

#include <fp.h>
int isunordered(floating-type x, floating-type y);

Description .
The isunordered macro determines whether its arguments are unordered.
Returns

The isunordered macro returns a nonzero value if and only if its arguments are
unordered.

[For implementations with NaNs, the translator should recognize the comparison macros in
order to provide efficient implementation. Typical hardware offers efficient quiet
comparisons. The semantically correct implementation

int isless(long double x, long double y)

{
return ! (isnan(x) || isnman(y) || x >= y);

}

is unsuitable for efficiency reasons.

Programs written for (or ported to) systems with NaNs will be expected to handle
invalid and NaN input in reasonable ways. The comparison macros support such programs.
The arithmetic operators (+, *, ...) propagate NaNs quietly; the comparison macros
facilitate directing NaNs through branches quietly. Thus NaNs can flow through many
computations without the need for inefficient or unduly obfuscating code, and without
raising inappropriate exceptions.

For implementations without NaNs, the macros can be defined trivially:

#define isgreater(x,y) ((x)>(y))

#define isunordered(x,y) O

Several previous versions of this specification proposed extending the relational
operators:

Symbol Relation

less

greater

less or equal

greater or equal
equal

unordered, less, or greater
unordered

less or greater

less, equal, or greater
unordered or greater

vV AV A

AL onoa

A A = = |
v v
] v

[}

-
A
Il

Library 9

O
e

L ¥ ‘i

WG14/N467 X3J11/95-068

1< unordered, greater, or equal
1>= unordered or less

1> unordered, less, or equal
1<> unordered or equal

The additional operators were to be analogous to, and have the same precedence as, the
Standard C relational operators. The ! symbol was to indicate awareness of NaNs, so
operators including the ! symbol would not raise the invalid exception for unordered
operands. Where the operands have types and values suitable for relational operators, the
semantics detailed in 6.3.8 were to apply. The operator syntax in 6.1.5 was to be
augmented to include the additional operators. This approach would have had the
advantages of brevity and clearer promise of efficiency, at no greater implementation cost
for systems that support NaNs (the large majority of systems do support NaNs). However,
it was rejected because of reluctance to extend the language definition for functionality
which could be provided with a library interface, and because continuing contentiousness
might discourage implementation. Also, in some cases, the macros provide a more
straightforward articulation, e.g. 1sless (x,y) instead of ! (x !< y).

The IEEE standard enumerates 26 functionally distinct comparison predicates, from
combinations of the four comparison results and whether invalid is raised. The following
table shows how the previous and current specifications cover all important cases:

raises previous current
‘J X == y X == y
v v v x l=y xl=y
v v x>y X >y
v v X >= Yy X >= Yy
v) X <y X<y
N ; v X <=y X <=y
v x l<>=y isunordered(x,y)
v)) X <>y N/A
v v v v X <>= y N/A
v v x l<=y ! islessequal (x,y)
v v) x l<y ! isless(x,y)
N v X I>=y ! isgreaterequal (x,y)
v v v x !>y ! isgreater(x,y)
*/) x l<> ¥y ! islessgreater(x,y)
v v v v ! (x> y) ! (x> y)
v v v ! (x >= y) L fxp=ny)
v v N v ! (x <y) ! (x < y)
v Y v ! (x <= y) ! (x <= y)
v v v ! (x !<>= y) ! isunordered(x,y)
v v v ! (x <>y) N/A
v v ! (x <>=y) N/A
v v ! (x <= ¥) islessequal (x,y)
v ! (x 1< y) isless(x,y)
v v ! (x I>=vy) isgreaterequal (x,y)
v 1 (x !> ¥) isgreater(x,y)
v v ! (x !<> vy) islessgreater(x,y)

The previous proposal would have naturally covered the four N/A cases not covered by the
current proposal. (The current proposal covers them, except for the invalid exception.)
However, covering these cases per se is unimportant, because the facility would provide no
additional capability except more ways to write NaN-unaware code.

In the interest of efficiency, note that each quiet combination of less, greater, equal,
and unordered can be tested with a single comparison macro or equality or relational
operator.

The proposal for ! operators supplanted an earlier proposal that would have
augmented the set of relations by using the ? symbol to denote unordered, for example
a ?>= binsteadofa 1< b. Use of the ? relationals would have had the advantage that the

Library

Draft 8/24/95

O
Ay
&

Draft 8/24/95 WG14/N467 X3711/95-068

unordered case would have been dealt with explicitly. However, the 1 relationals seemed a
more natural language extension, particularly from the point of view of programmers for
(non-IEEE) implementations not detecting unordered. Also, using ?? as proposed for the
unordered operator would have conflicted with trigraphs.

Other macro approaches, such as

isrelation(x, FP_UNORDERED | FP_LESS | FP_EQUAL, y)
seemed more cumbersome.

Without any language or library support 1sgreater(a,b) might be implemented by
the programmer as

! (at!=a ||l bl=Db || a<=0Db)
However, even more awkward code would be required 1f a or b had side effects. The
programmer would have to remember to put the NaN tests first, and trust the compiler not

toreplacea != a || b != bby false. Also, special optimization would be necessary to
generate efficient code. Use of 1snan helps only a little.]

7.x.4 Trigonometric macros

The header <£p.b> defines overloading macros for the trigonometric functions
defined in <math.h>.

7x.4.1 The acos macro
Synopsis

#include <fp.h>
floating-type acos(floating-type x);

7x.4.2 The asin macro
Synopsis

#include <fp.h>
floating-type asin(floating-type x):

7x.4.3 The atan macro
Synopsis

#include <fp.h>
floating-type atan(floating-type x);

7x.4.4 The atan2 macro
Synopsis

#include <fp.h>
floating-type atan2(floating-type y, floating-type x);

Library s 11

WG14/N467 X3J11/95-068 Draft 8/24/95

7x.4.5 The cos macro S
Synopsis

#include <fp.h>
floating-type cos(floating-type x);

7.x.4.6 The sin macro
Synopsis

#include <fp.h>
floating-type sin(floating-type x);

7x.4.7 The tan macro
Synopsis

#include <fp.h>
floating-type tan(floating-type x):

7.x.5 Hyperbolic macros

The header <£p.h> defines overloading macros for the hyperbolic functions defined
in <math.h>, and for their arc counterparts.

7x.5.1 The acosh macro
Synopsis

#include <fp.h>
floating-type acosh(floating-type x);

Description
The acosh macro computes the (nonnegative) arc hyperbolic cosine of x.
Returns
The acosh macro returns the arc hyperbolic cosine.
7.x.5.2 The asinh macro
Synopsis

#include <fp.h>
floating-type asinh(floating-type x);

Description

The asinh macro computes the arc hyperbolic sine of x.

12 Library

ey
s ¥

Draft 8/24/95 WG14/N467 X3J11/95-068

Returns

The asinh macro returns the arc hyperbolic sine.
7x.5.3 The atanh macro
Synopsis

#include <fp.h>
floating-type atanh(floating-type x);

Description

The atanh macro computes the arc hyperbolic tangent of x.
Returns

The atanh macro returns the arc hyperbolic tangent .
7.x.5.4 The cosh macro
Synopsis

#include <fp.h>
floating-type cosh(floating-type Xx):

7x.5.5 The sinh macro
Synopsis

#include <fp.h>
floating-type sinh(floating-type Xx);

7x.5.6 The tanh macro
Synopsis

#include <£fp.h>
floating-type tanh(floating-type x):

7.x.6 Exponential and logarithmic macros and functions

The header <£p .h> defines overloading macros for the exponential and logarithmic
functions defined in <math.h>—except for modf which is declared with ordinary
functions, and for several related functions.
7.x.6.1 The exp macro
Synopsis

#include <fp.h>
floating-~type exp(floating-type x);

Library 13

337

WG14/N467 X3J11/95-068 Draft 8/24/95

7.x.6.2 The exp2 macro o
Synopsis

#include <fp.h>
floating-type exp2(floating-type x):

Description
The exp2 macro computes the base-2 exponential of x: 2X.
Returns
The exp2 macro returns the base-2 exponential.
7x.6.3 The expm1 macro
Synopsis

#include <fp.h>
floating-type expml (floating-type x);

Description

The expm1 macro computes the base-e exponential of the argument, minus 1:
eX - 1. For small magnitude x, expm1 (x) is expected to be more accurate than
exp(x) - 1.

Returns

The expm1 macro returns eX - 1.
7.x.6.4 The frexp macro
Synopsis

#include <fp.h>
floating-type frexp(floating-type value, int *exp) ;

7x.6.5 The 1dexp macro
Synopsis

#include <fp.h>
floating-type ldexp(floating-type x, int exp);

7.x.6.6 The 10g macro
Synopsis

#include <fp.h>
floating-type log(floating-type x);

14 Library
8540

Draft 8/24/95 WG14/N467 X3J11/95-068

7x.6.7 The 10g10 macro
Synopsis

#include <fp.h>
floating-type loglO(floating-type x);

7x.6.8 The 10g1p macro
Synopsis

#include <fp.h>
floating-type loglp(floating-type x);

Description

The logip macro computes the base-e logarithm of 1 plus the argument. For small
magnitude x, loglp (x) is expected to be more accurate than 1og(1 + x).

Returns

The loglp macro returns the base-e logarithm of 1 plus the argument.
7x.6.9 The 1og2 macro
Synopsis

#include <fp.h>
floating-type log2(floating-type x);

Description

The 1o0g2 macro computes the base-2 logarithm of x.
Returns

The log2 macro returns the base-2 logarithm.
7x.6.10 The 10gb macro
Synopsis

#include <fp.h>
floating-type logb(floating-type x);

Description

The 1ogb macro extracts the exponent of x, as a signed integral value in the format of
x. If x is subnormal it is treated as though it were normalized; thus for positive finite x,
1 < x * FLT _RADIX"109b(X) . prr RADIX

[The treatment of subnormal x follows the recommendation in IEEE standard 854, which
differs from IEEE standard 754 on this point. Even 754 implementations should follow this
definition rather than the one recommended (not required) by 754.

Library 15

WG14/N467 X3J11/95-068 Draft 8/24/95

Particularly on machines whose radix is not 2, 1ogb can be expected to obtain the Y
exponent more accurately and quickly than frexp.]

Returns
The logb macro returns the signed exponent of its argument.
7.x.6.11 The modf functions
Synopsis
#include <fp.h>
double modf (double value, double *iptr);

float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

7x.6.12 The scalb macro
Synopsis

#include <fp.h>
floating-type scalb(floating-type x, long int n);

Description

The scalb macro computes x * PLT_RADIXR efficiently, not normally by computing
FLT_RADIX® explicitly.
Returns
The scalb macro returns x * FLT RADIXP .
[On machines whose radix is not 2, scalb, compared with 1dexp, can be expected to have
better accuracy, speed, and overflow and underflow behavior.
The second parameter has type 1ong int, unlike the corresponding int parameter for
1dexp, because the factor required to scale from the smallest positive floating-point value to

the largest finite one, on many implementations, is too large to represent in the minimum-
width int format allowed by Standard C.]

7.x.7 Power and absolute value macros

The header <£p.h> defines overloading macros for the exponential and logarithmic
functions defined in <math.h>, and for a hypotenuse function.

7.x.7.1 The fabs macro
Synopsis

#include <fp.h>
floating-type fabs(floating-type x);

16 Library

S

Draft 8/24/95 WG14/N467 X3J11/95-068

7x.7.2 The hypot macro
Synopsis

#include <fp.h>
floating-type hypot (floating-type x, floating-type Y):;

Description

The nypot macro computes the square root of the sum of the squares of x and y,

without undue overflow or underflow.

Returns

The hypot macro returns the square root of the sum of the squares of x and y.

7x.7.3 The pow macro
Synopsis

#include <fp.h>
floating-type pow(floating-type x, floating-type y):;

7x.7.4 The sqrt macro
Synopsis

#include <fp.h>
floating-type sqrt(floating-type x);

7.x.8 Error and gamma macros
[See [23] regarding implementation.]

7x.8.1 The erf macro

Synopsis

#include <fp.h>
floating-type erf(floating-type x);

Description
The erf macro computes the error function of x.
Returns

The exf macro returns the error function of x.

Library

¥

Yo

5

WG14/N467 X3J11/95-068 Draft 8/24/95

7.x.8.2 The exrfc macro
Synopsis

#include <fp.h>
floating-type erfc(floating-type x);

Description

The erfc macro computes the complementary error function of x.
Returns

The erfec macro returns the complementary error function of x.
7.x.8.3 The gamma macro
Synopsis

#include <fp.h>
floating-type gamma (floating-type x);

Description
The gamma macro computes the gamma function of x: I'(x).

Returns

The gamma macro returns I'(x).
[In UNIX System V [10], both the gamma and 1gamma functions compute log(Il'(x)l).]
7.x.8.4 The 1gamma macro
Synopsis

#include <fp.h>
floating-type lgamma (floating-type x);

Description

The 1gamma macro computes the logarithm of the absolute value of gamma of x:
loge(ITGx)I).

[In UNIX System V [10], a call to 1gamma sets an external variable signgam to the sign of
gamma (x), which is -1 if

X < 0 && remainder(floor(x), 2) != 0

Note that this specification does not remove the external identifier signgam from the user’s
name space. An implementation that supports, as an extension, 1gamma’s setting of
signgam must still protect the external identifiersigngam if defined by the user.]

18 : Library

wad

5y

Draft 8/24/95 WG14/N467 X3J11/95-068

Returns

The 1gamma macro returns loge(ICGx)l).

7.x.9 Nearest integer macros

The header <£p.h> defines overloading macros for the nearest integer functions
defined in <math.h>, for nearest integer functions specified by the ANSI/IEEE floating-
point standards, and for functions similar to common Fortran nearest integer functions.

7x.9.1 The ceil macro
Synopsis

#include <fp.h>
floating-type ceil(floating-type x);

7x.9.2 The £loor macro
Synopsis

#include <fp.h>
floating-type floor(floating-type x);

7.x.9.3 The nearbyint macro
Synopsis

#include <fp.h>
floating-type nearbyint (floating-type x);

Description

The nearbyint macro differs from the rint macro (7.x.9.4) only in that the
nearbyint macro does not raise the inexact exception. (See X.10.6.3-4.)

[For implementations that do not support the inexact exception, nearbyint and rint are
equivalent.]

Returns

The nearbyint macro returns the rounded integral value.
7.x.9.4 The rint macro
Synopsis

#include <fp.h>
floating-type rint (floating-type x);

Library

19
S¥ g

WG14/N467 X3J11/95-068 Draft 8/24/95

Description

The rint macro rounds its argument to an integral value in floating-point format,
using the current rounding direction.

Returns

The rint macro returns the rounded integral value.
7x.9.5 The rinttol macro
Synopsis

#include <fp.h>
long int rinttol(long double x);

Description

The rinttol macro rounds its argument to the nearest long int, rounding according
to the current rounding direction. If the rounded value is outside the range of long int,
the numeric result is unspecified.
Returns

The rinttol macro returns the rounded long int value, using the current rounding
direction. —

7x.9.6 The round macro
Synopsis

#include <fp.h>
floating-type round(floating-type x);

Description

The round macro rounds its argument to the nearest integral value in floating-point
format, using add half to the magnitude and chop rounding a la the Fortran anint
function, regardless of the current rounding direction.
Returns

The round macro returns the rounded integral value.
7x.9.7 The roundtol macro
Synopsis

#include <fp.h>
long int roundtol(long double x);

20 Library

Draft 8/24/95 WG14/N467 X3J11/95-068

Description

The roundtol macro returns the rounded long int value, using add half to the
magnitude and chop rounding a la the Fortran nint function and the Pascal round
function, regardless of the current rounding direction. If the rounded value is outside the
range of long int, the numeric result is unspecified.
Returns

The roundtol macro returns the rounded long int value.
7x.9.8 The trunc macro

Synopsis

#include <£fp.h>
floating-type trunc(floating-type x):;

Description

The trunc macro rounds its argument to the integral value, in floating format, nearest
to but no larger in magnitude than the argument.

Returns

The trunc macro returns the truncated integral value.

7.x.10 Remainder macros

The header <£p.h> declares overloading macros for the <math.h> fmed function,and
for two versions of the remainder function required by the ANSI/IEEE 754 (IEC 559)
floating-point standard.
7x.10.1 The £mod macro
Synopsis

#include <fp.h>
floating-type fmod(floating-type x, floating-type Y):;

7x.10.2 The remainder macro
Synopsis

#include <fp.h>
floating-type remainder (floating-type x, floating-type ¥):

Library 21
247

WG14/N467 X3J11/95-068 Draft 8/24/95

Description

The remainder macro computes the remainder x REM y required by the ANSI/IEEE
754 (IEC 559) floating-point standard.?

Returns

The remainder macro returns x REM y.
7x.10.3 The remquo macro
Synopsis

#include <fp.h>
floating-type remquo(floating-type x, floating-type y, int *quo);

Description

The remquo macro computes the same remainder as the remainder macro. In the
object pointed to by quo it stores a value whose sign is the sign of x/y and whose

magnitude is congruent mod 22 to the magnitude of the integral quotient of x/yv, where n
is an implementation-defined integer at least 3.

Returns
The remquo macro returns x REM y. -

[The remquo function is intended for implementing argument reductions, which can exploit
a few low-order bits of the quotient. Note that x may be so large in magnitude relative to y
that an exact representation of the quotient is not practical.]

7.x.11 Manipulation macros and functions

The header <fp.h> defines overloading macros and functions that manipulate
representations in floating formats.

7.x.11.1 The copysign macro
Synopsis

#include <fp.h>
floating-type copysign(floating-type x, floating-type y):

Description

The copysign macro produces a value with the magnitude of x and the sign of y. It
produces a NaN (with the sign of y) if x is a NaN. On implementations that represent a

9 “When y #0, the remainder r = x REM y is defined regardless of the rounding mode by the mathematical
relation r = x - y * n, where n is the integer nearest the exact value of Xy, whenever In - X/ | = 1/2, then n is
even. Thus, the remainder is always exact. If r = 0, its sign shall be that of x.” This definition is
applicable for all implementations.

22 Library

Draft 8/24/95 WG14/N467 X3J11/95-068

signed zero but do not treat negative zero consistently in arithmetic operations, the
copysign macro regards the sign of zero as positive.

[The requirement that copysign regard a negative sign of zero as positive if the arithmetic
treats negative zero like positive zero is justified in order to preserve more identities. For
example, to preserve the identity, the square root of the product is the product of the square
roots, the algorithm in [22] for the complex square root depends on consistency of
copysign with the rest of the arithmetic: if -0 behaves like +0 then the square root of the
product would yield

\B*(=1-0i) =V=3+0i > 0+3i

but if copysign were to treat the sign of -0 as negative then the product of the square roots
would yield

V3*\-1-0i 5 V3*(0-i)=0-+3i
]
Returns

The copysign macro returns a value with the magnitude of x and the sign of y.
7x.11.2 The nan functions
Synopsis

#include <fp.h>

double nan(const char *tagp):;

float nanf (const char *tagp):

long double nanl(const char *tagp):;

Description

If the implementation supports quiet NaNs in the type of the function, then the call
nan ("n-char-sequence*) is equivalent to strtod (“NAN(n-char-sequence)™, (char**)
NULL); the call nan(*") is equivalent to strtod (*NAN() ", (char**) NULL). Similarly
nanf and nanl are defined in terms of strtof and strtold. If tagp does not point to an
n-char-sequence string then the result NaN’s content is unspecified. A call to a nan
function of a type for which the implementation does not support quiet NaNs is
unspecified.

Returns

The nan functions return a quiet NaN, if available, with content indicated through
tagp.

7.x.11.3 The nextafter macro and functions

Synopsis
#include <fp.h>
floating-type nextafter(floating-type x, long double y);
float nextafterf(float x, float y):;

double nextafterd(double x, double y):
long double nextafterl(long double x, long double Y):

Library 23

J49

WG14/N467 X3J11/95-068 Draft 8/24/95

Description

The nextafter macro and functions determine the next representable value, in the
type of the macro or function, after x in the direction of y. The nextafter macro and
functions return y if x == y.

Returns

The nextafter macro and functions return the next representable value after x in the
direction of y.

[It’s sometimes desirable to find the next representation after a value in the direction of a
previously computed value—maybe smaller, maybe larger. The nextafter macro and
functions have a second floating argument so that the program will not have to include
floating-point tests for determining the direction in such situations. And, on some machines
these tests may fail due to overflow, underflow, or roundoff.

The nextafter overloading macro depends substantially on the expression evaluation
method—which is appropriate for certain uses but not for others. The explicitly typed
functions can be employed to obtain next values in a particular format. For example,

nextafterf(x, y)
will return the next £1oat value after (£loat) x in the direction of (float) y regardless
of the evaluation method.

The second parameter of the nextafter macro has type long double primarily to
keep the overloading scheme simple. Promotion of the second argument to long double is
harmless but unnecessary.

For the case x == y, the IEEE standard recommends that x be returned. This

specification differs in order that nextafter(-0.0, +0.0) return +0.0 and
nextafter(+0.0, -0.0) return0.o0.]

7.x.12 Maximum, minimum, and positive difference macros

The header <fp.h> includes overloading macros corresponding to standard Fortran
functions, dim, max, and min.

[Their names have £ prefixes to allow for integer versions—following the example of fabs
and abs.]

7.x.12.1 The £4im macro
Synopsis

#include <fp.h>
floating-type fdim(floating-type x, floating-type Vy);

Description
The fdim macro determines the positive difference between its arguments:

X -Y .

4

24 Library

550

Draft 8/24/95 WG14/N467 X3J11/95-068

Returns

The £dim macro returns the positive difference between x and y.
7x.12.2 The fmax macro
Synopsis

#include <fp.h>
floating-type fmax(floating-type x, floating-type Y);

Description

The £max macro determines the maximum numeric value of its arguments. 10
Returns

The £max macro returns the maximum numeric value of its arguments.
7x.12.3 The fmin macro
Synopsis

#include <fp.h>
floating-type fmin(floating-type x, floating-type y):;

Description
The £min macro determines the minimum numeric value of its arguments.!!
Returns

The £min macro returns the minimum numeric value of its arguments.

10 NaN arguments are intended to be treated as missing data. If one argument is a NaN and the other
numeric, then £max choses the numeric value. See X.10.9.2.

11 f£min is intended to be analogous to £max in its treatment of NaNis.

Library 25
4
S8

