WG6IY/ N Y39

X3T1/ 95071

Defect Report #060 SC22/WG14 Page 1

Defect Report #060

Submission Date: 19 Jul 93
Submittor: Project Editor (P.J. Plauger)
Source: Larry Jones
Question
When an array of char (or wchar_t) is initialized with a string literal that contains fewer characters than
the array, are the remaining elements of the array initialized?
Subclause 6.5.7 Initialization, page 72, only says (emphasis mine):
If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

Correction

In subclause 6.5.7, page 72, the penultimate paragraph of Semantics (before Examples), add after the
comma:

or fewer characters in a string literal or wide string literal used to initialize an array of known size, and
elements of character or wchar_t type

Page 2 SC22/WG14 Defect Report #061

Defect Report #061

Submission Date: 19 Aug 93
Submittor: X3 Secretariat (USA)
Source: Ed Bendickson

Question
Iamrequesting an interpretation of white space in the format string of a scan statement. One of our customers
is concerned about this as it appears to conflict with some books on C. I am referring to subclause 7.9.6.2,
page 135, paragraph 3:
A directive composed of white space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.

Page 135, paragraph 7 says:
If the length of the input item is zero, the execution of the directive fails: this condition is a
matching failure, unless an error prevented input from the stream, in which case it is an input
failure.

My questions are:

1) Is white space in the format string a directive which must be satisfied by white space in the input string?

2) What are the correct answers to the following examples? Note the white space in the format string.

Example 1:

inputString = "123ABCD";

numAssigned = sscanf (inputString, "$lu %1s", &ulongVal, junkchar);
Should the result be numAssigned equal to 1?

Example 2:

inputString "123ABCD";

numAssigned = sscanf (inputString, "%lu%ls", &ulongVal, junkchar):
Should the result be numAssigned equal to 2?

Response

A directive composed of one or more white-space characters can successfully match zero white-space
characters in the input stream. The paragraphs that intervene between your two quotations make clear that
the second paragraph applies only to a directive that is a conversion specification.

Thus, both examples should assign 2 to numAssigned.

Defect Report #062 SC22/WG14 Page 3

Defect Report #062

Submission Date: 19 Aug 93
Submittor: X3 Secretariat (USA)
Source: David J. Hendricksen

Question

If the only way to effectuate the renaming of a file on a given system is to copy the contents of the file, does
an implementation conform to the C Standard by always returning a failure from the rename function?

Footnote 113 would seem to imply this.

Response
Yes, subclause 7.9.4.2 permits the rename function to fail if it must copy the file contents, among other
reasons.

Page 4 SC22/WG14 Defect Report #063
Defect Report #063

Submission Date: 01 Dec 93
Submittor: Project Editor (P.J. Plauger)
Source: Thomas Plum

Question
[This is Defect Report #056, resubmitted for administrative reasons.]
The following requirement is implied in several places, but not explicitly stated. It should be explicitly
affirmed, or alternative wording adopted.
The representation of floating-point values (such as floating-point constants, the results of floating-point
expressions, and floating-point values returned by library functions) shall be accurate to one unit in the last
position, as defined in the implementation’s <£1oat . h> header.
Discussion: The values in <£1oat . h> aren’t required to document the underlying bitwise representations.
If you want to know how many bits, or bytes, a floating-point values occupies, use sizeof. The
<float .h> values document the mathematical properties of the representation, the behaviors that the
programmer can count upon in analyzing algorithms.
It is a quality-of-implementation question as to whether the implementation delivers accurate bits through-
out the bitwise representation, or alternatively, delivers considerably less accuracy. The point being clarified
is that <£loat . h> documents the delivered precision, not the theoretically possible precision.

Response

The C Standard imposes no requirement on the accuracy of floating-point arithmetic.

Further discussion:

The C Standard speaks directly to the matter of floating-point accuracy only in one or two areas. Subclause

6.2.1.4 Floating types, page 35, says of conversions from one floating type to one with less range and/or

precision:
If the value being converted is in the range of values that can be represented but cannot be
represented exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner.

And in subclause 6.2.1.5 Usual arithmetic conversions, page 35:

The values of floating operands and of the results of floating expressions may be represented

in greater precision and range than that required by the type; the types are not changed thereby.
Otherwise, arithmetic for both integer and floating types is defined in terms of the usual terminology of
mathematics. Nothing in the C Standard suggests that floating arithmetic is excused from the conventional
rules of arithmetic.
Nevertheless, it is commonplace for the functions declared in <math . h> to deliver results less accurate
than the underlying representation can support. It is not uncommon even for simple arithmetic expressions
to do the same. And still, implementations document in <£loat .h> properties of the underlying
representation, not the effective range and precision reliably delivered. The C community has typically
tolerated a certain laxity in this area.
Probably the most useful response would be to amend the C Standard by adding two requirements on
implementations:
Require that an implementation document the maximum errors it permits in arithmetic operations and in
evaluating math functions. These should be expressed in terms of “units in the least-significant position”
(ULP) or “lost bits of precision.”

Establish an upper bound for these errors that all implementations must adhere to.
The state of the art, as the Committee understands it, is:

correctly rounded results for arithmetic operations (no loss of precision)

1 ULP for functions such as sqrt, sin, and cos (loss of 1 bit of precision)

4-6 ULP (loss of 2-3 bits of precision) for other math functions.

Defect Report #063 SC22/WG14 Page §

Since not all commercially viable machines and implementations meet these exacting requirements, the C
Standard should be somewhat more liberal.

The Committee would, however, suggest a requirement no more liberal than a loss of 3 bits of precision,
out of kindness to users. An implementation with worse performance can always conform by providing a
more conservative version of <£loat .h>, even if that is not a desirable approach in the general case.

The Committee should revisit this issue during the revision of the C Standard.

Page 6 SC22/WG14 Defect Report #064
Defect Report #064

Submission Date: 03 Dec 93

Submittor: WG14

Source: Clive Feather
Question
Item 1 — Null pointer constants
Consider the following translation unit:
char *£1 (int i, int *pi)
7‘('rpi. = i;
return 0;

}

char *£2 (int i, int *pi)
{
return (*pi = i, 0);

}

In £1, the 0 is a null pointer constant (subclause 6.2.2.3). Since retuzrn acts as if by assignment (subclause

6.6.6.4) the function is strictly conforming.

In £2, the 0 is a null pointer constant. However, a constant expression cannot contain a comma operator
(subclause 6.4), and so the expression being returned is not a null pointer constant per se. Which of the

following is the case?

1) The property of being anull pointer constant percolates upwards through an expression, and the function

£2 is strictly conforming.

2) The property of being a null pointer constant does not percolate upwards, and the expression being
notionally assigned in the return statement, though of value zero, is not a null pointer constant but

only of type int, thus violating a constraint (subclause 6.3.16.1).
Response

Function £2 is not strictly conforming, because it violates a constraint for simple assignment (which applies
to converting the type of the return expression), because the retuzrn expression is not a null pointer

constant.

Defect Report #065 SC22/WG14 Page 7

Defect Report #065
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question
Item 2 — locales
Consider the program:

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

int main (void)
{
int i;
char *loc [] = { “"English", "En UK", "Loglan", "" };

for (i = 0; ; i++)
if (setlocale (LC_ALL, loc [i]) != NULL)
o
* We must eventually get here,
* because setlocale("") can’t yield NULL.
*/
printf ("Decimal point = ’%s’\an",
localeconv ()->decimal point);
exit (0);
}
}
The valid locales are implementation-defined (subclause 7.4.1.1). Nevertheless, the output produced
depends only on the locale, not any other implementation-defined behavior. Is the program strictly
conforming?

Response

The Committee affirms that the intent of this wording is that a program such as that above, whose output
varies only according to the locale selected and does not rely on the presence of a specific locale other than
the "C" locale or that selected by ", was always intended to be strictly conforming. Nevertheless, it is
agreed that the cited extract from subclause 7.4.1.1 could be read strictly as making such programs depend
on implementation-defined behavior.

The Committee reaffirms that programs that depend on the identity of the available locales, as opposed to
their contents, are not strictly conforming.

The Committee believes that the first occurrence of the term “implementation defined” in subclause 7.4.1.1
was intended in the sense of “implementation-documented.” However, the Committee is reluctant to
introduce a new term, with possibly new conformance requirements, in a Technical Corrigendum. The
Committee notes that the term “locale-specific,” while making the sentence read somewhat awkwardly,
carries the necessary requirements (the implementation must document the relevant details).

The Committee decided that, though the question only addresses one issue to do with locales, the above
discussion applies to all instances where the behavior of an implementation depends on the locale. For this
reason, the Committee decided to address all such issues at this time.

The Committee should revisit this issue during the revision of the C Standard.
Correction
In subclause 5.2.1.2, page 11, change the third bullet item:

wherein each sequence of multibyte characters begins in an initial shift state and enters other implementa-
tion-defined shift states

Page 8 SC22/WG14 Defect Report #065

to:

wherein each sequence of multibyte characters begins in an initial shift state and enters other locale-specific
shift states

In subclause 7.3, page 102, second paragraph, change:

Those functions that have implementation-defined aspects only when not in the "C" locale are noted below.
The term printing character refers to a member of an implementation-defined set of characters, each of
which occupies one printing position on a display device; the term control character refers to a member of
an implementation-defined set of characters that are not printing characters.

to:

Those functions that have locale-specific aspects only when not in the "C" locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each of which occupies
one printing position on a display device; the term control character refers to a member of a locale-specific
set of characters that are not printing characters.

In subclause 7.3.1.2, page 102, subclause 7.3.1.6, page 103, subclause 7.3.1.9, page 104, and subclause
7.3.1.10, page 104, change:

is one of an implementation-defined set of characters

to:

is one of a locale-specific set of characters

In subclause 7.4.1.1, page 107, second paragraph of Description, change:

a value of " for locale specifies the implementation-defined native environment.

to:

a value of " for locale specifies the locale-specific native environment.

In subclause 7.10.1.4, page 151, subclause 7.10.1.5, page 152, and 7.10.1.6, page 152, change:

In other than the "C" locale, additional implementation-defined subject sequence forms may be accepted.
to:

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

Change Footnote 131, page 159, from:

If the implementation employs special bytes to change the shift state, these bytes do not produce separate
wide character codes, but are grouped with an adjacent multibyte character.

to:

If the locale employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

In subclause 7.11.6.2, page 168, change:

The st rerror function returns a pointer to the string, the contents of which are implementation-defined.
to:

The strerror function returns a pointer to the string, the contents of which are locale-specific.

In Annex G, pages 204-207, move the following bullet items under subclause G.3 to subclause G.4:
G.3.4, page 204, item 2 (“The shift states used for the encoding ...”)

G.3.14, page 206, item 3 (“The sets of characters tested for ...”")

G.3.14, page 207, item 33 (“The contents of the error message strings ...”)

In Annex G.4 page 207, Locale-specific behavior, change:

The following characteristics of a hosted environment are locale-specific:

to:

The following characteristics of a hosted environment are locale-specific and must be documented by the
implementation:

Defect Report #066 SC22/WG14 Page 9

Defect Report #066
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 3 — locales

In a conforming implementation, can the value of any of the following expressions (subclause 7.4.2.1) be
a value other than 0 or 1? Can the value of the first expression be 0?
strlen(localeconv()->decimal point)
strlen(localeconv () ->thousands_sep)
strlen(localeconv()->mon_decimal point)
strlen(localeconv() ->mon_thousands_sep)

If the value can be greater than 1, can the string contain more than one multibyte character? If so, can the
string contain shift sequences? If so, can the string end other than in the initial shift state?

Response

Of the four strlen calls, the first must return 1, the second must return 0 or 1, and the other two must
return 0 or more, in a conforming implementation. There is a specific requirement for decimal point
in the second paragraph of subclause 7.4.2.1 Description, and in the individual descriptions “character” is
intended to imply 0 or 1 while “string” is meant to imply 0 or more.

Page 10 SC22/WG14 Defect Report #067

Defect Report #067
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 4 — definitions of types

The terms “signed integer type,” “unsigned integer type,” and “integral type” are defined in subclause
6.1.2.5. The C Standard also uses the terms “integer type,” “signed integral type,” and “unsigned integral
type” without defining them. Integer-valued bitfields are also introduced in subclause 6.5.2.

a) For each of the following types, which if any of the six categories above do they belong to?

char
signed char
unsigned char
signed short
unsigned short
signed int
unsigned int
signed long
unsigned long
int : N /* i.e. bitfield of size N */
signed int : N
unsigned int : N
enumerated type
b) Foreach of these categories, do the const and/or volatile qualified versions of the types belonging
to the category also belong to the category?

¢) Can an implementation extension add other types defined by the C Standard to any of these six
categories?

d) Can an implementation define other types (¢.g. __very long) which belong to any of these six
categories?

e) If the answer to (c) or (d), or both, is yes, can size_t and ptrdif£f t be one of these other types,
or must it be a type in the above list?

Response

a) “Signed integer type”, “unsigned integer type”, and plain “integer type” are used interchangeably with
“signed integral type”, “unsigned integral type”, and “integral type” in the C Standard. This observation
makes it easy to categorize the types in your list.

b) Yes, see subclause 6.1.2.5.

¢) No, the list in the C Standard is meant to be exhaustive. For example, £1oat cannot be defined as an
integer type.

d) No strictly conforming program could contain an instance of such a type. The treatment of such types is
beyond the scope of the C Standard.

e) No, it must be a type in the list. For example, size_t cannot be defined as unsigned __ int24.

Defect Report #068 SC22/WG14 Page 11

Defect Report #068
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 5 — handling of char values
Values of the type char must be treated as either “signed” or “nonnegative” integers (subclause 6.1.2.5).
a) Is the treatment determined strictly by the value of the expression CHAR_MAX == SCHAR MAX?

b) If the treatment is as “signed” integers, does the type char behave in every instance as the type
signed char (though of course being a different type)? If not, what are the differences?

¢) If the treatment is as “nonnegative” integers, does the type char behave in every instance as the type
unsigned char (though of course being a different type)? If not, what are the differences? In
particular, do the "no overflow, reduce modulo" semantics apply?

Response
a) Yes.
b) and c) Yes. Subclause 6.2.1.1, “As discussed earlier, ...” indicates that this is the intent.

Page 12 SC22/WG14 Defect Report #069

Defect Report #069
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 6 — representation of integral types

Subclause 6.1.2.5 refers to the representation of a value in an integral type being in a “pure binary numeration
system,” and defines this further in Footnote 18. On the other hand, the wording of ISO 2382 is:

05.03.15
binary (numeration) system
The fixed radix numeration system that uses the bits 0 and 1 and the radix two.

Example: In this numeration system, the numeral 110,01 represents the number "6,25"; that is
1x22+1x21+1x22,

05.03.11

fixed radix (numeration) system

fixed radix notation

A radix numeration system in which all the digit places, except perhaps the one with the highest
weight, have the same radix.

NOTES

1. The weights of successive digit places are successive integral powers of a single radix, each
multiplied by the same factor. Negative integral powers of the radix are used in the
representation of factors.

2. A fixed radix numeration system is a particular case of a mixed radix numeration system; see
also Note 2 to 05.03.19.

05.03.08

radix

base (deprecated in this sense)

In a radix numeration system, the positive integer by which the weight of any digit place is
multiplied to obtain the weight of the digit place with the next higher weight.

Example: In the decimal numeration system the radix of each digit place is 10.

NOTE — The term base is deprecated in this sense because of its mathematical use (see
definition in 05.02.01).

05.03.07

radix (numeration) system

A positional representation system in which the ratio of the weight of any one digit place to the
weight of the digit place with the next lower weight is a positive integer.

NOTE — The permissible values of the character in any digit place range from zero to one less
than the radix of that digit place.

05.03.04

weight

In a positional representation system, the factor by which the value represented by a character
inadigit place is multiplied to obtain its additive contribution in the representation of a number.

05.03.03

digit place

digit position

In a positional representation system, each site that may be occupied by a character and that
may be identified by an ordinal number or by an equivalent identifier.

05.03.01
positional (representation) system

Defect Report #069 SC22/WG14 Page 13

a)
b)
©

d)
D)
f)

g

positional notation
Any numeration system in which a number is represented by an ordered set of characters in

such a way that the value contributed by a character depends upon its position as well as upon

its value.
What is the legal force of the footnote, given that it quotes a definition from a document other than ISO
2382 (see 3)?
Is the footnote wording correct, seeing that the ISO 2382 definition does not appear to allow any of the
common representations (note the word “positive” in 05.03.07)?
Does the C Standard require that an implementation appear to use only one representation for each
value of a given type?
Does the C Standard require that all the bits of the value be significant?
Does the C Standard require that all possible bit patterns represent numbers?

Do the answers to questions (c), (d), and (¢) depend on whether the type is signed or unsigned, and in
the former case, on the sign of the value?

If it is permitted for certain bit patterns not to represent values, is generation of such a value by an
application (using bit operators) undefined behavior, or is use of such a value strictly conforming
provided that it is not used with arithmetic operators?

In particular, are the following five implementations allowed?

h)

)j

k)

D

Unsigned values are pure binary. Signed values are represented using ones-complement (in other
words, positive and negative values with the same absolute value differ in all bits, and zero has two
representations). Positive numbers have a sign bit of 0, and negative numbers a sign bit of 1. In both
cases, all bits are significant.

Unsigned values are pure binary. Signed values are represented using sign-and-magnitude with a pure
binary magnitude (note that the top bit is not “additive”). Positive numbers have a sign bit of 0, and
negative numbers a sign bit of 1. In both cases, all bits are significant.

Unsigned values are pure binary, with all bits significant. Signed values with an MSB (sign bit) of 0
are positive, and the remainder of the bits are evaluated in pure binary. Signed values with an MSB of
1 are negative, and the remainder of the bits are evaluated in BCD. If ints are 20 bits, then INT_MAX
is 524,287 and INT_MIN is -79,999.

Signed values are twos-complement using all bits. Unsigned values are pure binary, but ignoring the
MSB (so each number has two representations). In this implementation, SCHAR _| ==
UCHAR MAX, SHRT_MAX == USHRT MAX, INT_MAX == UINT_MAX, and LONG_MAX ==
ULONG_MAX.

Signed values are twos-complement. Unsigned values are pure binary. In both cases, the top three bits

of the value are ignored (and each number has eight representations). For signed values, the sign bit is
the fourth bit from the top.

Furthermore:
m) Does the C Standard require that the values of SCHAR MAX, SHRT_ MAX, INT_MAX, and LONG_MAX,

n)

P)

defined in <1limits . h> (subclause 5.2.4.2.1) all be exactly one less than a power of 2?

If the answer to (m) is “yes,” then must the exponent of 2 be exactly one less than CHAR_BIT *
sizeof (T),where Tissigned char, short, int, or long, respectively?

Does the C Standard require that the values of UCHAR MAX, USHRT MAX, UINT MAX, and
ULONG_MAX, defined in <1limits.h> (subclause 5.2.4.2.1) all be exactly one less than a power of
2?

If the answer to (p) is “yes,” then must the exponent of 2 be exactly CHAR _BIT * sizeof (T),
where T is unsigned char, unsigned short, unsigned int, or unsigned long
respectively?

Does the C Standard require that the absolute values of SCHAR MIN, SHRT MIN, INT MIN, and
LONG_MIN, defined in <1imits . h> (subclause 5.2.4.2.1) all be exactly a power of 2 or exactly one
less than a power of 2?

Page 14 SC22/WG14 Defect Report #069

s) If the answer to (r) is “yes,” then must the exponent of 2 be exactly one less than CHAR BIT *
sizeof (T),whereTissigned char, short, int, or long respectively?

t) If any of the answers to (m), (p), or () is “no,” are there any values for each of these expressions that
are permitted by subclause 5.2.4.2 but prohibited by the C Standard for other reasons, and if so, what

are they?

u) Does the C Standard require that the expressions (SCHAR _MIN + SCHAR MAX), (SHRT_MIN +
SHRT MAX), (INT_MIN + INT_MAX),and (LONG MIN + LONG_MAX) be exactly Oor-1?
If not, does it put any restrictions on these expressions?

Response
Before providing detailed answers, we want to provide some clarified terminology. For any object type T,
the underlying bytes of the object can be copied into an array of unsigned chax:

#define N sizeof (T)
union aligned buf ({
b
unsigned char s([N];
} buf;
T object;

memcpy (buf.s, (const void *)&object, N);

The object representation of an object consists of the resulting sequence of N objects of type unsigned
char in the buffer. The object representation depends upon several features of the implementation such as
byte-ordering (“big-endian,” “little-endian,” etc.), “holes” (i.e., bits within a scalar object which do not
participate in forming the value of the object), and “padding” (i.e., bits in a non-scalar object which lie
between the component scalar objects or after the last scalar object).
The value representation of an object is a sequence of bits structured in a specific conventional way. The
scalar components are listed in their declaration sequence. Each scalar component is a sequence of bits (the
“participating bits”) arranged in a conventional ordering. The value representation of floating-point and
pointer types is implementation-defined. The value representation of an integer type is defined as follows:
The least-significant bit (the bit which represents the integer value 1) is also called the low-order bit or
rightmost bit; the most-significant bit is also called the high-order bit or leftmost bit. The sign bit (if any)
is the leftmost bit. :
If all the bits in a scalar object representation participate in the value representation (i.e. no holes or padding),
then the value representation can be referred to simply as the representation. The bits of the value
representation determine a value, which is one discrete element of an implementation-defined set of values.
The conventional depiction of an integer value is as a decimal integer, optionally signed, such as 128 or-1.
Here is an example. Consider a (possibly hypothetical) ones-complement implementation whose int value
representation provides one sign bit and 40 integer bits.

e e B L L Ll S e P e +

$ofmmm e +
1 40

Its object representation provides one sign bit, a hole containing seven non-participating bits, and 40 integer
bits (issues of byte ordering are irrelevant here):

oo e LS e +
kel | I
ot o= -—- --+
1 7 40
The value representation containing 41 zero bits designates the value 0:
s e +
101000 000
e +
1 40

Depending upon the implementgﬁogh the value representation containing 41 one bits may designate the
same value 0, in which case it is indistinguishable from the other value representation; or it may designate

Defect Report #069 SC22/WG14 Page 15
a distinguishable value, conventionally depicted as -0, which is arithmetically equal to 0 but distinguishable

by bitwise operations.
e et L P L et +
111111 GRS 113
et e L L L +
1 40
Now for detailed replies:

a) Foomotes are not normative. The legality of a footnote is beyond the scope of WG14/X3J11.

b) Yes, the footnote is correct.

¢) No, there is no such requirement.

d) In view of the discussion above, we assume you mean the following question: Does the C Standard
require that all bits of the object representation participate in the value representation? For character types,
all bits of the object representation do contribute. See subclauses 7.9.2 (re binary streams) and 7.11.1 (re
string functions) for (indirect) justification. More precisely, any bits that do not contribute to the value of
a character type must not contribute to the value of any other object type. (Parity bits are an obvious
example.) For other types, the answer is no.

¢) In view of the discussion above, we assume you mean the following question: Does the C Standard require
that all possible bit patterns of the object representation represent numbers? For the type unsigned char,
the answer is yes. (And if all values of the type char are non-negative, then the answer is yes.) Otherwise,
the answer is no.

f) No, except for the character types as mentioned above.

g) Not applicable, since it is unclear what are the meanings of “bit pattern” and “value” in the question; see
the answer to part (€).

h) Yes, provided there is no other violation of the C Standard.

i) Yes, provided there is no other violation of the C Standard.

j) No. It is not a pure binary system.

k) Yes, except for SCHAR_MAX == UCHAR_MAX (which is specifically disallowed), provided there is no
other violation of the C Standard.

1) Yes, provided there is no other violation of the C Standard.

m) Yes, because subclause 6.1.2.5 states that the positive signed integers have the same representation as
the corresponding unsigned integers, and because signed integers use a pure binary numeration system. The
Committee intended to permit ones complement, twos complement, and signed magnitude implementation.

n) No. There are architectures on which not all bits can be used.

p) Yes, because subclause 6.1.2.5 requires unsigned integers to behave as if a result “is reduced modulo the
number that is one greater than the largest value that can represented,” and unsigned integers use a pure
binary numeration system.

@) No. The memory occupied by a value of an integer is allowed to exceed the number of binary digits used
to represent the actual value.

r) Yes. See the answer to part (m).

s) No. See the answer to part (q).

t) Not applicable.

u) Yes, the expression must evaluate to 0 or -1.

Page 16 SC22/WG14

Defect Report #070

Defect Report #070

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question
Item 7 — interchangeability of function arguments

Consider the following program:
#include <stdio.h>

void output (c)
int c;

{
printf£("C == %d\n", ¢);
}
int main (wvoid)
{
output (6) ;
output (6U) ;
return 0;

}

The constant 6 has type int, and 6U has type unsigned int (subclause 6.1.3.2), and they have the
same representation (subclause 6.1.2.5). Footnote 16, which is not a part of the C Standard, states that this
implies that they are interchangable as arguments. However, int and unsigned int arenot compatible

types, and so subclause 6.3.2.2 makes the second call undefined.
Is the program strictly conforming?

Note that similar issues arise in connection with the other cases mentioned in Footnote 16 (function return

values and union members).
Response

The program is not strictly conforming. Since many pre-existing programs assume that objects with the
same representation are interchangeable in these contexts, the C Standard encourages implementors to allow

such code to work, but does not require it.

Defect Report #071 SC22/WG14 Page 17

Defect Report #071
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 8 — enumerated types

The C Standard states (in effect) that an enumerated type is a set of integer constant values (subclause

6.1.2.5). It also states that an enumerated type must be compatible with an implementation-defined integer

type (subclause 6.5.2.2). Finally, the integral promotions (subclause 6.2.1.1) convert an enumerated type
to signed or unsigned int. Consider:

enum foo { foo A = 0, foo B =1, foo C = 8 };

enum bar { bar_A = -10, bar_ B = 10 };

enum qux { qux A = UCHAR MAX * 4, qux B };

a) If any value between zero and SCHAR MAX (inclusive) is assigned to a variable of type enum £oo,
and the value of the variable is then converted to type int or unsigned int, does the C Standard
require the original value to result; or is the implementation permitted or required to convert it to one
of the three values 0, 1, and 8; or is the result of the assignment undefined?

b) Can a conforming implementation require all enumerated types to be compatible with a single type?

¢) If the answer to (b) is “yes,” and assuming that the value UCHAR MAX * 4 is less than SHRT MAX
is the declaration of the type enum qux strictly conforming, or can a conforming implementation
require all enumerated types to be compatible with a single type which is a character type?

d) Can an implementation make the type that enum bar is compatible with be an unsigned type, even
though it uses an enumeration constant not representable in that type?

¢) Cananimplementation make the type that enum qux is compatible with be either of signed char
orunsigned char,even though it uses an enumeration constant not representable in that type?

f) If the answer to (d) or (€) is “yes,” what is the effect of making one of the enumeration constants of an
enumerated type outside the range of the compatible type? What is the effect of assigning the value of
that constant to an object of the enumerated type?

g) Can the type that an enumerated type is compatible with be signed or unsigned long? If so,
what are the effects of the integral promotions on a value of that type?

h) If an implementation is allowed to add other types to the list of integer types (see items 4(b) and (c)),
then can the type that an enumerated type is compatible with be such a type?

Response

a) Every enumerated type is compatible with some integer type (subclause 6.5.2.2). When conversion takes
place between compatible types, values are not altered (subclause 6.2). So for values between 0 and
SCHAR_MAX, the original value must result, because no matter what type is chosen, the value can be
expressed in that type.

b) Yes it can.

c-g) It is the intention of the C Standard that all the members of the enumeration be representable in the
enumerated type, and that the compatible integer type be one which promotes to int orunsigned int.

h) An implementation is not allowed to add other types to the list. (See reply to Defect Report #067.)

Correction

In subclause 6.5.2.2, page 61, second paragraph of Semantics, change:

Each enumerated type shall be compatible with an integer type; the choice of type is implementation-de-
fined.

to:

Each enumerated type shall be compatible with an integer type. The choice of type is implementation-de-
fined, but shall be capable of representing the values of all the members of the enumeration.

Page 18 SC22/WG14 Defect Report #072

Defect Report #072
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 9 — definition of object
Consider the following translation unit:
#include <stdlib.h>

typedef double T;
struct hacked
{
int size;
T data [1];
}:

struct hacked *f (wvoid):
{
T *pt;
struct hacked *a;
char *pc;

a = malloc (sizeof (struct hacked) + 20 * sizeof (T)):
if (a == NULL)

return NULL;
a->size = 20;

/* Method 1 */
a->data [8] = 42; /* Line A */

/* Method 2 */

pt = a->data;

pt += 8; /* Line B */
*pt = 42;

/* Method 3 */
pc = (char *) a;
pc += offsetof (struct hacked, data);

pt = (T *) pc; /* Line C */
pt += 8; /* Line D */
*pt = 6 * 9;

return a;

}
Now, Defect Report #051 has established that the assignment on line A involves undefined behavior.
a) Is the addition on line B strictly conforming?

b) If the answer to (a) is “yes,” are the three statements forming “method 2” avalid way of implementing
the struct hacked?

¢) Is the cast of line C strictly conforming?
d) Is the addition on line D strictly conforming?

e) If the answer to (c) and (d) are “yes,” are the five statements forming “method 3" a valid way of
implementing the struct hacked?

Defect Report #072 SC22/WG14 Page 19

Now suppose that the definition of type T is changed to chaz. This means that the last bullet in subclause
6.3 (“an object shall have its stored value accessed only by ... a character type”) now applies, and furthermore
it means that the location accessed is an integral multiple of sizeo£ (T) bytes from the start of the
malloced object, and so constitutes an element of that object when viewed as an array of T.

f) Isthe assignment on line A now strictly conforming?
g) What are the answers to questions (a) to (€) with this change?

Response

a) Defect Report #051 provides the rationale for why Line A results in undefined behavior. The same rules
also apply to the assignment to pt; thus Line B results in undefined behavior

b) Not applicable given the answer to question (a).

c) Assignment causes the base address of the structure to be assigned to pe. The response to Defect Report
#044, question 1, states that use of the of£set o £ macro does not result in undefined behavior. The second
line causes pe to point to member data. Line C does not contain any construct that would result in the
program not being strictly conforming.

d) Line D results in undefined behavior. See answer (a) for rationale.

e) Not applicable given answers () and (d).

f) Subclause 6.3 contains additional restrictions, not permissions.

g) The answers to questions (a)-(¢) are not affected if T has char type.

Page 20 SC22/WG14 Defect Report #073

Defect Report #073
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 10 — definition of object
Consider the following translation unit:
#include <stdlib.h>

struct complex

{

double real [2];

double imag:;

}
#define D_PER C (sizeof (struct complex) / sizeof (double))
struct complex *f (double x)

{

struct complex *array = malloc(sizeof (struct complex) +

sizeof (double)):
struct complex *pc;
double *pd;

if (array == NULL)
return NULL;

array [1].real [0] = x; /* Line A */
array [1].real [1] = x; /* Line B */
array [1].imag = x; /* Line C */
pc = array + 1; /* Line D */
pc = array + 2; /* Line E */
pd = &(array [1].real [0]); /* Line F */
pd = &(array [1].real [1]):; /* Line G */
pd = &(array [1].imagq); /* Line H */
pd = &(array [0].real [0]) + D_PER C; /* Line I */
pd = &(array [0].real [1]) + D_PER C; /* Line J %/
pd = &(array [0].imag) + D_PER C; /* Line K */
pd = &(array [0].real [0]) + D_PER C * 2; /* Line L */
pd = &(array [0].real [0]) + D_PER C + 1; /* Line M */
pd = &(array [0].real [0]) + D PER c + 2; /* Line N */

return array;

}
Subscripting is strictly conforming if the array is “large enough” (subclause 6.3.6). For each of the marked
lines, is the assignment strictly conforming?

Response

Lines A, B, C. The identifier array points to an object that is not large enough to hold two struct
complex objects. The dot selection operator is at liberty to require the complete structure denoted by its
left hand side to be accessed. Such an access would result in undefined behavior.

Line D. If array is regarded as pointing to a single structure then creating a pointer to one past the end of
that object is permitted.

Line E. If array is regarded as pointing to a single structure then creating a pointer two past the end of
that object is not permitted. Since there is insufficient storage allocated to create a second struct
complex object, it is not permitted to point one past this partial struct complex object.

Lines F, G, H. Same analysis as Lines A, B, C.

Lines I, J, K, L, M, N. All of these calculations will result in pointers that point outside the original object
(arrays or structures) and result in undefined behavior.

Defect Report #074 SC22/WG14 Page 21

Defect Report #074
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 11 — alignment and structure padding

The existence of structure padding (subclause 6.5.2.1) can be detected by a strictly conforming program by

use of the sizeo£ operator and the of£seto£f macro.

a) If a structure has a field of type t, can the alignment requirements of the field be different from the
alignment requirements of objects of the same type that are not members of structures?

If the answer to (a) is “yes,” then where applicable the remaining questions should be assumed to have been
asked for both objects within structures and objects outside structures.

b) If an array has a component type of t, can the alignment requirements of the elements of the array be
different from those of independent variables of type t?

The alignment requirement of a type is that addresses of objects of that type must be multiples of some

constant (subclause 3.1); for some type t, this is written A (t) in this Defect Report.

c) Forany type t, can the expression sizeof (t) % A(t) be non-zero (in other words, can A (t)
be a value other than 1, sizeof (t),or afactor of sizeof (t))? It would appear not, because
otherwise adjacent elements of an array of objects of type t would either not be correctly aligned, or
else would not be contiguously allocated.

d) CanA(struct £foo) be greater than the least common multiple of A (type_1),A(type_2),.
A(type_n), where type_1 to type_n are the types of the elements of struct £o0o? In
particular, if a structure holds exactly one element, can A (structure type) be different from
A (element type)? (In each case, if the answer to (a) is “yes,” A (type) should be interpreted
appropriately.)

e) If, at any point in a structure or union (obviously excluding the start), there is more than one size of
padding that can satisfy all alignment requirements, can any size be used, or must the smallest (possibly
zero) padding be used because that is all that is “necessary to achieve the appropriate alignment?”

f) If a structure type has trailing padding to ensure that its use as an array element would be correctly
aligned, must objects of that type which are not array elements also have the padding? If not, what is
the effect of using memcpy to copy the value of one such object to another thus?

struct fred a, b;
/* ... */
memcpy (&a, &b, sizeof (struct fred)):;
It appears from subclause 6.3.3.4 (“the size is determined from the type of the operand”) that sizeof a
must equal sizeof (struct £red).Is this correct?
g) Whenan element of a structure is in turn a structure, can trailing padding of the inner structure be reused
to hold other elements of the enclosing structure? For example, in:

struct outer

{

struct inner { long a; char b; } inner;
char c;
}:
is it permitted for of£setof (struct outer, c) tobe lessthan sizeof (struct inner)?

Response

Subclause 6.1.2.5 says, “... pointers to qualified or unqualified versions of compatible types shall have the
same representation and alignment requirements.”

Subclause 6.5.2.1 says, “Each non-bit-field member of a structure or union object is aligned in an
implementation-defined manner appropriate to its type.” And later, “There may therefore be unnamed
padding within a structure object, ... as necessary to achieve the appropriate alignment.”

Page 22 SC22/WG14 Defect Report #074

a) It is possible for an implementation to state generalized requirements to satisfy sublause 6.1.2.5. These
requirements may be further strengthened using the implementation-defined behavior made available in
subclause 6.5.2.1. Yes, the alignment requirements can be different.

b) In several places the C Standard states that a single object may be treated as an array of one element.
Nowhere does it give permission for array element types to have different alignment requirements from
isolated object types.

¢) sizeof (t) mustindeed be a multiple of A(t).

d) Yes. A structure object can have an alignment that is greater than the least common multiple of the
alignments of its members.

¢) The phrase “necessary to achieve the appropriate alignment” is not considered to mean the use of the
minimum padding possible. The Committee does not see any advantage to changing this phrase.

f) Yes. See answer to question (b). sizeof (struct fred) mustequal sizeof a.

g) Such sharing of storage by objects would cause the requirements of subclause 6.3 to be violated and is
not allowed.

Defect Report #075 SC22/WG14 Page 23

Defect Report #075
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 12 — alignment of allocated memory

Is a piece of memory allocated by malloc required to be aligned suitably for any type, or only for those
types that will fit into the space? For example, following the assignment:

void *vp = malloc (1)

is it required that (void *) (int *)vp compare equal to vp (assuming that sizeof (int) > 1),
or is it permissible for vp to be a value not suitably aligned to point to an int?

Response

Subclause 7.10.3 requires allocated memory to be suitably aligned for any type, so they must compare equal.

Page 24 SC22/WG14 Defect Report #076

Defect Report #076
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 13 — pointers to the end of arrays
Consider the following code extracts:

int a [10];

int *p;

/* ... */

p = &a[10];
and

int *n = NULL;

int *p

/* ... */

P = &*n;
In the first extract, is the assignment strictly conforming (with p being set to the expressiona + 10), or
is the constraint in subclause 6.3.3.2 violated because a [10] is not an object? Note that this expression is
often seen in the idiom:

for (p = &a[0]; p < &a[10]; p++)

VNI

In the second extract, is the assignment strictly conforming (with p being set to a null pointer), or is the
constraint in subclause 6.3.3.2 violated because *n is not an object?
If only one assignment is strictly conforming, what distinguishes the two cases? If either assignment is
strictly conforming, what distinguishes it from the situation described in the following extract from the
response to Defect Report #0127

Given the following declaration:

void *p;
the expression &*p is invalid. This is because *p is of type void and so is not an lvalue, as
discussed in the quote from subclause 6.2.2.1 above. Therefore, as discussed in the quote from

subclause 6.3.3.2 above, the operand of the & operator in the expression & *p is invalid because
it is neither a function designator nor an lvalue.

This is a constraint violation and the translator must issue a diagnostic message.

Response

This issue remains open. The C Standard as currently worded has the following consequences:

1) Subclause 6.3.3.2 requires the operand of & to be an Ivalue designating an object; a [10] is not an object.
2) Subclause 6.3.3.2 requires the operand of & to be an Ivalue; NULL is not an lvalue.

Since the use of either construct prevents a program from being strictly conforming, the remaining portion
of the question is not applicable.

However, the Committee is not entirely comfortable with these restrictions and may decide to relax them
in resolving this issue.

Defect Report #077 SC22/WG14 Page 25

Defect Report #077
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 14 — stability of addresses

Is the address of an object constant throughout its lifetime? For example, if a pointer to an object is written
to a binary file using £write, and then read back later during the same run of the program using £read,
is it guaranteed to compare equal to the address of the original object taken again?

Response

The C Standard does not explicitly state that the address of an object remains constant throughout the life
of the object. That this is the intent of the Committee can be inferred from the fact that an address constant
is considered to be a constant expression. The framers of the C Standard considered that it was so obvious
that addresses should remain constant that they neglected to craft words to that effect.

The Committee should revisit this issue during the revision of the C Standard.

Page 26 SC22/WG14 Defect Report #078

Defect Report #078

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question

Item 15 — uniqueness of addresses
Consider the following translation unit:
#include <string.h>

unsigned int £ (unsigned int a)

{

unsigned int x, y’

x = a;
x=x*x + a;
if (x > 100)

return x; /* Returned value must be > 100 */
if (&x = &y)

return 0;
y=a+1l;
y=y *y+ 17;
return y; /* Returned value must be > 0 */
}

unsigned int gl (void) { return 0; };
unsigned int g2 (void) { returm 0; };

unsigned int g (wvoid)

{
return gl != g2;
}
unsigned int h (wvoid)
{
return memcpy != memmove;
}
const int jl1 = 1;
const int j2 = 1;

unsigned int j (wvoid)

a)

b)

{

return &jl1 != &j2;

}
Can £ ever return zero? An aggressive optimizer could notice that x and y are never used at the same
time, and assign them the same memory location. (The optimizer could be designed to conceal the fact
that x and y are sharing storage, for example by forcing the comparison to be unequal. Such an
application of the “as if”’ rule (subclause 5.1.2.3) would become increasingly difficult to implement in
the presence of operations such as writing out &x to a file (using £fwrite or the fprintf %p
conversion specification) and then reading it back in later in the same run of the program. However,
this is irrelevant; the issue is whether or not the implementation is required to conceal it in the first
place.)

Can g ever return zero? A optimizer using an intermediate form can easily determine that the two
functions have identical effects.

Defect Report #078 SC22/WG14 Page 27

¢) Can h ever return zero? The library function memmove (subclause 7.11.2.2) completely meets the
requirements for memcpy (subclause 7.11.2.1) and so they could be implemented using the same code
(even if the answer to (b) is no, this could happen if the system library is not implemented in C).

d) Can j ever return zero? Since the two variables are constants, code which uses j1 instead of j2
anywhere except in an address comparison cannot distinguish them.

Response

a) £ can never return zero. There are three return statements:

i) Will always return a value greater than 100.

ii) x and y exist at different addresses. An optimizer may invoke the as-if rule to rearrange code provided
it always achieves the required effect. (Subclause 6.1.2.2: “Identifiers with no linkage denote unique
entities.”) '
iii) Modulo arithmetic may wrap to produce zero. However, it is not possible to square any number, add 17
and get zero as the result.

b) No, g cannot return zero.

¢) Yes, h can return zero.

d) j can never return zero. Subclause 6.7.2 says, “If the declaration of an identifier for an object has file
scope and an initializer, the declaration is an external definition for the identifier.” Subclause 6.5 says, “A
declaration that also causes storage to be reserved for an object or function named by an identifier is a
definition.” Taken together these two statements can be taken to imply that two file-scope definitions must
refer to different objects.

Page 28 SC22/WG14 Defect Report #079

Defect Report #079
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 16 — constancy of system library function addresses

(These questions approach the same problem from three slightly different directions.)

a) Ifa pointer to a given standard library function (say strlen) is evaluated in two different translation
units, and the pointers compared, must they compare equal? :

b) Can a conforming implementation declare a standard library function as having internal linkage, or
must the identifiers with file scope declared in standard headers have external linkage?

¢) If the contents of the header <string.h> include the following definition of strlen, is the
implementation conforming?

static size_t strlen (const char * s)

size t _ len = 0;

while (*__s++)

__lent++;
return __ len;
}
Response

Since the answer to question (b) is needed for question (a) it is given first.

b) Since, according to the fourth item in subclause 7.1.3, the library function prototypes are implicitly
extera, the standard library functions have external linkage.

a) If the usage of st rlen is such that standard library functions are referred to, the pointers must compare
equal by the requirements of subclauses 5.1.1.2 and 6.1.2.2.

¢) The contents of standard headers are implementation-defined. For instance, they may contain code written
in other languages. It is not the job of this Committee to mandate implementation. Whatever their contents,
including a standard header must achieve the effects required by the C Standard.

Defect Report #080 SC22/WG14 Page 29

Defect Report #080
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 17 — merging of string constants

Consider the following code:

char *sl = "abcde" + 2;

char *s2 = "cde";

Can the expression (s1 == s2) be non-zero? Is the answer different if the first string literal is replaced
by the two literals "ab" "cde" (because then there are identical string literals)?

Response

When the last paragraph of subclause 6.1.4 refers to “string literals” it is referring to the static arrays created
in translation phase 7 as specified in the previous paragraph. Although the current wording of the C Standard
may imply that only completely identical arrays need not be distinct, this was not the Committee’s intent.

Correction
In subclause 6.1.4, page 31, change the last paragraph of Semantics (before the Example) from:

Identical string literals of either form need not be distinct. If the program attempts to modify a string literal
of either form, the behavior is undefined.

to:

These arrays need not be distinct provided their elements have the appropriate values. If the program
attempts to modify such an array, the behavior is undefined.

Page 30 SC22/WG14 Defect Report #081

Defect Report #081
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 18 — left shift operator

The result of the left shift operator E1 << E2, when E1 is signed, is defined (subclause 6.3.7) as E1
left-shifted by E2 bits, with vacated bits filled with zeros. But what exactly does this mean?

The C Standard defines a bit (subclause 3.3) only as a unit of data storage. Bits are related to the value of
an object only in subclause 6.1.2.5, which specifies the representation of certain types. It may therefore be
claimed that the left shift operator must act on representations, which are of fixed length. In this
interpretation, the left E2 bits (including the sign bit) are lost, as they would be if E1 was unsigned; the
sign bit of the result is taken from a bit in E1, E2 places to the right of the sign bit and, provided that the
resultant bit pattern actually represents a value of the result type, an exception is impossible.

On the other hand, it may also be claimed that the whole of subclause 6.3 specifies the meaning of operations
in abstract mathematical terms, subject to the general note about exceptions. In this view, the bit sequence
representing the non-sign part of a signed integer is converted by the shift operation to a bit sequence of
indefinite length, and, to avoid an exception due to overflow, this bit sequence must fit back in the non-sign
part without the loss at the left of anything but copies of the sign bit.

a) Which of these two views is correct?

b) If the answer to (a) is the first view, does undefined behavior occur if the resulting bit pattem is not the
representation of an integer?

The following questions apply only if the answer to (a) is that the second view is correct.

¢) IfE1 is positive, and E1 times 2 to the power E2 is less than or equal to INT_MAX (or LONG_MAX),
is the result always E1 times 2 to the power E2?

d) Under what circumstances is the result undefined?

Response

Subclause 6.3 states that the binary operator <<, among others, has implementation-defined aspects for
signed types. Therefore, the answer to “What does it mean to left shift a signed value?” is that it is
implementation-defined.

Page 31

Defect Report #082 SC22/WG14
Defect Report #082
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 19 — multiple varargs
Consider the following translation unit:

#include <stdarg.h>
#include <stdio.h>

extern int is_final arg (int);

void

void

void

void

£1 (int n, ...)

{
va_list apl, ap2;

va_start (apl, n);
va_start (ap2, n):;

while (va_arg (apl, int) != 0)

printf ("Value is %d\n", va_arg (ap2, int)):’

va_end (apl);
va_end (ap2);

}

£f2 (int n, ...)
{

va_list ap;

va_start (ap, n):
for (;7)
{

n = va_arg (ap, int);
if (is_final arg (n))

{
va_end (ap):
return;
}
printf ("Value is
}
}

£3 (int n, ...)
{

va_list ap;

va_start (ap, n);’
while (n = va_arg (ap,
printf ("Value is
va_start (ap, n);
while (n = va_arg (ap,
printf ("Value is
va_end (ap):

}

f4a (va_list *pap)

$d\n", n);

int), n !'= 0)
$d\n", n);

int), n = 0)
still %d\n", n);

Page 32 SC22/WG14 Defect Report #082

{

int n;

while (n = va_arg (*pap, int), n != 0)
printf ("Value is %d\n", n);
}

void £4 (int n, ...)
{

va_list ap;

va_start (ap, n);
f4a (&ap):;
va_end (ap):;

}

void f5a (va_list apc)
{

int n;
while (n = va_arg (apc, int), n != 0)

printf ("Value is $d\a", n);
}

void £5 (int n, ...)
{

va_list ap;

va_start (ap, n):;
£5a (ap):
va_end (ap);

a) Iseach function in this translation unit strictly conforming? Note in particular:

in £1, the use of simultaneous va_listsin £1;

in £2, va_start and va_end are in different scopes;

in £3, there are two va_starts and one va_end;

in £4, the address of an object of type va_1list is taken;

in £4a and £5a, va_arg is called with a first parameter which is not “the same as the va_list ap
initialized by va_staxrt” (subclause 7.8.1.2).

b) Is the following implementation conforming?

va_start allocates a block of memory withmalloc;
ava_list is apointer to the block;
va_end frees the same block;

¢) Is there any portable method to copy the current state of a va_list, for example in order that the
remaining arguments can be scanned twice without knowledge of the va_arg calls made previous to
that point? If the answer to (b) is “yes,” I believe the answer to (c) must be “no.”

Response

a) All functions listed except for £3 contain strictly conforming code. The function £3 violates the intended
requirement for va_start and va_end to be invoked in matching pairs, as reflected in the following
Correction.

b) There is nothing described in this section that would make such an implementation non-conforming.

¢) No.

Defect Report #082 SC22/WG14 Page 33

Correction

In subclause 7.8.1, page 122, change the last sentence from:

The va_start and va_end macros shall be invoked in the function accepting a varying number of
arguments, if access to the varying arguments is desired.

to:

The va_start and va_end macros shall be invoked in correspondmg pairs in the function accepting a
varying number of arguments, if access to the varying arguments is desired.

In subclause 7.8.1.1, page 122, add at the end of the second paragraph of the Description:

va_start shall not be invoked again for the same ap without an intervening invocation of va_end for
the same ap.

Page 34 SC22/WG14 Defect Report #083

Defect Report #083
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 20 — use of library functions
Consider the following program:
#include <stdio.h>

int main (void)

{
printf ("sd\a", 42.0);
return 0;
}
This program clearly should have undefined behavior, but I can find no wording which states so.

Correction

In subclause 7.1.7, page 99, insert after the words in parentheses in the second sentence of the first
paragraph:

or a type (after promotion) not expected by a function with variable number of arguments

Defect Report #084 SC22/WG14 Page 35

Defect Report #084
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 21 — incomplete type in function declaration
Consider the following declarations:

struct tag;

extern void (*£f) (struct tag):

At the point of the declaration of £, the type of the parameter is incomplete. Now a parameter is an object
(subclause 3.15) with no linkage (subclause 6.1.2.2), but it is unclear whether this is a declaration of the
parameter. If it is, then the declaration of £ is forbidden by subclause 6.5. If it is not, then the declaration
is strictly conforming. Which is the case?

If the type struct tag is completed before a call to £, is the call strictly conforming? Alternatively,
since the declaration of £ includes an incomplete type, is it possible to make a call to it at all?

Response

From subclause 6.5.2.3, the incomplete type specified by the tag may be used, unless the size of the
corresponding object is needed.

In responding to Defect Reports, the Committee has discussed at length when the size of an object is actually
required. The C Standard is inconclusive with regard to whether or not the size of the structure is needed
in the example given, leaving the behavior undefined.

The Committee should revisit this issue during the revision of the C Standard.

Page 36 SC22/WG14

Defect Report #085

Defect Report #085

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question
Item 22 — returning frommain

Consider the following program:

#include <stdlib.h>
#include <stdio.h>

int *pi;

void handler (void)
{
printf ("Value is %d\n", *pi):;
}

int main (void)
{

int i;

atexit (handler):;
i=42;

Pi = &i;

return 0;

}

Return from main is defined to be equivalent to calling exit (subclause 5.1.2.2.3). If the return
statement was replaced by the equivalent call, the program would be strictly conforming. Is it strictly

conforming without this replacement?

Note that if the answer is “yes,” special processing will be required for return from main, which will
depend on whether the call being returned from is the initial call or a recursive one.

Correction

In subclause 5.1.2.2.3, page 7, add at the end of the first sentence the footnote:

In accordance with subclause 6.1.2.4, objects with automatic storage duration declared in main will no
longer have storage guaranteed to be reserved in the former case even where they would in the latter.

Defect Report #086 SC22/WG14 Page 37

Defect Report #086
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 23 — object-like macros in system headers

Consider an implementation where <string.h> defines the macro stxlen thus:

#define strlen __ internal fast_strlen

and declares functions (deﬁned elsewhere)called _internal fast_strlenand strlen,bothwith
the functionality of st rlen in subclause 7.11.6.3. Is such an implementation conforming with respect to
the rules of subclause 7.1.7?

Note that a strictly conforming application can detect this situation by comparing the value of the expression
strlen taken before and after a #unde£.

Response

The question asks whether a system header can define the name of a library function as an object-like macro,
and cites subclause 7.1.7 as not using the term “function-like.”

The Committee notes the absence of this term, but also notes that subclause 7.1.7 requires that the macro
definition always be suppressed when not followed by an open parenthesis. Therefore such macros must
either be function-like, or the implementation must cause them to act as function-like macros.

Page 38 SC22/WG14 Defect Report #087

Defect Report #087
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question
Item 24 — order of evaluation
Consider the following program:
int g;
int main (wvoid)
{
int x;
x = (10, g =1, 20) + (30, g =2, 40); /* Line A */
x = (10, £ (1), 20) + (30, £ (2), 40): /* Line B */
x=(g=1) + (g=2); /* Line C */
return 0;
}
int £ (int i)
{
g=i;
return 0;
}
Subclause 6.3 makes the statement:

Between the previous and the next sequence point an object shall have its stored value modified
at most once by the evaluation of an expression.

Consider line A. The full expression (the assignment to x) assigns two values (1 and 2) to g. Each such

assignment is surrounded by sequence points. However, there is no sequence point between the two operands

of the addition, and therefore no defined order of evaluation of the two inner assignments. There are a

number of possible interpretations of the C Standard that can be made.

1) Multiple threads of evaluation may take place at one time (or equivalently, the evaluation of various
parts of the expression may be interleaved to any level of detail), provided that anything specified to
occur before a given sequence point actually takes place before anything specified to occur after the
same sequence point. (This is equivalent to the “collateral evaluation” of Algol 68.)

In this interpretation, the expression is clearly undefined, because the two assignments to g may take place

simultaneously and interfere destructively with one another. However, if this model is applied to line B, it

yields the same result (since the sequence points occur at the same places). This means that, in effect, two

function calls can be taking place simultaneously, and, if they modify the same object, the effect is undefined.

This would surprise many users of the C Standard.

2) As (1), but assignments are atomic. This means that g has the value 1 or 2, though it is unspecified
which. When applied to line C, this would also mean that x is specified to be assigned the value 3. This
seems counter to the quoted provision of subclause 6.3.

3) Any expression which completely fills the interval between two sequence points, and does not contain
any embedded sequence points, is an “atomic sequence.” The operations of any one atomic sequence
are carried out together, and cannot be interleaved with any other atomic sequence. The order of the
atomic sequences is unspecified, except that if the ending sequence point of one atomic sequence is the
same as the starting point of another atomic sequence, they must be executed in that order.

In line A, there are five atomic sequences:
(i) evaluate 10
(ii)assign1tog

Defect Report #087 SC22/WG14 Page 39

(iii) evaluate 30

(iv)assign2tog

(v) evaluate 20 and 40, add, and assign to x

(i) must come before (ii), (iii) must come before (iv), (v) must come after (ii) and (iv).

In line A this model has the same effect as (2), but it could differ in more complex expressions.

4) Multiple threads of execution can occur within an expression, but all except one are suspended while
a function is being executed (this may, of course, spawn off new threads). This interpretation could be
viewed as supported by the wording in subclause 6.6: “Except as indicated, statements are executed in
sequence.” It would have the effect of leaving line A undefined while line B is conforming (with it
being unspecified whether the latter assigns 1 or 2 to g).

“Which, if any, of these interpretations is correct? If none of them, what is the correct interpretation to make?
Response
In lines A and B, the expressions do not exhibit undefined behavior, but because the order of evaluation of

the operands of the addition operator is not specified, it is unspecified whether g will attain the value 1 or
2. Line C violates the quoted restriction from subclause 6.3, so the behavior is undefined.

Page 40 SC22/WG14 Defect Report #088

Defect Report #088
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

[Question was revised in Dec 94]
Item 25 — compatibility of incomplete types
According to subclause 6.1.2.6 Compatible type and composite type, an incomplete structure type is
incompatible with everything except “the same type:”
Two types have compatible type if their types are the same.
The C Standard fails to define when exactly two types are “the same.” It is intuitively clear in context of

basic types and array or pointer derivation, but becomes vague when genuinely new structure or union types
are involved, especially when they are created as incomplete types first and completed later.

a) Are two incomplete structure types with a (lexically) identical tag always “the same” in the sense of
subclause 6.1.2.6? It would appear not, unless they are declared in the same scope of the same translation
unit.

b) Can two different incomplete structure types be compatible in other ways? If so, how?

¢) Is a structure type before and after completion “the same type” in the sense of subclause 6.1.2.6? If the
answer to (¢) is no, then questions (d) to (g) apply.

d) Are the types before completion and after completion compatible?

Consider the following translation unit (the file a . ¢):

struct tag;

int al (struct tag * p)
{ a2 (p): } /* Line A */

struct tag { int i; } s;

int main ()
{
al (&s);
return 0;

)

int a2 (struct tag * p)
B L S D i |
e) Is the call to a2 in line A valid? The parameter and argument types appear to be incompatible.
f) Suppose that the definition of a2 were moved to a separate translation unit, preceeded by a definition of
struct tag which was compatible with the one in the above translation unit. Would the call in line A
then be valid?
g) A constraint in subclause 6.5 demands that:
All declarations in the same scope that refer to the same object or function shall specify
compatible types.
Does this mean that:

struct tag;
extern struct tag* p; /* Line B */

struct tag { int x; }
extern struct tag* p;

requires a diagnostic since the two declarations of p specify incompatible types? If not, what is the type p
is declared as in Line B ?

N

Defect Report #088 SC22/WG14 Page 41

If the answer to () is yes, then question (h) applies.

h) If two types A and B are compatible, is A compatible with all types that are the same as B? For example,
is the call in line D below valid? If the redeclaration in line C is omitted, does undefined behavior result?

/* First translation unit */

struct tag:;
int cl (struct tag * p)

{/* ... %/}
struct tag { int i; }; /* Line C */
/* Second translation unit */

struct tag { int i; } s;
int main()
él (&s); /* Line D */
return 0;
}
Response
a) No.
b) Yes, see the Response to Defect Report #139.
c) Yes. The C Standard failed to make clear that the type remains the same, but that is the obvious intent.
d) through (g) not applicable, because of the response to (c).
h) Yes, yes, and no.

Page 42 SC22/WG14 Defect Report #089

Defect Report #089
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question

Item 26 — multiple definitions of macros
Consider the following code:
#define macro object_like
#define macro (argument) f£unction_like
Does this code require a diagnostic?

The wording of subclause 6.8.3 specifies that a macro may be redefined under certain circumstances
(basically identical definitions), but does not actually forbid any other redefinition. Thus it can be argued
that the constraint in subclause 6.8.3 is not violated, and a diagnostic is not required.

Correction

In subclause 6.8.3, page 89, change, in both paragraphs 2 and 3:

may be redefined by another #de£ine preprocessing directive provided that

to:

shall not be redefined by another #define preprocessing directive unless

—~

Defect Report #090 SC22/WG14 Page 43

Defect Report #090
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 27 — multibyte characters in formats
Consider a locale where the characters * \xE’ and / \xF’ start and end an altemnate shift state (i.e., the
latter reverts to the initial shift state), and where multibyte characters whose first byte is greater than or
equal to 0x80 are two bytes long. The multibyte characters and the alternate shift state characters are all
distinct from the basic execution character set (subclause 5.2.1). What is the output generated by the
following £print £ calls?

fprintf (stdout, "Test A: (%d)\n", 42);

fprintf (stdout, "Test B: (\xE%d\xF)\n", 42);

fprintf (stdout, "Test C: (\xE$\xF" "d)\n", 42):;

fprintf (stdout, "Test D: (\xCC%d)\n", 42);

fprintf (stdout, "Test E: (\xE\xCC%d\xF)\n", 42);

fprintf (stdout, "Test F: (\xE\xCC%\xF" "d) \n%, 42);

Response

The first call contains no locale-specific characters and must produce the obvious output. The remainder of
this response addresses the subsequent calls.

The hypothetical locale is defined such that “the multibyte characters and the alternate shift state characters
are all distinct from the basic execution character set.” Thus the % character in the string literal is not the
same character as the % that introduces a conversion specification (subclauses 7.9.6.1 and 7.9.6.2) because
it is distinct.

The C Standard says, “The format is composed of zero or more directives: ordinary multibyte characters
(not %), which are copied unchanged to the output stream, ...” Therefore, the output generated by the example
£print£ calls is the format argument copied unchanged to the output stream. Note that the third argument
in each call to £print £ is not needed.

Page 44 SC22/WG14 Defect Report #091

Defect Report #091
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 28 — multibyte encodings

Does a locale with the following encoding of multibyte characters conform to the C Standard?

The 99 characters of the basic execution character set have codes 1 to 99, in the order mentioned in subclause
52.1.1(s0’A’ == 1,’a’ == 27,0’ == 53,'!’ == 63,’\n’ = 99).

The extended execution character set consists of 16,256 (127 x 128) two-byte characters. For each two-byte
character, the first byte is between 1 and 127 inclusive, and the second byte is between 128 and 255 inclusive.
Note that any sequence of bytes can unambiguously be broken into multibyte characters, but the basic
characters are prefixes of other characters.

Response

The hypothetical locale described does conform to the C Standard because the specified encoding does not
violate the requirements imposed on multibyte characters by subclause 5.2.1.2. No additional requirements
are needed.

Defect Report #092 SC22/WG14 Page 45

Defect Report #092
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 29 — partial initialization of strings

Consider the following program:
#include <stdio.h>

int main (wvoid)
{
char s [10] = “"Hello";

printf ("s [9] is %d\n", s [9]):
return 0;
}
Is this program strictly conforming? If so, is the value of s [9] guaranteed to be zero? Subclause 6.5.7
states:
If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized the same as objects that have static storage
duration.

However, the initializer is not brace-enclosed, so this clause does not apply.

Response
See the response to Defect Report #060.

Page 46 SC22/WG14 Defect Report #093

Defect Report #093
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Item 30 — reservation of identifiers

Can a conforming freestanding implementation reserve identifiers? Subclause 5.1.2.1 states that only one
identifier (the equivalent of main) is reserved in a freestanding implementation. Subclause 7.1.3 states that
certain identifiers are reserved, even when the corresponding headers are not included. This is a direct
contradiction. :

Response

The Committee observes that conforming freestanding implementations tend to vary widely in the library
facilities provided, and that the simple binary choice implied by the above text is really a continuum. It also
notes that it is difficult to provide a C implementation with no reserved names (not even those beginning
with two underscores). It is therefore felt to be unreasonable to restrict the names available to implementors
of freestanding implementations compared with hosted implementations.

The Committee notes that certain freestanding programs (such as UNIX kernels) have tended to use names
such as exit, but agrees that existing practice dictates that the authors of such programs must already be
prepared to change such names when using certain compilers.

Correction
In subclause 5.1.2.1, page 6, delete:
There are otherwise no reserved external identifiers.

Defect Report #094 SC22/WG14 Page 47

Defect Report #094
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfgl:

There appears to be an inconsistency between the constraints on “passing” values versus “returning” values.
The constraints for function calls clearly indicate that a diagnostic is required if any given actual argument
is passed (to a prototyped function) into a corresponding formal parameter whose type is not assignment
compatible with respect to the type of the passed value. In the case of values returned by a return statement
however, there seems to be no such compatibility constraint imposed upon the expression given in the
return statement and the corresponding (declared) function return type.

A new constraint should be added to the C Standard like:
If present, the expression given in a retuzrn statement shall have a type such that its value
may be assigned to an object with the unqualified version of the return type of the containing
function.
(This exactly mirrors the existing constraint on parameter matching imposed upon calls to prototyped
functions.)

Response

The constraint in the description of the retuzrn statement is unneeded. Early on, the Committee decided
that if a behavior was described as being equivalent to another construct, all of the constraints of that
construct would apply. This “chaining” process means that any violation of a constraint in any section
referred to explicitly or by the phrases “equivalent behavior” or “as if” will generate a diagnostic.

The Semantics section of the retuzn statement (subclause 6.6.6.4) states: “If the expression has a type
different from that of the function in which it appears, it is converted as if it were assigned to an object of
that type.” The constraints in the section on simple assignment (subclause 6.3.16.1) are sufficient to assure
assignment compatibility of the two types.

Page 48 SC22/WG14 Defect Report #095

Defect Report #095
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg2:
There is an ambiguity with respect to the constraints which may (or may not) apply to initializations.
Subclause 6.5.7 says:

.. the same type constraints and conversions as for simple assignment apply, ...

Note however that this rule itself appears within a Semantics section, thus leading some implementors to
feel that no diagnostics are required in cases where an attempt is made to provide an initializer for a given
scalar and where the type of the initializer is not assignment compatible with the type of the scalar object
being initialized. This ambiguity should be removed by adding an explicit constraint to the section covering
initializations, such as:

Each scalar initializer expression given in an initializer shall have a type such that its value may

be assigned to an object with the unqualified version of the corresponding scalar object to be

initialized by the given scalar initializer expression.

(This roughly mirrors the existing constraint on parameter matching imposed upon calls to prototyped
functions.)

Response

An explicit constraint is not required in the initializer section. Early on, the Committee decided that if a
behavior was described as being equivalent to another construct, all of the constraints of that construct would
apply. This “chaining” process means that any violation of a constraint in any section referred to explicitly
or by the phrases “equivalent behavior” or “as if”’ will generate a diagnostic.

The constraints in the section on simple assignment (subclause 6.3.16.1) are sufficient to assure type
compatibility of the object and the initializer.

—~

Defect Report #096 SC22/WG14 Page 49

Defect Report #096
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg3:

Subclause 6.5.4.2 Array declarators fails to contain any constraint which would prohibit the element type
in an array declarator from being a type which is not an object type. (Note that subclause 6.1.2.5 seems to
suggest that such usage is prohibited by saying that “An array type describes a contiguously allocated
nonempty set of objects ...” But this still leaves the matter rather unclear.)

Ibelieve that some new constraint prohibiting the element type in an array declarator from being a non-object
type (at least in some obvious cases) is clearly needed.

Please consider the case of an array declarator, occuring at some point within a given translation unit, and
indicating an element type T, where T is one of the following:

1) A function type.

2) A void type.

3) Anincomplete struct or union type which is never completed within the given translation unit.

4) An incomplete struct or union type which is completed later within the given translation unit.

5) Anincomplete array type which is never completed within the given translation unit.

6) Anincomplete array type which is completed later within the given translation unit.

I believe that it should be abundantly clear that the C Standard should contain a constraint prohibiting array

declarators where the specified element type is either (1) or (2). Essentially all existing implementations
already issue diagnostics for such usage.

Also, in cases where an array declarator uses either a (3) or a (5) as the element type, it seems eminently
reasonable to require diagnostics — and indeed, many existing implementations already do issue diagnostics
for such usage — but this is perhaps debatable.

Cases (4) and (6) from the above list are entirely debatable. Existing practice among so-called “conforming”
C compilers varies with respect to these cases (in which an element type is completed at some point after
use of the type, as an element type, in an array declarator). Here are two examples:

struct S array[10]: /* ok? %/
struct S { int member; }; /* type completed now */
int array of_array[][]; /* ok? */
int array of array([5][5]: /* type completed now */

As I say, I believe that the very least the Committee should do is to add a constraint requiring diagnostics
for array declarators whose element types fall into categories (1) or (2). The Committee may wish to provide
an even more stringent interpretation of subclause 6.1.2.5 and also require diagnostics for element types
falling into categories (3) and/or (5). The Committee may even wish to take the simplest approach to this
entire problem, and simply require diagnostics for any case in which an array declarator specifies an element
type which is not (already) an object type.

Regardless of which choice is made, I feel strongly that it is important for subclause 6.5.4.2 Array
declarators to be revised to fully reflect both common sense and (to the extent possible) the intent of
subclause 6.1.2.5.

Footnote: Note that while is it always possible for a given incomplete struct or union type to be completed
somewhere later within the same scope and same translation unit where it is used, and while it is often
possible to complete a given incomplete array type later within the same scope and same translation unit
where it is used (as illustrated by the above examples) it can sometimes be impossible to ever complete a
given array type later within its scope and translation unit. This will certainly be the case whenever the array
type in question is not used to declare an entity having some linkage (either internal or external).

Examples:

Page 50 SC22/WG14 Defect Report #096

void example ()

{
void *vp = (int (*)[1[]) O: /* abstract declarator

declares no object - type can’t be completed */

int array[][]; /* no linkage - type can’t ever be
completed */
}
I mention these cases only because they may potentially have some small bearing upon the Committee’s
deliberations of the central issues of this Defect Report.

Response

Subclause 6.1.2.5 does clearly state, “An array fype describes a contiguously allocated nonempty set of
objects with a particular member object type, called the element type.1 7 Footnote 17 and the first paragraph
of subclause 6.1.2.5 both state that object types do not include incomplete types. Nor do object types include
function types. Thus, the array element type must not be any of the items you have listed. A diagnostic is
not required. The Committee believes that whether or not a diagnostic is produced is an issue of quality of
implementation.

Defect Report #097 SC22/WG14 Page 51

Defect Report #097
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg4:

Subclause 7.1.6 fails to contain any constraint which would prohibit the type argument given in an
invocation of the of£seto£ macro from being an incomplete type. This situation can arise in examples
such as the following:

#include <stddef.h>

struct S

{

int memberl;

int member2[l+offsetof(struct S, memberl)];

}:
I believe that a constraint prohibiting the type argument to o££seto£ from being an incomplete type is
clearly needed.

This problem could be solved by adding an explicit constraint to subclause 7.1.6, such as:

The type argument given in an invocation of the o££seto£ macro shall be the name of a
complete structure type or a complete union type. (Note that this way of expressing the
constraint also makes it completely clear that diagnostics are required for cases where the type
given in the invocation is, for instance, a function type, an array type, an enumerated type, a
pointer type, or a built-in arithmetic type.)

Response
See the response to Defect Report #040, question 6. This code is not strictly conforming.

Page 52 SC22/WG14 Defect Report #098

Defect Report #098
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfgS:
Subclause 6.3.3.4 provides the following constraint:
The sizeof operator shall not be applied to an expression that has function type or an
incomplete type... :
The logical implication of this constraint is that neither function types nor incomplete types have “sizes’
per se, at least not as far as the C Standard is concerned.
I have noted however that neither subclause 6.3.2.4 Posfix increment and decrement operators nor
subclause 6.3.3.1 Prefix increment and decrement operators contain any constraints which would
prohibit the incrementing or decrementing of pointers to function types or pointers to incomplete types.

I believe that this logical inconsistency needs to be addressed (and rectified) in the C Standard. It seems
that the most appropriate way to do this is to add the following additional constraint to subclause 6.3.2.4:
The operand of the postfix increment or decrement operator shall not have a type which is a

pointer to incomplete type or a pointer to function type.

Likewise, the following new constraint should be added to subclause 6.3.3.1:
The operand of the prefix increment or decrement operator shall not have a type which is a
pointer to incomplete type or a pointer to function type.

Response

The explicit constraint on pre/post increment/decrement operators (subclauses 6.3.2.4 and 6.3.3.1) is not
required. Early on, the Committee decided that if a behavior was described as being equivalent to another
construct, all of the constraints of that construct would apply. This “chaining” process means that any
violation of a constraint in any section referred to explicitly or by the phrases “equivalent behavior” or “as
if” will generate a diagnostic.

Both subclauses 6.3.2.4 and 6.3.3.1 state in their respective Semantics sections, “See the discussions of
additive operators and compound assignment for information on constraints, types, [side effects,] and
conversions and the effects of operations on pointers.”

The Semantics section of subclause 6.3.16.2 states, “A compound assignment of the form E1 op= E2
differs from the simple assignment expressionE1 = E1 op (E2) only in that the lvalue E1 is evaluated
only once.”

This makes the pre/post increment/decrement equivalent to adding or subtracting 1 to/from an object.
Looking at subclause 6.3.6 for the constraints on additive operators, in each case which refers to pointer
operands, the C Standard uses the phrase “pointer to an object type.” Since incomplete types and function
types are not object types, their use as operands of these operators is precluded.

Defect Report #099 SC22/WG14 Page 53

Defect Report #099
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSVISO C Defect report #rfg6:
Subclause 6.2.1.5 explicitly allows an implementation to evaluate a floating-point expression using some
type which has more precision than the apparent type of the expression itself:

The values of floating operands and the results of floating expressions may be represented in
greater precision and range than that required by the type, ...

A footnote on this rule also says explicitly that:
The cast and assignment operators still must perform their specified conversions, as described
in 6.2.1.3 and 6.2.1.4.

As noted in the first of these two quotes (above) some compilers (most notably for x86 and mc680x0 target
systems) may perform floating-point expression evaluation using a type which has more precision and/or
range than that of the “apparent type” of the expression being evaluated.

The clear implication of the above rules is that compilers must sometimes generate code to implement
narrowing of floating-point expression results, when (a) those results were generated using a format with
more precision and/or range than the “apparent type” of the expression would seem to call for, and where
(b) the expression result is the operand of a cast or is used as an operand of an “assignment operator.”
My question is simply this: For the purposes of the above rules, does the term “assignment operator” mean
exactly (and only) those operators listed in subclause 6.3.3.16, or should implementors and users expect
that other operations described within the C Standard as being similar to “assignment” will also produce
floating-point narrowing effects (under the right conditions)?

Specifically, may (or must) implicit floating-point narrowing occur as a result of parameter passing if the
actual argument expression is evaluated in a format which is wider than its “apparent type?”” May (or must)
implicit floating-point narrowing occur as aresult of a ret urn statement if the return statement contains
a floating-point expression which is evaluated in some format which is wider than its “apparent type?”
Here are two examples illustrating these two questions. Imagine that these examples will be compiled for
a type of target system which is capable of performing floating-point addition only on floating-point
operands which are represented in the same floating-point format normally used to hold type long
double operands in C:

Example 1:

extern void callee (): /* non-prototyped */

double a, b;

void caller ()

{
callee(atb); /* evaluated in long double then narrowed? */

}
Example 2:
double a, b;

double returner ()
{
return a+b; /* evaluated in long double then narrowed? */

}

Response

A careful reading of the C Standard indicates that everything that is done “as if by assignment” must pass
through a knot-hole (be narrowed). See the following references: subclause 6.3.16 for assignment, 6.3.2.2
for parameters, and 6.6.6.4 for return types.

Page 54 SC22/WG14 Defect Report #100

Defect Report #100
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg7:

Subclause 6.6.6.4 The retuzrn statement says:
If the expression has a type different from that of the function in which it appears, it is converted
as if it were assigned to an object of that type.

This is nonsensical. The type of the containing function is a function type, and that’s different from an object

type. I believe that should be changed to read:
If the expression has a type different from that of the retum type of the function in which it
appears, it is converted as if it were assigned to an object having the same type as the return
type of the containing function.

Response

This error was corrected in response to Defect Report #001.

Defect Report #101 SC22/WG14 Page 55

Defect Report #101
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg8:
Subclause 6.3.2.2 Function calls says:
If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters.
The problem with this statement is the phrase “as if by assignment.” The above rule fails to yield an
unambiguous meaning in cases where an assignment of the actual to the formal would be prohibited by
other rules of the language, as in:
void callee (const int formal);
int actual;
void caller () { callee(actual); }
(Here, the name of the formal parameter £ormal may be initialized but not assigned to, because it is a
non-modifiable lvalue.)
A similar problem exists within subclause 6.6.6.4 The return statement. It says:
If the expression has a type different from that of the function in which it appears, it is converted
as if it were assigned to an object of that type.

This statement leaves the validity of the following code open to question:
const int returner () { return 99; }
Last but not least, subclause 6.5.7 Initialization says:
The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial
value of the object is that of the expression; the same type constraints and conversions as for
simple assignment apply, ...
This statement leaves the validity of the following code open to question:
const int i = 99;
(Note that assignment to the data object i is not normally permitted, as its name does not represent a
modifiable Ivalue.)
Response
There are three questions about mismatched type qualifiers in places where conversions “as if by
assignment” takes place. Two of these are in initialization and in function returns. A careful reading of the
C Standard shows that mismatched qualifiers are allowed in these two cases; see subclauses 6.5.7 and 6.5.3
Semantics.
The other issue deals with a qualifier mismatch between arguments and the parameters of a called function.
The C Standard should be modified to clarify that such a mismatch is allowed.

Correction

In subclause 6.3.2.2, page 41, second paragraph, change:
If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding
parameters.

to:

If the expression that denotes the called function has a type that includes a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding
paramesters, taking the type of each parameter to be the unqualified version of its declared type.

Page 56 SC22/WG14 Defect Report #102

Defect Report #102
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg9:

Subclause 6.5 Constraints says:
If an identifier has no linkage, there shall be no more than one declaration of the identifier (in
a declarator or type specifier) with the same scope and in the same name space, except for tags
as specified in 6.5.2.3.

Subclause 6.5.2.3, Semantics section says:
Subsequent declarations [of a tag] in the same scope shall omit the bracketed list.

Given that one of the above two rules appears in a Constraints section, while the other appears in a
Semantics section, it is ambiguous whether or not diagnostics are strictly required in the following cases
(in which more than one defining declaration of each tag appears within a single scope):

void example ()

{
struct S { int member; };
struct S { int member; }; /* diagnostic required? */

union U { int member; };
union U { int member; }; /* diagnostic required? */

enum E { member };
enum E { member }; /* diagnostic required? */

}

Response

A diagnostic is required for the struct, union, and enum redeclarations indicated in the question.
Subclause 6.5 indicates that there must be a diagnostic “except for tags as specified in 6.5.2.3.” In subclause
6.5.2.3, the specified exception is for subsequent declarations that omit the bracketed list.

See also the response to Defect Report #017, Question 3.

Defect Report #103 SC22/WG14 Page 57

Defect Report #103
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect report #rfg10:
According to subclause 6.5:

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer.

Note that this rule appears in a Semantics section, so it would seem that comforming implementations are
permitted but not strictly required to produce diagnostics for violations of this rule.

Anyway, my interpretation of the above rule is that conforming implementations are permitted (and even
encouraged it would seem) to issue diagnostics for code such as the following, in which formal parameters

for functions (which, by definition, have no linkage) are declared to have incomplete types:
typedef int AT[];

void examplel (int arg[]): /* diagnostic permitted/encouraged? */
void example2 (AT arg):; /* diagnostic permitted/encouraged? */

1 believe that subclause 6.5 needs to be reworded so as to clarify that code such as that shown above is
perfectly valid, and that conforming implementations should not reject such code out of hand.

Response
The types of the parameters are rewritten, as in subclause 6.7.1 via subclause 6.5.4.3. No incomplete object
types are involved.

Page 58 SC22/WG14 Defect Report #104

Defect Report #104
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect report #rfgl1:
According to subclause 6.5:

If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer.

It would appear that the above rule effectly renders the following code not strictly conforming (because this
code violates the above rule):

typedef struct incomplete S ST;

typedef union incomplete U UT;

void examplel (ST arg); /* diagnostic permitted/encouraged? */

void example2 (UT arg):; /* diagnostic permitted/encouraged? */

I have noted however that many/most/all “conforming” implementations do in fact accept code such as that
shown above (without producing any diagnostics).

Is it the intention of the Committee that code such as that shown above should be considered to be strictly
conforming? If so, then some change to the wording now present in subclause 6.5 is in order (to allow for
such cases).

Response
See Defect Report #084.

Defect Report #105 SC22/WG14 Page 59

Defect Report #1035
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfgl2:
Subclause 6.5 says (in its Constraints section):
All declarations in the same scope that refer to the same object or function shall specify
compatible types. :
However in subclause 6.1.2.6 we have the following rule:
All declarations that refer to the same object or function shall have compatible type; otherwise
the behavior is undefined.
There is a conflict between the meaning of these two rules. The former rule indicates declaring something
in two or more incompatible ways (in a given scope) must cause a diagnostic, while the latter rule indicates
that doing the exact same thing may result in undefined behavior (i.e. possibly silent acceptance of the code
by the implementation). (Note that this same issue was raised previously in the C Information Bulletin #1,
RFI #17, question #3. While the response to that question indicated that no change was needed, a change
is clearly need in order to resolve this ambiguity.)
Furthermore, the use of the term “refer to” in both of these rules seems both unnecessary and potentially
confusing. Why not just talk instead about declarations “declaring” things, rather than “referring to” those
things?
To eliminate the first problem I would suggest that the rules quoted above from subclause 6.1.2.6 should
be clarified as follows:
If any pair of declarations of the same object or function which appear in different scopes declare
the object or function in question to have two different incompatible types, the behavior is
undefined.
(Actually the rule regarding declaration compatability which now appears in subclause 6.1.2.6 seems
entirely misplaced anyway. Shouldn’t it just be taken out of subclause 6.1.2.6 and moved to the subclause
on declarations, i.e. subclause 6.5?)

Response
This error was corrected in response to Defect Report #017, Question 3.

Page 60 SC22/WG14 Defect Report #106
Defect Report #106

Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect report #rfg13:
Subclause 6.2.2.2 says:
The (nonexistent) value of a void expression (an expression that has type void) shall not be
used in any way, ... :
There are two separate (but related) problems with this rule.
First, it is not entirely clear what constitutes a “use” of a value (or of an expression). In which lines of the
following code is a type void value actually “used?”
void example(void *pv, int i)

&*pv; a4 4
pv; / ? */
i ? *pv : *pv; /* ? */
*Pv’ *pv; /* ? */

(The answer to this question will determine which of the above lines cause undefined behavior, and which
cause well defined behavior.)

If one or more of the (questionable) lines from the above example are judged by the Committee to result in
well defined behavior, then a second (separate) issue arises. This second issue requires some explaining.

Subclause 6.2.2.1 contains the following rules:
An lvalue is an expression (with an object type or an incomplete type other than void) ...

Except when it is the operand of the sizeo£ operator, the unary & operator, the ++ operator,
the —- operator, or the left operand of the . operator or an assignment operator, an lvalue that
does not have array type is converted to the value stored in the designated object (and is no
longer an lvalue)... If the lvalue has an incomplete type and does not have array type, the
behavior is undefined.

Note that the final rule (specifying a condition under which undefined behavior arises) seems, based upon
the context, to only apply to those cases in which “...an lvalue that does not have an array type is converted
to the value...” More specifically, it appears that undefined behavior is not necessarily produced for
non-lvalue expressions (appearing in the indicated contexts).
Furthermore, it should be noted that the definition of an lvalue (quoted above) does not include all void
types. Rather, it only includes the void type.
The result is that the indicated lines in following example would seem to yield well defined behavior (or at
least they will yield well defined behavior if the Committee decides that their unqualified counterparts do),
however I suspect that this may not have been what the Committee intended.
void example (const void *pcv, volatile void *pvv, int i)

{

&*pcv; /* 2 */
pcv; / 2 */
i ? *pcv : *pcv; /* ? x/
*pcv, *pcv; /* 2 */
&*pvv; /* 2 %/
pvv; / 2 %/
i ? *pvv : *pvv; /* 2 %/
*pvv, *pvv; /* 7 */

Defect Report #106 SC22/WG14 Page 61

In summary, I would ask that the Committee comment upon and/or clarify the behavior produced by each
of the examples shown herein. Separately, I would request that the Committee make changes in the existing
C Standard in order to make the rules applicable to such cases more readily apparent.

Response

In the first function called example, the expression statement & *pv is dealt with in Defect Report #012.
The remaining three statements are well formed. See the last sentence of the cited reference and also
subclause 6.6.3.

In the second function called example, the expression statements &*pcv and & *pvv are dealt with in
Defect Report #012. The remaining six statements are well formed. The restrictions given in subclause 6.5.3
apply to object types, not incomplete types.

Page 62 SC22/WG14 Defect Report #107

Defect Report #107
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSUI/ISO C Defect report #rfg14:

Subclause 7.2.1.1 (Synopsis) says:

#include <assert.h>

void assert (int expression);

This synopsis raises several related questions.

a) May a strictly conforming program contain code which includes an invocation of the assexrt macro for
an expression whose type is not directly convertible to type int? (See examples below.)

b) Must a conforming implementation issue diagnostics for any and all attempts to invoke the assezt
macro for an expression having some type which is not directly convertible to type int?

Examples:

#include <assert.h>

char *cp;
void (*£fp) ():
struct S { int member; } obj;

void example ()
{
assert (cp): /* conforming code? diagnostic required? */
assert (fp): /* conforming code? diagnostic required? */
assert (obj); /* conforming code? diagnostic required? */
}
¢) Must a conforming implementation convert the value yielded by the expression given in an invocation
of the assert macro to type int before checking to see if it compares equal to zero?
Example:
#include <assert.h>

void example ()
{

assert (0.1); /* must this casue an abort? must it NOT? */
}

Response

a) The definition of assexrt depends on the NDEBUG macro. The Synopsis provides information on how
an implementation may use the parameter. If NDEBUG is defined as a macro, the parameter is not used and
hence cannot cause undefined behavior. If NDEBUG is not defined as a macro, the implementation may rely
on the parameter having type int. Passing anon-int argument in such a context will render the translation
unit not strictly conforming.

b) If NDEBUG is defined as a macro, the parameter is not used and no diagnostic should occur. Otherwise,
a violation of this requirement results in undefined behavior, which does not require a diagnostic.

¢) No.

Defect Report #108 SC22/WG14 Page 63

Defect Report #108
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfgl5:
Subclause 7.1.3 lists the set of reserved identifiers, but this list does not include keywords (subclause 6.1.1).

Subclause 6.1.1 says (in a Semantics section):

The above tokens (entirely in lower-case) are reserved (in translation phases 7 and 8) for use
as keywords, and shall not be used otherwise.

Based upon the above named sections of the C Standard, I am forced to conclude that the following code
is strictly conforming. Is this a correct conclusion?

$#define double void

#include <math.h>

#undef double

void example (double dl, double d2)
{
dl = acos (d2);
}
My impression is that few (if any) existing implementations now accept such code. I am therefore inclined
to believe that the Committee’s true intentions were that all keywords (as listed in subclause 6.1.1) should
be considered to be reserved identifiers, at least during translation phase 4, and at least while processing
#include directives which name standard include files provided by the implementation (as listed in
subclause 7.1.2).
I believe that the proper way to address this problem would be to add another stipulation (regarding reserved
identifiers) to subclause 7.1.2.1. This additional stipulation might read as follows:
If, during inclusion of any one of the standard headers listed in the preceeding section (during
translation phase 4) any one of the keywords listed in subclause 6.1.1 is defined as a
preprocessor macro, the behavior is undefined.

Response
This program’s behavior is undefined because of the restriction on inclusion of standard headers in subclause
7.1.2:
The program shall not have any macros with names lexically identical to keywords currently
defined prior to the inclusion.

The Committee’s intention was indeed to otherwise allow macros to mask keywords.

Page 64 SC22/WG14 Defect Report #109

Defect Report #109
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

[Question was revised in Jun 94.]
ANSI/ISO C Defect Report #rfg16:
Does the C Standard draw any significant distinction between “undefined values” and “undefined behav-
ior?” (It appears that it does, but if it does, that fact is not always apparent.)
Justto give two examples which, it would appear, involve the generation (in a running program) of undefined
values (as opposed to totally undefined behavior at either compile-time or link-time or run-time) I provide
the following two citations.
Subclause 6.3.8 Relational operators:
If the objects pointed to are not members of the same aggregate or union object, the result is
undefined,...

(Emphasis added.)
Subclause 7.5.2.1 The acos function:
A domain error occurs for arguments not in the range [-1,+1].

The issue of “undefined values” versus “undefined behavior” has great significance and importance to
people doing compiler testing. It is generally accepted that the C Standard’s use of the term “undefined
behavior” is meant to imply that absolutely anything can happen at any time, e.g. at compile-time, at
link-time, or at run-time. Thus, people testing compilers must either totally avoid writing test cases which
involve any kind of “undefined behavior” or else they must treat any such test cases which they do write as
strictly “quality of implementation” tests which may validly cause errors at compile-time, at link-time, or
at run-time.

If however the C Standard recognizes the separate existence of “undefined values” (whose mere creation
does not involve wholly “undefined behavior™) then a person doing compiler testing could write a test case
such as the following, and he/she could also expect (or possibly demand) that a conforming implementation
should, at the very least, compile this code (and possibly also allow it to execute) without “failure.”

int arrayl[5]:;

int array2[5]:;

int *pl = &arrayl[0]:

int *p2 = &array2[0];

int foo()
{
int i;
i= (pl > p2); /* Must this be "successfully translated"? */
1/0; /* Must this be "successfully translated"? */
return O0;
}

So the bottom line question is this: Must the above code be “successfully translated” (whatever that means)?
(See the footnote attached to subclause 5.1.1.3.)

Response

The C Standard uses the term “indeterminately valued” not “undefined value.” Use of an indeterminate
valued object results in undefined behavior.

The footnote to subclause 5.1.1.3 points out that an implementation is free to produce any number of
diagnostics as long as a valid program is still correctly translated.

If an expression whose evaulation would result in undefined behavior appears in a context where a constant
expression is required, the containing program is not strictly conforming. Furthermore, if every possible

Defect Report #109 SC22/WG14 Page 65

execution of a given program would result in undefined behavior, the given program is not strictly
conforming.

A conforming implementation must not fail to translate a strictly conforming program simply because some
possible execution of that program would result in undefined behavior. Because £oo might never be called,
the example given must be successfully translated by a conforming implementation.

Page 66 SC22/WG14 Defect Report #110

Defect Report #110
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfgl7:

Subject: Formal parameters having array-of-non-object types.

a) For which (if any) of the following function declarations and definitions is a diagnostic required?

b) Which (if any) of the following function declarations and definitions would, if present in a translation
unit, render the translation unit not strictly conforming?

typedef wvoid VT;

typedef struct incomplete_ S ST;

typedef union incomplete U UT;

typedef int AT[]:;

typedef void (FT) ()

void declarationl (VT argl[]l):; /* 2 */
void declaration2 (ST argl[l): /* 2 %/
void declaration3 (UT argl[]l): /* ? %/
void declarationd4 (AT axgl[]): /* 2?2 */
void declaration5 (FT argl[]l): /* ? */
void definitionl (VT axg[]) { } /* ? %/
void definition2 (ST argl[]) { } /* 2 %/
void definition3 (UT argl]) { } /* ? %/
void definition4 (AT arg[]) { } /* ? *x/
void definition5 (FT arg[]) { } /* ? %/

Footnote: I have heard rumors that the issue of the exact timing of the decay of a formal parameter’s array
type into a pointer type (relative to the timing of the necessary check that the type of the formal parameter
is in fact a valid type) was determined explicitly to be undefined by the Committee, but there is no record
of this in the CIB #1 document I have. [CIB #1 is X3J11’s earlier attempt to respond to Defect Reports
#001-#035, then called Requests for Interpretation #001-#035.]

References: CIB #1, RFI #13, question #1; CIB #1, RFI #17, question #14; CIB #1, RFI #17, question #15

Response

No diagnostics are required for any of the above declarations. Each of the function declarations and
definitions would render the translation unit not strictly conforming. See also Defect Report #047.

Defect Report #111 SC22/WG14 Page 67

Defect Report #111
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg18:

Subject: Conversion of pointer-to-qualified type values to type (void*) values.

Does the following code involve usage which requires a diagnostic from a standard conforming implemen-
tation? :

const char *ccp;

void *vp;
void test ()
{
vp = ccp; /* diagnostic required? */
}
With respect to this example, the following quotations are relevant.
Subclause 6.2.2.3:

A pointer to void may be converted to or from a pointer to any incomplete or object type.

Subclause 6.3.16.1 (Constraints):
One of the following shall hold:

— both operands are pointers to qualified or unqualified versions of compatible types, and the
type pointed to by the left has all the qualifiers of the type pointed to by the right;

— one operand is a pointer to an object or incomplete fype and the other is a pointer to a qualified
or unqualified version of void, and the type pointed to by the left has all the qualifiers of the
type pointed to by the right; ...

The rule specified in subclause 6.2.2.3 (and quoted above) makes it unclear whether a value of some
pointer-to-qualified-object type may be first implicitly converted to type (void*) and then assigned to a
type (void#*) variable, or whether such implicit conversion only takes place as an integral part of an
otherwise valid assignment operation.

If the former interpretation of subclause 6.2.2.3 is correct, then the above code example is valid, and no
diagnostic is required. If, however, the latter interpretation is the correct one, then the code example shown
above fails to meet the constraints of subclause 6.3.16.1, and (thus) a diagnostic is required.

Response
The constraint in subclause 6.3.16.1 takes precedence over subclause 6.2.2.3; therefore a diagnostic is
required. Note that the above quote from subclause 6.2.2.3 is incomplete and taken out of context.

Page 68 SC22/WG14 Defect Report #112

Defect Report #112
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg19:

Subject: Null pointer constants and relational comparisons.

a) Does the following code involve usage which requires a diagnostic from a conforming implementation?
b) Does the following code involve usage which renders the code itself not strictly conforming?

void test (void #*vp)
{
(vp > (void¥*)0); /* ? */
}
Background:
Subclause 6.2.2.3:
An integral constant expression with the value 0, or such an expression cast to type void *,
is called a null pointer constant. If a null pointer constant is assigned to or compared for equality
to a pointer, the constant is converted to a pointer of that type.

This last paragraph of subclause 6.2.2.3 seems to suggest that zero-valued integral constant expressions
which are cast to void * (and then called null pointer constants) can only be used in assignments and/or
equality comparisons, but not in relational comparisons.

(It was probably the Committee’s intent to permit such expression to be used in all ways, and in all contexts
where any other kind of void * non-lvalued expressions can be used, but the current wording of subclause
6.2.2.3 does not make that fact altogether apparent and unambiguous.)

Response
The code does not require a diagnostic but has undefined behavior, so it renders the translation unit not
strictly conforming. Subclause 6.3.8 makes clear that this behavior is undefined.

Defect Report #113 SC22/WG14 Page 69

Defect Report #113
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect report #rfg20:

Subject: Return expressions in functions declared to return qualified void.

a) Does the following code involve usage which requires a diagnostic from a conforming implementation?
b) Does the following code involve usage which renders the code itself not strictly conforming?

volatile void func0 (volatile wvoid *vvp)

{
return *vvp; /* 2 %/
}

const void funcl (const void *cvp)

{
return *cvp; /* ? */
}
Background:
Subclause 6.6.6.4 (Constraints):
A return statement with an expression shall not appear in a function whose return type is
void.
Note that this constraint doesn’t say anything about functions declared to return some qualified version of
the void type.

1 believe that it was probably the Committee’s true intent to require a diagnostic for any attempt to specify
an expression in a return statement within any function declared to return any qualified or unqualified
version of the void type (and indeed, many existing implementations do already issue diagnostics for usage
such as that shown in the example above). Thus, it would seem appropriate for the Committee to amend
the above quoted constraint (from subclause 6.6.6.4) to read:

A return statement with an expression shall not appear in a function whose return type is a

void type.
Response
a) Yes, a diagnostic is required.
b) Yes, this renders the program not strictly conforming code.
A qualified void function return type is disallowed by the constraints of subclause 6.7.1:

The return type from a function shall be void or an object type other than array.

The constraint does not say “a void type” and thus void must not be qualified when used as a function
return type. Since a qualified void return type is already invalid, there is no need for the additional
constraint on the return statement (subclause 6.6.6.4).

Page 70 SC22/WG14 Defect Report #114

Defect Report #114
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg21:
Subject: Initialization of multi-dimensional chax array objects.
a) Does the following code involve usage which requires a diagnostic from a conforming implementation?
b) Does the following code involve usage which renders the code itself not strictly conforming?
char array2[2][5] = { “defghi" }; /* ? */
Background:
Subclause 6.5.7 (Constraints):
There shall be no more initializers in an initializer list than there are objects to be initialized.

Subclause 6.5.7:
An array of character type may be initialized by a character string literal, optionally enclosed
in braces.
Subclause 6.5.7 (examples):
... It defines a three-dimensional array object; ...
It appears that many existing compilers seem to feel the the code example shown above violates the “no
more initializers” constraint (quoted above) which is given in subclause 6.5.7.

Note however that the entire two-dimensional array object being initialized consists of exactly 2*5 = 10
individual char objects, whereas the initializer itself only consists of 7 individual char values (if one
counts the terminating null byte). Thus, it would appear that these existing implementations are in fact wrong
in rejecting the above code, and that such usage is in fact strictly conforming.

I ask the Committee to unambiguously either confirm or refute that position.

Response
a) Yes, a diagnostic is required.
b) Yes, this renders the program not strictly conforming.
Note that initialization of an array of character type by a string literal is a special case, described in subclause
6.5.7.
The phrases “two-dimensional array” and “three-dimensional array” are merely used for convenience. The
Semantics section on array declarators (subclause 6.5.4.2) and the syntax specification in the section on
declarations (subclause 6.5.4) clearly show that array types must be declared with one index. Thus, an array
which has two indices must be considered an “array of array of type.”
Since this is the case, the Semantics description for initializing aggregates and subaggregates in subclause
6.5.7 applies. This description states
If the initializer of a subaggregate or the first member of the contained union begins with a left
brace, the initialiers enclosed by that brace and its matching right brace initialize the members
of the subaggregate or the first member of the contained union.

Thus, in the example, the string must be applied only to the first element of the two-element array (which
is an array of 5 characters). Since the initializer contains 6 characters, it violates the constraint of the same
section which states:

There shall be no more initializers in an initializer list than there are objects to be initialized.

Defect Report #115 SC22/WG14 Page 71

Defect Report #115
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg22:
Subject: Member declarators as declarators.
a) Does the following code involve usage which requires a diagnostic from a conforming implementation?
b) Does the following code involve usage which renders the code itself not strictly conforming?
struct { int mbr; }; /* ? %/
union { int mbr; }; /* ? */
Background:
Subclause 6.5 (Constraints):
A declaration shall declare at least a declarator, a tag, or the members of an enumeration.
It is not entirely clear what it means to “declare” a declarator. Neither is it clear whether or not a declarator
for a member should be considered to satisfy the constraint quoted above. (Many existing implementations
behave as if member declarators do not satisfy the constraint.)
Response

The Committee agrees that the quoted constraint can be read either way. Hence, a diagnostic is not required,
but a program that uses such a form has undefined behavior. In the case of an aggregate, the intent was to
require a tag or declarator for the aggregate itself. Thus, it is not unreasonable to issue a diagnostic for the
given example. However, since the constraint can be read either way, an implementation could actually
compile such a case though it is marginally useful at best.

Page 72 SC22/WG14 Defect Report #116

Defect Report #116
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg23:

Subject: Implicit unary & applied to register arrays.

a) Does the following code involve usage which requires a diagnostic from a conforming implementation?
b) Does the following code involve usage which renders the code itself not strictly conforming?

void example ()
{

register int array[5] = 0;

array; /* ? */
array[3]; /* ? %/
array+3; /* ? */
}
Background:
Subclause 6.5.1 (footnotes):
The implementation may treat any register declaration simply as an auto declaration.
However whether or not addressable storage is actually used, the address of any part of an object
declared with storage-class specifier register may not be computed, either explicitly (by
use of the unary & operator as discussed in 6.3.3.2) or implicitly (by converting an array name
to a pointer as discussed in 6.2.2.1). Thus the only operator that can be applied to an array
declared with storage-class specifier registeris sizeof.
This footnote, while offering guidance, doesn’t really answer the question of whether or not an implemen-
tation is required to issue a diagnostic for the case where the address of a register array is implicitly taken
(as discussed in subclause 6.2.2.1). Nor does it definitively answer the question of whether such code should
be considerd to be strictly conforming or not.

(Reference: CIB #1, RFI #17, question #6.)

Response

a) No, a diagnostic is not required.

b) Yes, this renders the program not strictly conforming.

Defect Report #117 SC22/WG14 Page 73

Defect Report #117
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg24:
Subject: Abstract semantics, sequence points, and expression evaluation.
Does the following code involve usage which renders the code itself not strictly conforming?

int example ()

{
int x1 = 2, x2

1, x temp;

return (x temp = x1, x temp) + (x_temp = x2, x temp);

}
Background:
Subclause 5.1.2.3:

The semantic descriptions in this International Standard describe the behavior of an abstract
machine in which issues of optimization are irrelevant.

Subclause 6.3:

Between the previous and next sequence point an object shall have its stored value modified at
most once by the evaluation of an expression.

Although it is quite clear that the above quoted “modified at most once” rule was intended to render certain
programs “not strictly conforming,” there is an unfortunate amount of ambiguity built into the current
wording of that rule.

Quite simply, while the “modified at most once” rule is obviously telling us what a “strictly conforming
program” must not do between two particular points in time, it is altogether less than clear what events
and/or actions (exactly) are associated with these two points in time. Additionally, it is also less than clear
(from reading the remainder of the C Standard) what actions and/or events are allowed (or required) to take
place between some pair of sequence points in cases where both members of the pair are part of some large
single expression whose evaluation order is not completely dictated by the C Standard.

Note that despite the assertion given in subclause 5.1.2.3 (and quoted above) the C Standard does not fully
specify the behavior of the “abstract machine,” especially when it comes to the issue of the ordering of
sub-expression evaluation used by the “abstract machine” model.

This fact makes it inherently impossible to precisely determine even just the relative timings of various
events (including the “occurrence” of or the “execution” of or the “evaluation” of sequence points) which
may (or must) occur sometime during the evaluation of a larger containing expression (except in a few cases
involving | | or && or ?: or , operators).

To put it more plainly, if some pair of sequence points will be “reached” (or “evaluated” or “executed”)
during the evaluation of any pair of subexpressions which are themselves operands for some binary operator
(other than the operators | | or && or ?: or ,) then the C Standard’s description of the “abstract machine”
semantics are inadequate to enable us to know either which order these two sequence points will occur in,
or even which other aspects of the evaluation of the overall expression may (or must) occur “between” the
two sequence points.

Thus, it seems that it may also be inherently impossible to know whether or not the prohibition against
multiple modifications of a given variable “between” two consecutive sequence points is (or may be)
violated in such contexts.

Here is a simple example of an expression which illustrates these points:
(x =4, x) + (x =3, x)
In this expression there are two “comma” sequence points; however, nothing in the C Standard gives any

indication as to which of these two may be (or must be) “evaluated” or “reached” first. (Indeed, it would
seem that on a parallel machine of some sort, both points could perhaps be reached simultaneously.) It is

Page 74 SC22/WG14 Defect Report #117

fairly clear however that each of the references to the stored values of x must not be evaluated until their
respective preceeding “comma sequence points” have been “reached” or “evaluated.” Thus, a partial (but
very incomplete) ordering is imposed upon the sequence of events which must occur during the evaluation
of this expression.

For the sake of this example, let us call the leftmost comma in the above expression “Icomma” and call the
rightmost comma “rcomma.” Given this terminology, it would appear that the C Standard permits the
following sequence of events during evaluation of the above expression:

eval (i)

x= (leftmost assignment to x)

lcomma < sequence point

eval (x) (leftmost reference to stored value of x)
eval(j)

x= (rightmost assignment to x)

rcomma < sequence point

eval (x) (rightmost reference to stored value of x)
+

Note that in this (very realistic) example, the stored value of x is never modified more than once between
any pair of sequence points. Given that the ordering described above is both a perfectly plausible and also
aperfectly permissible ordering for the evaluation of the expression in question, and given that this particular
permissible ordering of events does not violate the “modified at most once” rule (quoted earlier) it therefore
appears that the expression in question may in fact be interpreted as being “strictly conforming,” and that
such expressions may appear within “strictly conforming” programs.

1 would like the Committee to either confirm or reject this view, and to provide some commentary explaining
that confirmation or rejection.

Response

The C Standard does not forbid an implementation from interleaving the subexpressions in the given
example as specified above. Similarly, there is no requirement that an implementation use this particular
interleaving. It is irrelevant that one particular interleaving yields code that properly delimits multiple
modifications of the same object with sequence points. Any program that depends on this particular
interleaving is depending on unspecified behavior, and is therefore not strictly conforming.

Defect Report #118 SC22/WG14 Page 75

Defect Report #118
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg25:
Subject; Completion point for enumerated types.
Are diagnostics required for the following code examples?
enum E1 { enumeratorl = sizeof (enum El) };
enum E2 { enumerator2 sizeof (enum E2 *) };
(Just read on! This isn’t just the same old question again!)
Background:
Subclause 6.3.3.4 (Constraints):
The sizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, ...
Subclause 6.5.2.1 (Semantics):
The [structure or union] type is incomplete until after the } that terminates the list [of member
declarations].”
(Bracketed portions added for clarity.)
CIB #1, RFI #13, response to question #5:
For the example:
enum e { a = sizeof(enum e) };

the relevant citations are subclause 6.1.2.1 starting on page 21, line 39, indicating that the scope
of the first e begins at the {, and subclause 6.5.2.2, page 62, line 20, which attributes meaning
toalater enum e only ifthis use appears in a subsequent declaration. By subsequent, we mean
“after the }.” Because in this case, the second enum e is not in a subsequent declaration, and
no other wording in the C Standard addresses the meaning, the C Standard has left this example
in the category of undefined behavior.

Please note that the above response to RFI #13, question #5 has totally failed to solve the real problem with
the current wording of the C Standard.

The real problem is that (unlike the case for structure and union type definitions) nothing in the C Standard
presently indicates where (or whether) an enumerated type becomes “completed.”

This is a very serious flaw in the current C Standard. Given that the C Standard currently contains no
statement(s) which specify where (or whether) an enumerated type becomes a “completed” type, any and
all programs which use any enumerated type in any context requiring a completed type are, by definition,
not strictly conforming. (This will come as quite a shock to a number of C programmers!)

I feel that the Committee must resolve this serious problem as soon as possible. The only plausible way to
do that is to add a statement to subclause 6.5.2.2 which will specify the point at which an enum type become
a “completed” type.

Using the statement currently given in subclause 6.5.2.1 (relating to struct and union types) as a guide, it
would appear that subclause 6.5.2.2 should be amended to include the following new semantic rule:

The enum type is incomplete until after the } that terminates the list of enumerators.

Some such addition is obviously necessary in order to render enum types usable as complete types within
strictly conforming programs.

Note however that such a clarification would have the additional (beneficial?) side effect of rendering the
following declaration subject to a mandatory diagnostic (due to the violation of the constraints for the
operand of the sizeo£ operator):

enum E1 { enumeratorl = sizeof (enum El) };

Page 76 SC22/WG14 Defect Report #118

Even after such a clarification however, the status of:

enum E2 { enumerator2 = sizeof (enum E2 %) };

is still questionable at best, and the proper interpretation for such a case should, I believe, still be drawn
from the response given to RFI #13, question #5; i.e., such examples should be viewed as involving
undefined behavior.

Response

No, diagnostics are not required. The following Correction clarifies the intent. Note than an implementation
may complete the type before the }.

Correction
In subclause 6.5.2.2, page 61, append to Semantics:
The enumerated type is complete at the } that terminates the list of enumerator declarations.

Defect Report #119 SC22/WG14 Page 77

Defect Report #119
Submission Daee: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #fg26:

Subject: Initialization of multi-dimensional array objects.

a) Is a diagnostic required for the following declaration?

b) Is the following declaration strictly conforming or not?

static int array[l[l = ({1, 2, 3}, { 4, 5, 6}, {7, 8 9} };

Background:

Subclause 6.5.7 (Semantics):
If an array of unknown size is initialized, its size is determined by the number of initializers
provided for its elements.

Subclause 6.5.7 (Semantics):

If the aggregate contains members that are aggregates or unions, or if the first member of a
union is an aggregate or union, the rules apply recursively to the subaggregates or contained
unions.

On the basis of the above quoted rules, one might conclude that the code example given above is strictly
conforming. (Many existing implementations seem to disagree, however.)

Response
a) No, a diagnostic is not required. It is a semantic requirement that array elements must be objects, not a
constraint.

b) No, this is undefined behavior. Note that array does not have an array type because its element type is
not an object type; hence subclause 6.5.7 does not apply. See subclause 6.1.2.5.

Page 78 SC22/WG14 Defect Report #120

Defect Report #120
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg27:

Subject: Semantics of assignment to (and initialization of) bit-fields.

a) Is the following program strictly conforming?

b) Must a conforming implementation translate this code into an executable program which prints 3 3?
#include <stdio.h>

struct S { unsigned bit:1; };
struct S objectl = { 3 }; /* 2 */
struct S object2;

int main ()

{
object2.bit = 3; /* 2 */
printf ("%d %d\n", objectl.bit, object2.bit):
return 0;
}
Background:
Subclause 6.3.16.1 (Semantics):

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left operand.

Subclause 6.2.1.2 (Semantics):

When a value with integral type is converted to another integral type, if the value can be
represented by the new type, its value is unchanged.

Unless I’m mistaken, the type of the assignment expression:
object2.bit = 3;
in the above example is type unsigned int. Thus, according to the rules quoted here, the value of 3 is

converted to an unsigned int type value (during this assignment statement) and it is otherwise
unchanged. Then, that value of 3 replaces the previous value of object2.bit.

I believe that the above examples illustrate the point that the C Standard currently fails to adequately describe
the semantics of assignments to (and/or initializations of) bit-fields in cases where the value being assigned
will not actually fit into the bit-field object.

In lieu of any description of the special semantics of assignments to bitfields, it appears to be currently
necessary for both implementors and users to assume that the “normal” assignment semantics apply, but as
you can see from the above examples, such assumptions lead to highly counterintuitive expectations (and
to expectations which fly in the face of actual current common practice).

I believe that the Committee should rectify the current unfortunate situation by adding to subclause 6.3.16.1
(or maybe to subclause 6.2.1.2) some additional new verbage explicitly describing the special semantics of
assignments to bit-fields.

Response

Subclause 6.5.2.1 states “A bit-field is interpreted as an integral type consisting of the specified number of
bits.” Thus the type of objectl.bit and object2.bit can be informally described as unsigned
int : 1. A larger integer is converted to this type according to the rules in subclause 6.2.1.2. Thus the
value 3 is converted to the value 1.

The program is strictly conforming. It prints 1 1.

Defect Report #121 SC22/WG14 Page 79

Defect Report #121
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette

Question

ANSI/ISO C Defect Report #rfg28:
Subject: Conversions of pointer values to integral types.
Subclause 6.3.4 (Semantics):

A pointer may be converted to an integral type. The size of integer required and the result are
implementation-defined. If the space provided is not long enough, the behavior is undefined.

This passage is worded rather ambiguously.
In the first place, it talks about “The size of the integer required....” Required by whom? Required by what?
Ican't tell.
Also, I get the feeling that the way this passage reads, an implementation might permit conversions of
pointers to types char, short, and int (with implementation defined semantics) while disallowing
conversions of pointers to type long! (Of course that would be highly counterintuitive.)
Here is a suggested replacement for the above passage:
The value of any pointer expression whose sizeof, if computed, would be N, may be
converted (via a cast) to any integral type whose sizeo£ is N or greater. The values resulting
from such conversions are implementation-defined.

If an attempt is made to convert (via a cast) the value of a pointer expression whose sizeof,
if computed, would be N, to some integral type whose sizeof is less than N, the behavior is
undefined.

This is simply a more precise (and accurate) way of saying exactly what was (obviously) intended.

Response

The “size required” is that required by the implementation. The words “If the space provided is not long
enough” make it clear that it is the size of the type that is relevant, and means that any type that is at least
as long as the type of the “size required” is also acceptable. The size required need not be related to the
result of sizeof£ applied to the expression.

Page 80 SC22/WG14 Defect Report #122

Defect Report #122
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg29:
Subject: Conversion/widening of bit-fields.
Must the following program print 1 or 0?
#include <stdio.h>

struct S { unsigned bit:1; } object = { 1 };
int main ()

{
printf ("sd\n", ((object.bit - 2) < 0));
return 0;
}
(At least one existing implementations prints 1 while another prints 0.)
Background:
Subclause 6.2.1.1:
A char, a short int, or an int bit-field, or their signed or unsigned varieties, or an
enumeration type, may be used in an expression wherever an int or unsigned int may
be used. If an int can represent all values of the original type, the value is converted to an
int; otherwise it is converted to an unsigned int.

The key phrase here is “the original type.”

In effect, I am asking if the fype of a bit-field is totally independent from its width for the purposes of the
above rule.

If the answer to that question is “yes,” then the value of object .bit must be considered to be an
unsigned int (with a value of 1U). In that case, the value 2 used in the above example must also be
converted to type unsigned int and then the subtraction should be carried out on the two unsigned
int values. The subtraction should then itself yield a value of type unsigned int which is itself (by
definition) >= 0, so it would seem that the C Standard requires the above program to print 0.

Is that correct? If so, perhaps the wording of the above paragraph needs to be improved so as to make the
correct interpretation of these rules more apparent to implementors.

Response
See Defect Report #0135. “The original type” applies to both width and signedness. object .bit promotes
to int, and the program prints 1.

Defect Report #123 SC22/WG14 Page 81

Defect Report #123
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg30:

Subject: “Type categories” and qualified types.
a) Is the following code strictly conforming?
b) Must a conforming implementation correctly translate the following code?

enum E1 { enumeratorl = (const int) 9 }; /* ? %/
enum E2 { enumerator2 = (volatile int) 9 }; /* 2 */
Background:

Subclause 6.5.2.2 (Constraints):

The expression that defines the value of an enumeration constant shall be an integral constant
expression that has a value representable as an int.

Subclause 6.4 (Semantics):
Cast operators in an integral constant expression shall only convert arithmetic types to integral
types, ..

Subclause 6.1.2.5:
The type char, the signed and unsigned integer types, and the enumerated types are collectively
called integral types.

Subclause 6.1.2.5:

Any type so far mentioned mentioned is an unqualified type. Each unqualified type has three
corresponding qualified versions of its type: ... The qualified or unqualified versions of a type
are distinct types that belong to the same type category ...

The problem is with the term “type category.” I have been unable to find any actual definition of this term
in the C Standard. My assumption is that integral types constitute one such “type category,” but it would
be nice to have the Committee’s assurances about this. More specifically, I think that it would be advisable
to add a statement somewhat like the following one just after the first paragraph in subclause 6.1.2.5:
In addition to the partitioning of types into object types, function types, and incomplete types,
each type is also said to belong to some fype category. The type categories are integral types,
floating types, pointer types, structure types, union types, array types, void types, and function
tpes.
Response
a) Yes.
b) Yes.
As stated in subclause 6.5.3, “The properties associated with qualified types are meaningful only for

expressions that are lvalues.” The definition of “type category” is given in subclause 6.1.2.5, in the paragraph
preceding your last citation.

Page 82 SC22/WG14 Defect Report #124

Defect Report #124
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question

ANSI/ISO C Defect Report #rfg31:
Subject: Casts to “a void type" versus casts to “the void type.”
Must a conforming implementation issue a diagnostic for the following code?

void example ()

{
(const volatile wvoid) 0; /* diagnostic required? */

}

Background:
Subclause 6.3.4 (Constraints):

Unless the type name specifies void type, the type name shall specify qualified or unqualified

scalar type and the operand shall have scalar type.
Note that this constraint is not specific about whether a qualified void type is permitted in a cast or not; i.e.
it should say either “a void type” or else say “the void type.”
A quick check of several existing implementations seems to indicate that a majority of implementors have
assumed that any void type (however qualified) is acceptable in a cast. Therefore it would seem prudent for
the Committee to clarify the above quoted rule by changing *“void type” to “a void type.”
Correction
In subclause 6.3.4, page 45, change the paragraph under Constraints:
Unless the type name specifies void type, the type name shall specify qualified or unqualified scalar type
and the operand shall have scalar type.
to:

Unless the type name specifies a void type, the type name shall specify qualified or unqualified scalar type
and the operand shall have scalar type.

—

Defect Report #125 SC22/WG14 Page 83

Defect Report #125
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg32:

Subject: Using things declared as “extern (qualified) void.”

May a conforming implementation fail to correctly translate a translation unit containing the following
declarations? :

extern const void etext;

const void *vp = &etext;

Background:
Defect Report #012 discusses at length the issue of applying unary & to an expression whose type is some
void type. The conclusion of that discussion seem to be that although unary & may not be applied to an
expression having the void type (because such expressions are not lvalues) it is permissible to apply unary
& to an expression whose type is some qualified version of void. The text of the interpretation for Defect
Report #012 even goes so far as to actively recommend the practice of declaring things to be extern and
to have some qualified void type (so that the address may then be taken).
The question raised herein is a different one. Tom Pennello has pointed out the following rule from the
second Semantics paragraph of subclause 6.7:
If an identifier declared with external linkage is used in an expression (other than as part of the
operand of a sizeof operator), somewhere in the entire program there shall be exactly one
external definition for the identifier; ...

Thus, as Tom has noted, applying unary & to an entity declared to be both extexrn and of some qualified
void type is a “use” of that entity which would necessarily force you to supply a definition of that entity,
somewhere in the program. But as Tom has further noted, there is simply no way to accomplish that (in a
strictly conforming program) because of the following rule (given in subclause 6.5):

All declarations ... that refer to the same object or function shall specify compatible types.

Thus, if you either define or fail to define etext, it would appear that the behavior is undefined. Is this a
correct interpretation?

(Footnote: It would appear that a strictly conforming program may contain a mere declaration of an extern
entity whose type is any qualified or unqualified void type, but that any use of such an entity within an
expression, other than within a sizeo£ expression, renders the program not strictly conforming.)
Response

Applying & to an identifier of type const void has undefined behavior. Thus an implementation can
define any semantics it wishes. A strictly conforming program cannot contain such a construct.

Page 84 SC22/WG14 Defect Report #126
Defect Report #126

Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg33:
Subject: What does “synonym” mean with respect to typedef names?
Given the declarations:
typedef int *IP;
const IP object;
what is the type of object?
Background:
Subclause 6.5.6 says:
A typede£ declaration does not introduce a new type, only a synonym for the type so
specified.
At least one person has wondered aloud about the true meaning of this rule.

Note that if the name IP in the above example is expanded as if it were a mere macro, then the type of
object would be (const int *).But essentially all existing implementations act as if there were
some sort of magical parsing precedence (or extra parenthesization) which causes the IP (when used in the
second line of the example above) to be treated as a single type, to which the const qualifier is applied
(after the fact) thus resulting in object having type (int * const) rather than (const int *).
While this treatment is well known to experienced implementors and users, it appears that the C Standard
doesn’t really explain it very well (or very precisely). I consider this to be a defect in the C Standard, worthy
of the Committee’s attention.

Response

A typedef introduces a name for a type. This is not a macro, and the type must indeed be “magically
parenthesized.” In

typedef int *ip;

ip x;

const ip y;

the type of x is pointer to int, and the type of y is const pointer to int. This is exactly analogous to
the fact that h

ip x1, x2;

declares both x1 and x2 as having the type pointer to int, and is not to be read as

int *x1, x2;

Defect Report #127 SC22/WG14 Page 85

Defect Report #127
Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette

Question

ANSI/ISO C Defect Report #rfg34:
Subject: Composite type of an enumerated type and an integral type.
Given the declarations:
enum E { red, green, blue } object;
int object;

and given an implementation for which the type int is considered to be compatible with the type enum
E, what is the composite type of object at the end of the translation unit which contains the above
declarations?
Background:
Subclause 6.5.2.2 says:
Each enumerated type shall be compatible with an integer type; the choice of type
implementation-defined.
Subclause 6.1.2.6 says:
A composite type can be constructed from two types that are compatible; ...

For an identifier with external or internal linkage declared in the same scope as another
declaration for that identifier, the type of the identifier becomes the composite type.

Response
See Defect Report #013, Question 3. There is no requirement that the composite type be unique, and either
of the types could be chosen as the composite type.

Page 86 SC22/WG14 Defect Report #128
Defect Report #128

Submission Date: 03 Dec 93
Submittor: WG14
Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg35:
Subject: Editorial issue relating to tag declarations in type specifiers.
Given the code:
void example ()
{
{
struct TAG {int i};

}

{
struct TAG object; /* line 7 */

}
}
Does line 7 violate the semantic rule given at the very end of the semantics sub-part of subclause 6.5, i.e.,
“If an identifier for an object is declared with no linkage, the type for the object shall be complete by the
end of its declarator, ...””?
In other words, does struct TAG represent an incomplete type on line 7? (I believe that the answer is
“yes,” but the C Standard fails to make that entirely clear.)
Background:
Subclause 6.5.2.3 says:
If a type specifier of the form

struct-or-union identifier

occurs prior to the declaration that defines the content, the structure or union is an incomplete
type. It declares a tag that specifies a type that may be used only when the size of an object of
the specified type is not needed.

These statements fail to take full account of scoping issues. The statements quoted above should be rephrased
to take scope issues into account, perhaps as follows:

If a type specifier of the form
Struct-or-union identifier

occurs within a given scope prior to another declaration (in the same scope) of the same identifier
(which also declares the identifier to be a struct or union tag) or if such a type specifier occurs
atsome point within a given scope where no prior declaration of the same tag identifier is visible,
then the type specifier declares the identifier to be a structure or union tag for an incomplete
structure or union type (respectively). The type so declared may only be used when the size of
an object of the specified type is not needed.

Response

Yes, line 7 violates the semantic rule cited. Yes, struct TAG represents an incomplete type. The
application of rules such as scope rules need not be restated at each relevant point in the C Standard.

Defect Report #129 SC22/WG14 Page 87
Defect Report #129

Submission Date: 03 Dec 93

Submittor: WG14

Source: Ron Guilmette
Question
ANSI/ISO C Defect Report #rfg36:
Subject: Tags and name spaces.
Should (or must) a conforming implementation correctly translate the following code?
void *vp;
struct TAG { int i; };

void £ ()

{
enum TAG { enumerator };

(struct TAG ¥*) vp;
}

Background:

Subclause 6.1.2.3 says:

Thus, there are separate name spaces for various categories of identifiers, as follows:

— the tags of structures, unions, and enumerations (disambiguated by following any of the

keywords st ruct, union, or enum);...

A footnote for this subclause states that “There is only one name space for tags even though three are

possible.”

Given that this statement is only a footnote, and given that there are neither any specific constraints nor any
specific semantic rules violated by the code shown above, it appears that a conforming implementation is
actually required (by the C Standard, as now written) to accept the code shown above (even though this
was probably not the intent of the Committee). It also seems that the code shown above is strictly

conforming.

If the Committee actually intended that such code should be considered to be invalid, then it seems necessary
to amend the C Standard to make it say that. (Actually, I think that a new constraint is in order here.)

Response

No change is necessary, because subclause 6.1.2.3 (second item) states that name spaces of tags are shared.
Therefore the inner enum TAG hides the outer struct TAG, and therefore the cast (stxuct TAG *)

attempts to declare a new struct TAG, thus violating a constraint in subclause 6.5.
A conforming implementation need not translate the given code.

Page 88 SC22/WG14 Defect Report #130

Defect Report #130
Submission Date: 03 Dec 93
Submittor: WG14
Source: Sheng Yu
Question

Under subclause 7.9.2 Streams, page 125, lines 26-28:
Data read in from a text stream will necessarily compare equal to the data that were earlier
written out to the stream only if: the data consist only of printable characters and the control
characters horizontal tab and new-line; ...

Writing on a text stream might not cause characters to be overwritten exactly one for one, especially on
fixed-length record based file systems. If the file is not truncated beyond the point where the data is written,
there is no sure way to predict what will be read in after writing in the middle of a text stream because the
data might just replace a character, a line, etc. Consider the following example:

#include <stdio.h>
#include <string.h>
int buf[99];
unsigned int len;
int main()
{
FILE *f = fopen("test data", "w");
fwrite ("abc\ndef\n", 8, 1, f£f);
fseek (£, 0, SEEK_SET);
fwrite ("UWXY2", 5, 1, £):
fseek (£, 0, SEEK_SET);
len = fread(buf, 1, 10, f£):;
if (len == 8 && !memcmp (buf, "UWXYZef\n"))
: /* Case 1: OK, acts like binary */
else if (len == 5 && !memcmp (buf, "UWXYzZ", 5))
f /* Case 2: OK to truncate after write */
else if (len > 5 && !memcmp(buf, "UWXYZ", 5))
printf("len = %u, buf = %s\n", len, buf);
/* Case 3: Is this nonstandard? */
else
printf ("This is obviously nonstandard.\n");
}
Can a conforming implemetation translate the above program and produce the following output (Case 3)?

len = 9, buf = UWXYZdef

Response

Yes, a conforming implementation may produce the “Case 3” output. However, there may be cases in some
conforming implementations in addition to those shown in your example, so the printout “obviously
nonstandard” may be inappropriate.

Defect Report #131 SC22/WG14 Page 89

Defect Report #131
Submission Date: 03 Dec 93
Submittor: WG14
Source: Douglas Gwyn
Question

I've discovered an apparent bug in the C Standard. The code snippet:

struct {const int a[5]; } sl, s2;

void f£(void) {sl = s2; }

can be contained in a strictly conforming program, which runs counter to my understanding of the meaning
of “const-qualification.” That occurs because, according to subclause 6.5.3, the member s1.a is not
const-qualified and thus slips past the modifiable-lvalue definition in subclause 6.2.2.1. Subclause 6.5.3
says that the elements of the array s1 . a are const-qualified, not the array itself, and I can find no reasonable
way to construe s1.a[3], for example, as a “member” of s1; its only member is 81.a, as I see it.
Apparently, the C Standard does not define the term “member,” except implicitly through its use in subclause
6.3.2.3 Semantics, which says that s1 . a is the member (on which the subscripting operator can operate
to extract an element, but the element is not a member of the structure.)

What I think is desirable would be a required diagnostic for this example, as it should be considered to
violate the constraint in subclause 6.3.16 that requires the left operand of an assignment operator to be a
modifiable lvalue.

Relevant citations:

Subclause 6.2.2.1 Lvalues and function designators:
A modifiable Ivalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member of all contained structures or unions) with a
const-qualified type.

Subclause 6.3.16 Assignment operators:
Constraints:
An assignment operator shall have a modifiable lvalue as its left operand.

Subclause 6.5.3 Type qualifiers:

If the specification of an array type includes any type qualifiers, the element type is so-qualified,
not the array type. If the specification of a function type includes any type qualifiers, the
behavior is undefined.

Response

The example code is not strictly conforming, because some objects (the elements of the array s1.a) are
being modified through use of an Ivalue (s1) with non-const-qualified type, which according to subclause
6.5.3 results in undefined behavior.

However, a diagnostic is indeed desired here.
Correction

In subclause 6.2.2.1, page 36, change the parenthetic remark in the final sentence of the first paragraph:
(including, recursively, any member of all contained structures or unions) '
to:

(including, recursively, any member or element of all contained aggregates or unions)

Page 90 SC22/WG14 Defect Report #132

Defect Report #132
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Can undefined behavior occur at translation time, or only at run time? If the former, then how does one
distinguish the two cases in the C Standard?

Consider the translation unit:
/* No headers included */
int checkup()

{

/* Case 1 */

if (0)

printf ("Printing.\n");

/* Case 2 */

return 2 || 1 / O;

}
Case 1 calls a function with a variable number of arguments without a prototype in scope. But the call is
never actually executed. Now, subclause 6.3.2.2, in the first paragraph of page 41, states that this is
undefined. Is it undefined to transiate the code, or to execute it? The definition of undefined behavior
(subclause 3.16) clearly allows the former, and subclause 5.3.2.2 does not say that the undefined behavior
occurs only if the call is actually executed.
On the other hand, while subclause 6.3.5 uses similar wording about division by zero, “we all know” that
my Case 2 is strictly conforming.
So what is the answer? If undefined behavior cannot occur at translation time, why the wording in subclause
3.16? If it can, how do I distinguish the possibilities? And, by the way, what is the answer for my Case 1?

Response
The Response to Defect Report #109 addresses this issue. The translation unit must be successfully
translated.

Defect Report #133 SC22/WG14 Page 91

Defect Report #133
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question

Undefined behavior not previously listed in subclause G2:

1. Applying sizeof£ to an enumerate type, as in

enum £ {¢c = sizeof (enum £f)}

has undefined behavior.

2. A program containing no function called main has undefined behavior.

3. A storage class specifier or type-qualifier modifying the keyword void as a function parameter-type-list
has undefined behavior.

4, Indexing an array beyond its specified size, as in:

int a[4][5];

a[1]1[7] = 0;

has undefined behavior.

5. If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the behavior is
undefined.

6. In pointer-integer conversion, the size of integer required and the result are implementation-defined. If
the space provided is not long enough, the behavior is undefined.

7. The result of the % operator is the remainder. In both this and the divide operations, if the value of the
second operand is zero, the behavior is undefined.

8. As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is
undefined.

9. If a file with the same name as a standard header, not provided as part of the implementation, is placed
in any of the standard places for a source file to be included, the behavior is undefined.

10. If the signal handler func (int sig) executes a return statement and the value of sig was
SIGFPE or any other implementation-defined value corresponding to a computational exception, the
behavior is undefined.

11. If any signal is generated by an asynchronous signal handler, the behavior is undefined.
12. If copying takes place between objects that overlap, the behavior is undefined.

13. If a fully expanded macro replacement list contains a function-like macro name as its last preprocessing
token, it is unspecified whether this macro name may be subsequently replaced. If the behavior of the
program depends upon this unspecified behavior, then the behavior is undefined. For example:

#define £(a) a*g

#define g(a) f(a)

the invocation £ (2) (9) results in undefined behavior.

14. A call to a library function that exceeds an Environmental limit has undefined behavior.
Response

The C Standard makes it sufficiently clear that the described behaviors are undefined. The next revision of
the C Standard can include a more comprehensive list.

Page 92 SC22/WG14 Defect Report #134

Defect Report #134

Submission Date: 31 Jan 94
Submittor: Project Editor (P.J. Plauger)
Source: Clive Feather

Question
Subclause 7.11.6.2 The st rerror function, page 168, reads:
The strerror function maps the error number in exrnum to an error message string.
However, “error number” is an undefined term. Must st zexxrox provide a valid message for every value

of type int, or can some values be a domain error, allowing it to return garbage or a null pointer? If the
latter, then what are the values that must generate a valid string? Must the following generate a valid string:

Z€e10

EDOM and ERANGE

the value of any other symbol defined in <errno .h>
any value that a library routine might set exrrno to

Response

The strerror function must provide a valid message for the error numbers EDOM, ERANGE, and any
other value a library function might store in exzno. For all other values, the behavior is undefined.

Defect Report #135 SC22/WG14 Page 93

Defect Report #135

Submission Date: 31 Jan 94
Submittor: Project Editor (P.J. Plauger)
Source: Per Bothner
Question
H.J. Lu points out that the SVR4 manual explicitly says that fwrite (ptr, 0, 1, stream) returns
0, not 1. I don’t know what the SVID states.

I think it is more mathematically consistent to return 1 in this case. But in that case £xead (ptx, 0, 1,
stream) should also return 1, but ANSI explicitly states that it should return 0. I don’t see any reason
why these should be different, so I think it is best to follow existing practice. I think the ANSI specification
for fwrite is a mistake; perhaps it should be fixed in the revision.

Response

There are no zero-length objects in C. Therefore, if the size argument to £write is zero, it is outside the
domain of the function and (by subclause 7.1.7), the result is undefined. The C Standard is not in conflict
with the cited behavior of SVR4.

Page 94 SC22/WG14 Defect Report #136

Defect Report #136

Submission Date: 31 Mar 94
Submittor: Project Editor (P.J. Plauger)
Source: Paul Eggert

Question
Suppose I run the following program in a US environment, where the clocks will jump forward from
01:59:59 to 03:00:00 on April 3, 1994. This program attempts to invoke mktime ona struct tm that
represents 02:30:00 on that date. Does the C Standard let mkt ime return -1 in this case?

#include <stdio.h>
#include <time.h>
int main()

{

struct tm t;

time t x;

/* 1994-04-03 02:30:00 */
t.tm year = 1994 - 1900; t.tm mon = 3; t.tm mday = 3;
t.tm hour = 2; t.tm min = 30; t.tm sec = 0;

t.tm isdst = -1; /* i.e. unknown */

r = mktime (&t);
if (r = -1)

printf ("mktime failed\n");
else

printf ("$s", ctime(&r)):
return 0;

}

The ANSI C Rationale (corresponding to subclause 7.12.2.3) clearly lets mktime yield -1 in the
“fall-backward fold” that will occur when the clock is turned back from 01:59:59 to 01:00:00 on October
30, 1994. The question is whether mkt ime is also allowed to yield -1 in the “spring-forward gap” when
the clock is advanced from 01:59:59 to 03:00:00.

This question arose when Arthur David Olson’s popular “tz” time zone software was tested using
NIST-PCTS:151-2, Version 1.4, (1993-12-03) a test suite put out by the National Institute of Standards and
Technology that attempts to test C and Posix conformance. The PCTS package insists that in the above
case,mktime mustyieldatime_t corresponding toeither 01:30:00 or 03:30:00; i.e. PCTS rejects Olson’s
mktime, which yields -1.

This test case differs in an important way from the common practical use of mktime to “add 1” to the
output of Localtime or gmt ime, since those functions normally set tm isdst to a nonnegative value,
whereas tm_isdst is -1 in the case under question.

I suggest that the Committee issue a clarification which makes it clear that mktime can yield -1 in the
spring-forward gap when tm_isdst is-1.
Response

The Standard does not specify the behavior precisely enough to preclude mkt ime from returning a value
of (time_t) -1 and leaving the tm isdst member set to —1 in such situations.

Defect Report #137 SC22/WG14 Page 95

Defect Report #137

Submission Date: 30 Apr 94
Submittor: Project Editor (P.J. Plauger)
Source: Larry Jones

Question
Isprint£("$.1£", -0.01) required to produce 0.0, -0. 0, or are both acceptable?
Subclause 7.9.6.1 says that when the + flag is not specified, the result begins with a sign only when a
negative value is converted. The description of the £ conversion (also e and E) says that the value is rounded
to the appropriate number of digits. Is the value used to determine the sign of the result the value before or
after rounding?

Response
As specified in subclause 7.9.6.1 for the + flag, a negative value is being converted, so a minus sign is
required. The intent is that the sign is determined prior to conversion.

Page 96 SC22/WG14 Defect Report #138

Defect Report #138

Submission Date: 02 Jun 94
Submittor: Project Editor (P.J. Plauger)

Source: John Max Skaller
Question
Subclause 6.1.2.4 says:
An object has a storage duration that determines its lifetime. There are two storage durations:
static and automatic.

To me that clearly excludes heap objects. Is there a Defect Report on that? If so which one? (I have responses
to Defect Report #001 through Defect Report #059.) If not and something else in the Standard fixes it, can
you point out where?

Correction

In subclause 6.1.2.4, page 22, first paragraph, change:

There are two storage durations: static and automatic.

to:

There are three storage durations: static, automatic, and allocated. Allocated storage is described in 7.10.3.

Defect Report #139 SC22/WG14 Page 97
Defect Report #139

Submission Date: 13 Jun 94
Submittor: Project Editor (P.J. Plauger)
Source: Larry Jones
Question
Subject: Compatibility of complete and incomplete types.
The Committee has already endorsed the concept of using incomplete types which are completed in some
translation units and left incomplete in others for encapsulation and data hiding (cf. Defect Report #059).

However, I can find nothing in the Standard which allows the incomplete type to be compatible with the
completed type, which causes such usage to be not strictly conforming. I believe this to be an oversight.

Correction

In subclause 6.1.2.6, page 25, first paragraph, change:

Moreover, two structure, union, or enumerated types declared in separate translation units are compatible
if they have the same number of members, the same member names, and compatible member types; for two
structures, the members shall be in the same order; for two structures or unions, the bit-fields shall have the
same widths; for two enumerated types, the members shall have the same values.

to:

Moreover, two structure, union, or enumerated types declared in separate translation units are compatible
if at least one is an incomplete type or if they have the same number of members, the same member names,
and compatible member types; for two complete structure types, the members shall be in the same order;
for two complete structure or union types, the bit-fields shall have the same widths; for two enumerated
types, the members shall have the same values.

Page 98 SC22/WG14 Defect Report #140

Defect Report #140
Submission Date: 27 Jul 94
Submittor: BSI
Source: Andy Pepperdine
Question

Subclause 7.9.5.6 says:
The setvbuf function may be used only after the stream ... has been associated with an open
file and before any other operation is performed on the stream.

There are two related questions associated with this statement.

1. What does “performed” mean?

a) Does it include attempits that failed (such as £zead on output file, etc.)?

b) In particular, does it include a failed attempt to setvbu£?

¢) Whatabout fprint£ (£, "")?

2. What does “other operation” mean?

a) Does it include setvbuf itself?

b) Are ferror and feof operations?
¢) Whatabout clearerz?

Reasons for asking:

It would seem reasonable to try to get a very large buffer in some applications by attempting to do a
setvbuf with, say, 1 MB of buffer space. If that fails, try again with 0.5 MB, etc. Is this allowed?

My guess as to the interpretation is as follows:

1. An operation is “performed” even if it fails for whatever reason.

2. All functions defined in subclause 7.9 are to be treated as “operations.”

This is unsatisfactory, as the above approach of attempting to find a good buffer size would fail.

In the Rationale, it states “The general principle is to provide portable code with a means of requesting the

most appropriate popular buffering style, but not to require an implementation to support these styles.”
[Emphasis added.]

I interpret this as saying that set vbu £ is an advisory call and need not be acted on. However, my questions
above still stand as there seems to be no way of negotiating an agreement on good acceptable buffer sizes.
I believe that a clarification is required.

Response

As you say, “setvbuf is an advisory call and need not be acted on.” That is to say, the C Standard allows
it to fail. Therefore, discussions of detailed constraints such as you describe could only constitute
non-normative advice to programmers or implementers. The Committee does not have any specific advice
to give in this regard.

Defect Report #141 SC22/WG14 Page 99
Defect Report #141

Submission Date: 10 Sep 94
Submittor: Project Editor (P.J. Plauger)

Source: Doug Mcllroy

Question
What does EOF mean in <stdio .h>? Subclause 7.9.1 says that it “is returned by several functions to
indicate end-of-file, that is, no more input from a stream.”
Taken at face value, the statement that there is no more input implies that further reads from the stream will
yield EOF. In many implementations this is not true. It may be possible to read data from a stream on which
the end-of-file indicator is set. Just whether that happens usually depends on what kind of file the stream is
associated with. In System V, for example, one will almost always get more data on reading past EOF on
a terminal, and almost never on a plain file. This violates the principle of device-independent behavior.
I believe the System V behavior is wrong. Whenever £feo£f would return nonzero, getc should return
EOF.
Some old code will break if EOF is made sticky as I suggest, but surprisingly little. When we made it sticky
in v10 UNIX, we had to change exactly one dishonest program (sdb), which used ctl-D as if it were a
character without putting the terminal in raw mode. Not one complaint arose from the change.
On the other hand, almost every UNIX user has at one time or another been surprised by a nonsticky EOF,
manifested as a program needing more than one EOT to stop it when stdin comes from a terminal. That
breeds the habit of typing extra EOT at balky programs. The habit causes yet more trouble (hangup, for
example), when things are merely slow and not really balky. This indefinite-EOF problem is not the fault
of the programs, which should be able to count on a uniform behavior of EOF across all files. It is a
fundamental mistake in the implementation of <stdio.h>.

I urge the Committee to clarify EOF, and clarify it in the direction of predictability.

Response
It was certainly the intent of the Committee that end-of-file should indicate “no more input from a stream,”
at least when returned by functions such as £getc. In particular, subclause 7.9.7.1 The £getc function
says, in part:
If the stream is at end-of-file, the end-of-file indicator for the stream is set and £getc returns
EOF. “Setting the end-of-file indicator” implies that that stream is now considered to be “at
end-of-file.”

For input from a stream to return other than EOF after once returning EOF (with no intervening file-posi-
tioning operations or calls to clearerr) is non-conforming behavior, however widespread.

