Document Number: WG1l4 NY20/x3g11 95— 0%/

C9X Revision Proposal

Title: ‘‘big integer’’ (at least 64-bit) routines and types
Author: JR (John Rogers)

Author Affiliation: freelance writer

Postal Address: 11604 104th Ave. NE; Kirkland WA 98034; USA
E-mail Address: 72634.2402@CompuServe.com

Telephone Number: +1 206 8212816

Fax Number:
Sponsor:
Date: 1995-02-07
Proposal Category:

N_ Editorial change/non-normative contribution
N_ Correction
Y New feature
N_ Addition to obsolescent feature list
N_ Addition to Future Directions
N_ Other (please specify)
Area of Standard Affected:
N_ Environment
N_ Language
N_ Preprocessor
Yapldbrary

Y Macro/typedef/tag name
Y .. Functien

¥y Header

N Other (please specify)

Prior Art: As of this writing (1995-02-07), I am still
developing my implementation of the bigint library. I am
not aware of any other implementations of it yet, although I
am encouraging others. My implementation is intended to be
maximally portable to current ANSI/ISO C compilers. I can
envision the compiler vendors adding their own versions of
the bigint library for maximal speed on their platforms, but
this would not be required.

Target Audience: systems programmers (for compilers,
debuggers, assemblers, linkers); numerical programmers (for
encryption/decryption); financial programmers.

Related Documents (if any): ‘‘Draft Standard for Big
Integer Routines for the C Programming Language’’, by me,
draft 0.1, attached. All clause numbers in this cover
sheet refer to clauses in the big integer draft standard.

This proposal is also consistent with, but does not depend
on, IEEE Std 695-1990, ‘'‘IEEE Standard for Microprocessor
Universal Format for Object Modules’’ (MUFOM). The
benefits of this proposal are not limited to MUFOM users.

Proposal Attached: Y Yes ___ No, but what’s your interest?

Abstract: I propose optional support for ‘'‘big integers’’
(those with at least 64 bits of precision). This proposal

only involves new libraries and headers; the compiler need
not be changed. For a given implementation, a ‘‘big
integer’’ would be a fixed size. This avoids the issue of
what to do when running out of memory for ‘‘infinite
precision integers’’, which plagues the Multiple Precision
(MP) library provided with some versions of UNIX.

Proposal:

Problem Statement: The current ANSI/ISO C standards

only guarantee a minimum of 32 bits of precision in the
largest integral types. In many financial applications
that is not enough range, and floating point is not precise
enough to keep the auditors happy.

Also, we are moving from an era of 32-bit computers to an
era of 64-bit computers. While 32-bit machines still
dominate, this is a good opportunity to promote
cross-development tools (from 32-bit to 64-bit systems).
At times these tools need to use different byte ordering,
byte size, and integer representation than the native
system uses. Personally, I hope to write a simulator of
Donald Knuth’s new 64-bit computer (MMIX) which would run
on any 32-bit computer.

Conceptual Model: Big integers are conceptually like the
largest integer types in a given implementation of C, with
twice the precision of the ‘'‘long integer’’ type. However,
big integers would be implemented by a library of routines
rather then the compiler knowing how to generate code for
them. There are routines to do math, shifts, AND/OR/XOR,
copy, and get/set bits of big integers. Big integers may
be treated as being in any of the four ‘‘usual

representations’’ (defined in the big integer draft
standard, clause 3 (‘'‘Definitions’’). For instance, one
‘‘usual representation’’ is two’s complement. The
application may also specify some nonnative ‘‘byte’’ order
or size.

Semantics: The semantics of big integers and related types

appear in clause 3 ('‘Definitions’’), clause 4 (‘'‘General
Requirements’’), clause 5 ('‘<boolean.h>’’), clause 6
(‘‘egign.h>" "), “cYause 7 {'ve<repihs“’) | “and clause's

R 5 s s c o o bRl

Constraints: A number of general constraints are given in
the big integer draft standard in clause 4, ‘‘General
Requirements’’. Additional (per-routine) constraints are
given with the descriptions of the routines in clause 6
(‘‘<sign.h>’’) and clause 8 (‘'‘<bigint.h>’’). Constraints
against using most standard C operators with big integers
appear at the beginning of clause 8 (‘'‘<bigint.h>’’).

Behavior: Undefined behavior is allowed in subclause 4.2
(**‘Bit Numbering’’). Indeterminate behavior is not
allowed. Implementation-defined behavior is allowed in
subclauses 3.2.5 (definition of ‘‘endian’’), 3.2.11
(definition of ‘‘minimum addressable unit’’), 4.1
(**‘Allocation and Alignment of Big Integers’’), 4.8
(**Signed and Unsigned Integer Representation’’), and 7

{(*zrep.ha'").

Syntax, Synopsis, Keywords, Tokens, Operators, Directives:
The prototype for each routine is given in the big integer
draft standard. These appear in clause 6 ('‘<sign.h>’"’)
and clause 8 ('‘<bigint.h>’’).

Rationale: Big integer support is provided for applications
which may need more range than that provided by the largest
integral type directly supported by the compiler. For
those applications which need to emulate other byte sizes
or orders (or integer representations), direct control over
these aspects is possible.

Implementation Issues: I have tried to specify this in such
a way that it be added on to any current ANSI/ISO C
implementation, simply by adding new libraries and headers.
The ‘'‘routines’’ may be functions, macros, or anything else
that gives the appearance of parameterized macros. For
efficiency, the default ‘'‘mative’’ format is indicated by a
NULL pointer instead of a pointer to a format. An
implementation could detect use of the NULL pointer, and
generate inline code via the macro expansion. (For
instance, if a C implementation supports ‘'‘long long’’ or
‘‘quad’’ or whatever, that version of ‘'‘<bigint.h>’’ could
take advantage of it.) For non-NULL format pointers, the
implementation could call actual functions to do the
complicated work using the format.

There are no internationalization issues with the big
integer library as currently specified. Someone has
suggested revising the big integer specification to comply
with ISO/IEC 10967-1, which is part one of the Language
Independent Arithmetic (LIA) standard. The LIA-1 standard
requires that ‘'‘‘termination with message’’ be allowed as
one means of notification of ‘'‘undefined’’ behavior. This
change would introduce an internationalization issue, for
the message would need to be supplied by the implementation
in the correct language.

Language Compatibility Issues: None I am aware of.

Subsetting: I think it is important that programs be able,
at compile time, to tell if the big integer library is
available. Some predefined preprocessor symbol like

‘' HAS BIG_INTEGERS’’ would be good. I’'m certainly open to
other techniques or symbol names for this.

JR (John Rogers)
11604 104th Ave. NE
Kirkland WA 98034-6606
Internet: 72634.2402@CompuServe.com

Date: 1995-01-04
Subject: Draft standard (0.1) for big integer routines for C

To:
Geoff Baldwin (IEEE MUFOM committee)
Stephen L. Diamond (IEEE CS MM Standards Committee)
Jonathan Erickson (DDJ Editor-in-Chief)
Torbjorn Granlund (GNU Multiple Precision author)
Rex Jaeschke (NCEG)
Burt Kaliski (RSA Laboratories)
Donald Knuth (MMIX designer)
Kevin Leary (Analog Devices Inc.)
John Gerard Malecki (VLSI Libraries Inc.)
Bill Parrette (computer book author)
Tom Pittman (IEEE MUFOM committee)

Hi all!

I have written the first draft of a proposed standard for big integer math routines for C. A
big integer would provide at least 64 bits of precision. I used to call this the math64 spec,
but “big integer” is more general.

Would you be so kind as to take a look at this draft?

To become involved with the big integer standard, just send me a letter or some email.
Please feel free to pass this draft around, publish it, post it to Usenet, etc.

Thanks in advance!

\
R (John Rogers)

Draft 0.1, Dated 1994-12-30

Draft Standard for
Big Integer Routines
for the C Programming Language

Public domain.
This is a draft standard, subject to change. For more information contact the author:

JR (John Rogers)

11604 104th Ave. NE

Kirkland WA 98034-6606

Internet: 72634.2402@CompuServe.com

This is an unapproved draft, subject to change. Pl e

Draft 0.1, Dated 1994-12-30

Introduction
(This introduction is not a part of this standard.)

This draft standard defines a set of big integer routines for use with the C programming
language. This draft may evolve into an IEEE standard.

The big integer routines defined here may be useful in:

o assemblers
se loaders
e linkers
e compilers
e program librarians (for object modules)
o debuggers
e instruction set simulators
e encryption/decryption

This draft standard relates to the “IEEE Standard for Microprocessor Universal Format
for Object Modules” (MUFOM). The MUFOM file format gives a machine-independent
way of representing object code, external references, etc. MUFOM allows 64 bits for
addresses and some other expressions. Unfortunately, ANSI C only guarantees a
minimum of 32 bits of precision for the largest integer types. A logical stepping stone to
the MUFOM routines is a way of representing and computing with (at least) 64-bit
precision integers in C. These big integer routines may become a required part of some
MUFOM routines someday. That is why these big integer routines require at least 64 bits
of precision.

This standard provides a common solution to these and other (at least) 64-bit integer
computation requirements. It defines a set of “big integer” routines for C. These routines
allow the caller to specify whether to use two's complement, one's complement, unsigned,
or signed-magnitude representation. They also allow the caller to specify a desired bit
order (little-endian or big-endian). For callers who aren’t interested in a particular
representation or bit order, a way to request “native” (presumably the fastest) facilities is
provided.

This is an unapproved draft, subject to change.

——

Draft 0.1, Dated 1994-12-30

Contents
CLASE Hi v s Tl L b g s s et e S PAGE
e R e i A S B i e e 4
et e T B i 4
3. Definitions 4
3 1 TermimBIGEYE. . hRanas. turher mgatnl il a-muttiwe ek da-sedr dagg g g 4
3.2 General Termsi
s e e ekt o e s R 8
4. Conerdl ReuITEtOntS. i Stbscarsceis i st bpesg ssnsmam g o n EU EE BE 8
4.1 Allocation and Alignment of Big TIUEEETS. ..c.evconesserssnsessssasssersessasseassnnsssmmsssansstassissssssastassar st stnesss 8
43 I DI & v b oot oo paspach it s s cistenssore e ARG RS RNAR 8 &
O vl aintica b o At OO 9
4.4 OrderingofBig IIEEST BilS ..o.ijrrresspsosimbrapeppparrsssssmsmensgress s g o 9
45 RATASEE BETTICRADS voroqitosisn fosgissic s st cmanprptapsissm v et g L g 9
b lass, e o bR lelthbita b el e e S 9
4.7 SHAF/ROIAE COURLSvveseasasesssssmrasosessessosessrasssssesssssessasssasssssssasssassaasusssennam st stass o e 10
4.8 Signed and Unsigned Big Integer REPIESEIMALONooorevvssecmmssssssssssnesss s 10
4.9 Size OF 8 B IERET 1 vvecnsoorisissmesssissesssmmapsisssssssessisessenmasanssdesbopsase ermrera s 3 WO RRUEY 10
4.10 Standard C Operators and Big IMIEBETScccuuwwummssssissssssssssssssssssssssssssssssssssssmmmeee v 11
G hAICAI: e ¥ dapamrtrirel st R AR st e - R U S 11
Pl tinpeilgamininlmbionam et neaie e R N 11
I e e v s e 1
e et e S 12
T S v st oo i 12
e e i e o s S) 13
8.1 THPC..crvereusersmmmsirssssemssassasneaseasessssassasanssesnss ésabgs A asumeA st enaanans sesR3 LR e e s 3 4 70 13
I e ek i G 14

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

1. Overview

This standard specifies a set of routines for using big (at least 64-bit wide) integers in C
programs.

This standard does not specify:

a) the algorithms to be used by a conforming implementation
b) the actual order of bits within a big integer when stored in memory

2. References

This standard shall be used in conjunction with the following publications. When the
following standards are superseded by an approved revision, the revision shall apply.

ANSI X3.159-1989, American National Standard for Information Systems --
Programming Language -- C.!

IEEE Std 695-1990, IEEE Standard for Microprocessor Universal Format for Object
Modules.2

3. Definitions

3.1 Terminology

3.1.1 conforming implementation: An implementation that provides at least the headers,
data types, and routines specified in this standard. A conforming implementation may
have implementation-defined extensions, provided they do not alter the behavior of a
conforming program.?

3.1.2 conforming program: A program that only uses the mechanisms in the following
list to access the data types defined in this standard, and does not require any specific
implementation-defined behavior.

1 ANSI publications are available from the American National Standards Institute, 11 West 42nd St.. New
York. NY 10036, USA.

2IEEE publications are available from the Institute of Electrical and Electronic Engineers. 445 Hoes Lane.
P.O Box 1331. Piscataway NJ 08855-1331. USA.

3Paraphrased from various parts of the C Standard.

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

) the routines defined in this standard

) for big integer access, the standard C operators given in 4.10 Standard C
Operators and Big Integers

) for data types other than big integer, any applicable standard C operator

) for big integers, any memory allocation and alignment mechanism which meets
the requirements in 4.1 Allocation and Alignment of Big Integers

plementation: A particular set of software, running in a particular translation
ient, that provides headers for, and supports the execution of routines in, a
r execution environment.

plementation-defined behavior: Behavior that, for a correct program construct
ct data, depends on the characteristics of the implementation and that each
itation shall document.s

y: Is permitted to ..., are permitted to ...
Il: Is required to ..., are required to

lefined behavior: Behavior for which this standard imposes no requirements.

eral Terms

-endian: A minimum addressable unit (MAU) order where the most significant
a larger entity occupies the lowest address, followed by successively less
t MAUs of that entity.

integer: A contiguous set of at least 64 bits in memory that meets the
nts in the following list.

has a size of exactly twice the number of bits as the unsigned long data type
for that implementation of C

has alignment that meets the requirements in 4.1 Allocation and Alignment of
Big Integers

may be viewed as having a high part (most significant half) and a low part
(least significant half)

may be interchangebly used in any of the usual representations

—

«. ,-«rased the C Standard definition of implementation here.
hrased from the C Standard.

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

3.2.3 bit: The C Standard defines bif as “the unit of data storage in the execution
environment large enough to hold an object that may have one of two values.” The same
definition applies in this standard. ;

3.2.4 data bits: The numeric value bits (except for the sign bit, if any) of a big integer.
The assigning of a numeric value to a particular data bit depends on the layout and the
value of the sign bit (if any).

3.2.5 endian: The order of minimum addressable units (MAUs) of a larger entity. A
conforming implementation shall support at least big-endian and little-endian MAU orders.
Other (implementation-defined) MAU orders may be provided; these are sometimes
referred to as middle-endian orders.

3.2.6 high part of a big integer: The most significant half of a big integer. Note that in
many representations, the high part of a big integer includes the sign bit as the high bit.

3.2.7 layout: The combination of the kind of integer representation, minimum addressable
unit (MAU) size in bits, and MAU ordering (“endian”).

3.2.8 little-endian: A minimum addressable unit (MAU) order where the least significant
MAU of a larger entity occupies the lowest address, followed by successively more
significant MAUs of that entity.

3.2.9 low part of a big integer: The data bits of a big integer that are numbered 0
through ((size of the big integer in bits)/2)-1. (See 4.2 Bit Numbering for the rules on
numbering bits.) This is the least significant half of a big integer.

3.2.10 middle-endian: Any of a number of minimum addressable unit (MAU) orders that
are neither big-endian nor little-endian.

3.2.11 minimum addressable unit: The MUFOM File Standard defines this as follows:
“For a given processor, the amount of memory located between an address and the next
address. It is not equivalent to a word or a byte.” The same definition applies to this
standard. Both standards use the abbreviation MAU for this term.

A conforming implementation shall support at least the minimum addressable unit (MAU)
sizes (in bits) given in the following list. A conforming implementation may also support
other implementation-defined MAU sizes.

a) 1

b) 2

c¢) CHAR_BIT

d) the size of an unsigned long variable (in bits)
e) the size of big integer (in bits)

f) 2 * CHAR BIT

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

3.2.12 native-endian: The minimum addressable unit (MAU) order that an
implementation has defined as its default. Note that the native-endian order may be big-
endian, little-endian, or some specific middle-endian order.

3.2.13 native layout: The layout consisting of the following,

a) signless integer representation
b) the native-endian minimum addressable unit (MAU) order
c¢) the MAU size which that implementation has defined as its default

A conforming implementation shall use its native layout implicitly when a caller has passed
a null pointer (to a routine in this standard) in place of a pointer to an explicit layout.

3.2.14 “negative zero”: In certain representations, an alternative bit pattern for the
“normal zero.” For instance, in signed-magnitude representation, a “normal zero™ has all
data bits of zero and a sign bit of zero; a “negative zero” in that format has all data bits of
zero but has a sign bit of one. A conforming implementation shall support “negative zero”
in at least the one’s complement and signed-magnitude representations.

3.2.15 pure binary numeration system: A “positional representation for integers that
uses the binary digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral powers of 2, except
perhaps the bit with the highest position.”

3.2.16 representation: Any of the various methods for assigning integral (possibly
signed) values to a set of bits in a given number.

3.2.17 routine: A function-like entity defined in this standard. This standard documents
each routine by giving the C syntax to declare it as a function. For a given
implementation, a routine may be (among other things) a C function or a function-like
macro. The technique by which a header provides access to a routine is unspecified. Note
that, unlike an actual C function, a routine may evaluate its arguments more than once.

3.2.18 sign bit: A bit (within certain integer representations) which indicates the sign of
an integer. The exact meaning of the sign bit, and how it affects the data bits for that
representation, depends on the representation.

3.2.19 signless: A representation in which all of the bits are data bits. This is often
referred to as “unsigned” outside this standard, but this could be confused with the C
keyword unsigned. So, this standard uses the term “signless” to refer to the
representation.

6This is quoted from the C Standard.

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

3.2.20 usual representations: The four common representations for integers: two's
complement, one's complement, signed-magnitude and signless. A conforming
implementation shall support at least the usual representations.

3.3 Abbreviations

3.3.1 C Standard: ANSI X3.159-1989, American National Standard for Information
Systems -- Programming Language -- C, or latest revision thereof.

3.3.2 MAU: Minimum addressable unit.
3.3.3 MAUs: Minimum addressable units.
3.3.4 MUFOM: Microprocessor Universal Format for Object Modules.

3.3.5 MUFOM File Standard: IEEE Std 695-1990, IEEE Standard for Microprocessor
Universal Format for Object Modules, or latest revision thereof.

4. General Requirements

4.1 Allocation and Alignment of Big Integers

A conforming implementation shall support at least the techniques in the following list for
allocating memory for a big integer (the Big_Int_T type).

a) using the standard C library functions calloc, malloc, and realloc, each with a
request for sizeof(Big_Int_T)

b) defining an automatic storage duration (either “plain” or with the auto keyword)
Big_Int_T variable in any block

c) defining a static Big_Int_T variable (whether inside a block or not)

d) defining an external linkage Big_Int_T variable (“plain” or static)

A conforming implementation may also provide other implementation-defined memory
allocation techniques.

A conforming implementation shall not require stricter alignment for big integers than that
provided by the use of any of the techniques in the list above.

4.2 Bit Numbering

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

Some routines defined in this standard receive a bit number as an argument. Consistent
with the MUFOM File Standard, this standard numbers bits such that the least significant
bit has the number zero.

Except for shift/rotate counts, the effect of invoking a routine defined in this standard with
a bit number larger than the size of a big integer is undefined. See 4.7 Shift/Rotate
Counts and 4.9 Size of a Big Integer. :

4.3 Headers

Each conforming implementation shall provide <bigint.h> and the other C headers
defined in this standard. A conforming program may include these headers in any order.

A conforming program may include each of these headers more than one once in any given
translation unit.

4.4 Ordering of Big Integer Bits

The big integer routines defined by this standard shall process big integers as if they have
the layouts indicated. However, a conforming implementation may or may not actually
store the bits in memory in the order indicated.

4.5 Parameter Restrictions

A conforming program shall not provide pointers to the same big integer as two or more
arguments to any call to a routine documented in this standard.

Unlike an actual C function, any routine defined by this standard may evaluate its
arguments more than once. A conforming program shall provide any argument (to any
routine defined in this standard) which causes a side-effect when the argument is
evaluated.

4.6 Reserved Names

A conforming program shall treat certain groups of identifiers as being reserved.
The table below lists them. The preprocessor identifiers are only reserved if a header
defined in this standard is included.

name space name(s) who this is reserved for

external prefix Big[A-Z] reserved for future standards
external prefix Big_ reserved for implementations
preprocessor - prefix BIG_ reserved for future standards

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

preprocessor BIGINT H reserved for implementations
preprocessor BOOLEAN_H reserved for implementations
preprocessor REP_H reserved for implementations
typedef suffix _T reserved for future standards
preprocessor SGN_H reserved for implementations

Note: In the above table, the notation “[A-Z]” indicates an upper-case letter.

4.7 Shift/Rotate Counts

The various routines that use shift/rotate counts are BigRoL, BigRoR, BigShL, and
BigShR. These routines shall implement the semantics of those counts as follows:

shift/rotate count semantics

0 no shift

1 to (size in bits of big integer-1) shift/rotate normally
>= (size in bits of big integer) no shift

See also 4.9 Size of a Big Integer.

4.8 Signed and Unsigned Big Integer Representation

A conforming implementation shall support at least the four following usual -
representations for big integers. Numbers in the usual representations shall obey the “pure
binary numeration system” definition given in this standard; any implementation-defined
representations may or may not obey that definition.

An Int_Rep T value of NoSign shall indicate a number in signless representation. In this
representation, there shall be no sign bit; all of the bits of the big integer shall be data bits.

An Int_Rep T value of OnesComplement shall indicate a number in one’s complement
representation. [Expand]

An Int_Rep_T value of SignedMagnitude shall indicate a number in signed-magnitude
representation. [Expand]

An Int Rep T value of TwosComplement shall indicate a number in two’s complement
representation. [Expand]

4.9 Size of a Big Integer

10
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

A conforming program may compute the size (in bits) of a big integer by multiplying
sizeof(Big_Int_T) by CHAR_BIT. In a conforming implementation, this product shall be
at least 64. <limits.h> defines CHAR_BIT, as required by the C Standard. A
conforming implementation shall guarantee that there are no padding or “extra” bits in the
usual representations.

A conforming program may also compute the size (in characters) of a big integer by using

sizeof(Big_Int_T).

4.10 Standard C Operators and Big Integers

A conforming program may only use the following standard C operators with big integers
(specifically, the Big_Int_T type).

= (assignment)
= (comparison for equality)

& (address of)
sizeof

5. <boolean.h>

The <boolean.h> header shall define an enumerated type (named Boolean_T), which shall
have two named values. The values shall be named Boolean_False (equivalent to 0) and
Boolean_True (equivalent to 1).

6. <sign.h>

6.1 Type

The <sign.h> header shall declare a Sign_T type, which shall be an integral type.
<sign.h> shall also declare these values of Sign_T, with the values given:

SGN_NEGATIVE (with a value of -1)
SGN_ZERO (with a value of 0)
SGN_POSITIVE (with a value of +1)

Note that the SGN_ZERO value also refers to the “negative zero” condition.

11
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

No other values for the Sign_T type shall be used by a conforming program or returned by
a conforming implementation.

6.2 Routines

6.2.1 SignMultiply

#include <sign.h>
Sign T
SignMultiply(
Sign T First,
Sign_ T Second);

If either First or Second is SGN_ZERO, then SignMultiply shall return SGN_ZERO. If
both First and Second have the same nonzero value, then SignMultiply shall return
SGN_POSITIVE. Otherwise, SignMultiply shall return SGN_NEGATIVE.

6.2.2 SignOpposite

#include <sign.h>
Sign T
SignOpposite(
Sign T Original),

The SignOpposite routine shall return the Sign_T value given in the following table:

Original returned value
SGN_NEGATIVE SGN_POSITIVE
SGN_ZERO SGN_ZERO

SGN_POSITIVE SGN_NEGATIVE

7. <rep.h>

The <rep.h> header collects the things necessary to describe the layout (including integer
representation) of various data types. This standard defines those parts of <rep.h> which
a conforming program uses to describe integers (including big integers). Other standards
may expand this header, for instance to describe the layout of an address to a portable
linker.

The <rep.h> header shall declare the Int Rep_T enumerated type, with at least the values
in the list below.

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

NoSign

OnesComplement
SignedMagnitude
TwosComplement

The <rep.h> header shall also declare the MAU_Order_T enumerated type, with at least
the values in the list below. Other implementation-defined values may be provided. The
effect of passing an implementation-defined MAU_Order T value to one of the routines
specified in this standard is also implementation-defined.

BigEndian
LittleEndian

<rep.h> shall also declare the Bit_Number_T type, as some unsigned integral type. The
maximum value of Bit_Number_T shall be at least as large as the number of bits in a big
integer. Some routines use this type to indicate a bit number, a length in bits, or a
shift/rotate count.

The layout of a given big integer is described by the Int_Rep_And_Format_T (integer
representation and format) type. For those routines which may be passed a pointer to a
layout, a null pointer implicitly refers to the native layout. <rep.h> shall declare the
Int_Rep_And Format_T type as a structure containing the following members, in any
order:

Type Member Name
MAU_Order T MauOrder
Int Rep T IntRep
Bit_Number T BitsPerMau

8. <bigint.h>

The <bigint.h> header shall include the <boolean.h>, <rep.h>, <sign.h>, and <stdio.h>
headers.

8.1 Type

The Big_Int_T type is the actual big integer. Once memory has been allocated for the big
integer, the big integer does not need to be specially initialized. (No particular initial value
is guaranteed, however.)

13
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

The <bigint.h> shall declare the Big_Int_T type. Each implementation may declare this
type differently, and a conforming implementation need not document how it has
implemented the type.

Except for the standard C operators listed in 4.10 Standard C Operators and Big
Integers, a conforming program shall not directly make use of the contents of the
Big_Int_T type in any way. In particular, a conforming program shall not use any of the
techniques in the following list.

a) access the member(s) (if any) of the structure (if any)

b) cast the Big_Int_T data type to another data type

c) cast a pointer to a Big_Int_T data type to another data type
d) place it in a union and then access it as a different data type.

A conforming program shall also follow the rules in 4.1 Allocation and Alignment of
Big Integers.

8.2 Routines

8.2.1 BigAbs

#include <bigint.h>
Boolean_T BigAbs(
Big_Int_T * Dest,
const Big_Int T * Src,
const Int_Rep_And Format T * Layout);

If the absolute value of the big integer at *Src can be represented, then the BigAbs routine
shall set the big integer at *Dest to that absolute value, and return Boolean_False to
indicate no overflow. Otherwise, BigAbs shall set the big integer at *Dest to the largest
possible big integer, and return Boolean_True to indicate an overflow occurred.

8.2.2 BigAdd

#include <bigint.h>
Boolean_T BigAdd(
Big_Int_T * Result,
const Big_Int_T * A Number,
const Big_Int_T * Another Number,
Boolean_T Previous_Carry,
const Int_Rep_And_Format_T * Layout);

14
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

The BigAdd (big integer add) routine shall set the big integer at *Result to the part of the
sum of the big integers *A_Number and * Another_Number (plus one, if Previous_Carry is
Boolean_True) that fits in a big integer. If a carry occurred, then BigAdd shall return
Boolean_True; otherwise, BigAdd shall return Boolean_False.

8.2.3 BigAnd

#include <bigint.h>
void BigAnd(
Big Int_T * Result,
const Big_Int_T * A_Number,
const Big_Int T * Another_Number);

The BigAnd (big integer AND) routine shall set the big integer at *Result to the bitwise
AND of the big integers *A_Number and *Another_Number. The sign bits (if any) are
ANDed together, just as the corresponding data bits are, in a bitwise fashion.

8.2.4 BigBClr

#include <bigint.h>
void BigBClr(
Big_Int_T * Dest,
const Big_Int_T * Src,
Bit Number_T BitNum,
const Int Rep_And_Format_T * Layout);

The BigBClr (big integer bit clear) routine shall set the big integer *Dest to the result of
clearing the bit numbered BitNum in the big integer *Src.

8.2.5 BigBFlip

#include <bigint.h>
void BigBFlip(
Big Int_T * Dest,
const Big_Int T * Src,
Bit_Number_T BitNum,
const Int Rep_And_Format_T * Layout);

The BigBFlip (big integer bit flip) routine shall set the big integer *Dest to the result of
flipping (toggling) the bit numbered BitNum in the big integer *Src.

15
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

8.2.6 BigBSet

#include <bigint.h>
void BigBSet(
Big_Int_T * Dest,
const Big_Int T * Src,
Bit Number_T BitNum,
const Int Rep And_Format_T * Layout),

The BigBSet (big integer bit set) routine shall set the big integer *Dest to the result of
setting (turning on) the bit numbered BitNum in the big integer *Src.

8.2.7 BigBTest

#include <bigint.h>

Boolean_T BigBTest(
const Big_Int T * A Number,
Bit_Number_T BitNum,
const Int_Rep And_Format_T * Layout);

The BigBTest (big integer bit test) routine shall examine a bit (indicated by BitNum) in the
big integer *A_Number. If that bit is on, BigBTest shall return Boolean_True, otherwise
BigBTest shall return Boolean_False.

8.2.8 BigCmp

#include <bigint.h>

int BigCmp(
const Big_Int_T * A Number,
const Big_Int_T * Another Number,
const Int_Rep_And Format_T * Layout),

The BigCmp routine shall compare the big integer *A_Number to the big integer
*Another_Number. (The BigCmp routine shall treat a “negative zero” as being equal to a
regular zero.) If A Number is larger than Another Number, then BigCmp shall return a
value greater than zero. If A_Number is equal to Another Number, then BigCmp shall
return zero. Otherwise, BigCmp shall return a value less than zero.

8.2.9 BigCopy

#include <bigint.h>
void BigCopy(

16
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

Big Int_T * Dest,
const Big_Int_T * Src);

The BigCopy routine shall set the big integer at *Dest to a copy of the big integer at *Src.

8.2.10 BigDecr

#include <bigint.h>
Boolean_T BigDecr(
Big Int_T * Dest,
const Big_Int T * Src,
Boolean_T Previous_Borrow,
const Int Rep And Format T * Layout);

The BigDecr (big integer decrement) routine shall subtract one (two if and only if
Previous_Borrow is Boolean_True) from the big integer *Src. BigDecr shall set the big
integer *Dest to the part of the result that fits in a big integer. BigDecr shall return
Boolean_True if a borrow occurred in the subtraction; otherwise, BigDecr shall return
Boolean_False.

8.2.11 BigDiv

#include <bigint.h>
void BigDiv(
Big_Int_ T * Quotient,
Big_Int_T * Remainder,
const Big_Int T * Numerator,
const Big_Int T * Denominator,
const Int_ Rep_And_Format_T * Layout),

If the value of the big integer *Denominator is not zero, then:

The BigDiv (big integer divide) routine shall set the big integer *Quotient to the
integral quotient of dividing *Numerator by *Denominator. BigDiv shall also set
the big integer *Remainder to the remainder after dividing *Numerator by
*Denominator. BigDiv shall set the sign of *Remainder to the sign of
*Denominator. BigDiv shall guarantee that the resulting absolute value of
*Remainder is less than the absolute value of *Denominator.

Otherwise, the BigDiv routine shall set *Remainder to zero.

8.2.12 BigExt

17
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

#include <bigint.h>
void BigExt(
Big_Int_T * Dest,
const Big_Int_T * Src,
Bit_Number_T StartBitNum,
Bit_Number_T BitCount,
const Int._ Rep_And_Format_T * Layout),

The BigExt (big integer extract bits) routine shall extract BitCount bits from the big
integer *Src, where StartBitNum is the number of the lowest bit to extract. BigExt shall
set the lower BitCount bits of the big integer *Dest to those extracted bits. BigExt shall
set the other data bits (if any) and sign bit (if any) of *Dest to zero. If BitCount is zero,
then BigExt shall act as if calling BigZero(Dest).

8.2.13 BigHighPart

#include <bigint.h>
unsigned long BigHighPart(
const Big_Int_ T * A_Number,
const Int_ Rep_And_Format T * Layout),

The BigHighPart routine shall return the high part of the big integer *A_ Number.

8.2.14 Biglncr

#include <bigint.h>
Boolean_T Biglncr(
Big_Int_T * Dest,
const Big_Int_T * Src,
Boolean T Previous_Carry,
const Int. Rep_And_Format_T * Layout);

The Biglncr (big integer increment) routine shall add one (two if and only if
Previous_Carry is Boolean_True) to the big integer *Src. Biglner shall set the big integer
*Dest to the part of the result that fits in a big integer. Biglncr shall return Boolean_True
if a carry occurred in the addition; otherwise, Biglncr shall return Boolean_False. [What if
Layout. IntRep is NoSign and *Src is zero?]

8.2.15 Biglns

#include <bigint.h>

18
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

void BiglIns(
Big _Int_T * Dest,
const Big_Int_T * BitSrc,
const Big_Int T * IntSrc,
Bit Number T StartBitSrcBitNum,
Bit Number_ T StartIntSrcBitNum,
Bit Number T BitCount,
const Int Rep_And Format_T * Layout);

The Biglns (big integer insert bits) routine shall extract BitCount bits from the big integer
*BitSrc, where StartBitSrcBitNum is the number of the lowest bit to extract. Biglns shall
set BitCount bits of the big integer *Dest to those extracted bits, where _
StartBitSrcBitNum is the number of the lowest bit to set. Biglns shall set the other data
bits (if any) and sign bit (if any) of *Dest to the equivalent bits of *IntSrc. If BitCount is
zero, then BiglIns shall act as if calling BigCopy(Dest, IntSrc).

8.2.16 BigIsOdd

#include <bigint.h>
Boolean_T BiglsOdd(
const Big_Int T * A Number,
const Int Rep And Format T * Layout);

The BigIsOdd routine shall return Boolean_True if the big integer *A_Number is odd;
otherwise BigIsOdd shall return Boolean_False.

8.2.17 BigLowPart

#include <bigint.h>
unsigned long BigLowPart(
const Big_Int T * A Number,
const Int_ Rep_And Format T * Layout);

The BigLowPart routine shall return the low part of the big integer *A_Number.

8.2.18 BigMax

#include <bigint.h>
void BigMax(
Big_Int_T * Dest,
const Big_Int_ T * A Number,
const Big_Int_T * Another Number,

19
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

const Int Rep_ And_Format_T * Layout);,

The BigMax (big integer maximum) routine shall set the big integer *Dest to the larger of
the big integers *A_Number and *Another_Number. If one of the big integers is zero and
the other is “negative zero,” then it is unspecified which one BigMax shall copy to *Dest.

8.2.19 BigMin

#include <bigint.h>
void BigMin(
Big Int_T * Dest,
const Big_Int T * A Number,
const Big_Int_T * Another Number,
const Int Rep And Format_T * Layout);

The BigMin (big integer minimum) routine shall set the big integer *Dest to the smaller of
the big integers *A_Number and *Another Number. If one of the big integer inputs is
zero and the other is “negative zero,” then it is unspecified which one BigMin shall copy
to *Dest. '

8.2.20 BigMod

#include <bigint.h>
void BigMod(
Big Int T * Remainder,
const Big_Int_T * Numerator,
const Big_Int T * Denominator,
const Int Rep And_Format_T * Layout),

If the value of the big integer *Denominator is not zero, then:
The BigMod (big integer modulo) routine shall set the big integer *Remainder to
the remainder after dividing *Numerator by *Denominator. BigMod shall set the
sign of *Remainder to the sign of *Denominator. BigMod shall guarantee that the
resulting absolute value of *Remainder is less than the absolute value of

*Denominator.

Otherwise, the BigMod routine shall set *Remainder to zero.

8.2.21 BigMul

#include <bigint.h>

20
This is an unapproved draft, subject to change. :

Draft 0.1, Dated 1994-12-30

Boolean_T BigMul(
Big Int T * Low_Result,
Big_Int_T * High_Result,
const Big_Int T * A_Number,
const Big_Int T * Another Number,
const Int Rep_And _Format T * Layout),

The BigMul (big integer multiply) routine shall multiply the big integers *A Number and
*Another Number. BigMul shall set the big integer *High Result to the most significant
part of the product (including the sign bit, if applicable). BigMul shall set the big integer
*Low_Result to the least significant part of the product (including another copy of the
sign bit, if applicable). [Make sure all bits of result fit!] If an overflow occurred, BigMul
shall return Boolean_True; otherwise BigMul shall return Boolean_False.

8.2.22 BigNeg

#include <bigint.h>
Boolean T BigNeg(
Big _Int T * Dest,
const Big_Int T * Src,
const Int_Rep_And_Format_T * Layout),

If BigSign(Src,Layout) would return SGN_ZERO, then BigNeg shall act as if calling
BigCopy(Dest,Src). (This shall also preserve a “negative zero” value.) BigNeg shall then
return Boolean_False to indicate that no underflow/overflow has occurred. [Is this
redundant?]

If Layout.IntRep has a value of NoSign, then BigNeg shall act as if calling
BigCopy(Dest,Src). BigNeg shall then return Boolean_False to indicate that no
underflow/overflow has occurred. [Call BigNot instead?]

If Layout.IntRep has a value of OnesComplement, then BigNeg shall act as if calling
BigNot(Dest,Src). BigNeg shall then return Boolean_False to indicate that no
underflow/overflow has occurred.

If Layout.IntRep has a value of SignedMagnitude, then BigNeg shall copy the data bits
from Src to Dest, and set the sign bit at Dest to the inverted sign bit from Src. BigNeg

shall then return Boolean_False to indicate that no underflow/overflow has occurred.

If Layout.IntRep has a value of TwosComplement, then BigNeg shall [expand, including
return value...]

8.2.24 BigNot

21
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

#include <bigint.h>

void BigNot(
Big_Int_T * Dest,
const Big_Int_T * Src);

The BigNot routine shall set the big integer at *Dest to the result of inverting each of the
bits of the big integer at *Src. BigNot shall invert the sign bit (if any) along with the data
bits.

8.2.25 BigOr

#include <bigint.h>
void BigOr(
Big_Int_T * Result,
const Big_Int T * A Number,
const Big_Int_T * Another Number);

The BigOr (big integer bitwise OR) routine shall set the big integer at *Result to the
bitwise OR of the big integers *A_Number and *Another_Number. The sign bits (if any)
are ORed together, just as the corresponding data bits are, in a bitwise fashion.

8.2.26 BigOut

#include <bigint.h>
int BigOut(
FILE * A File,
const Big_Int_T * A Number,
const Int_Rep_And_Format T * Layout,
unsigned char Base,
Boolean_T PreferUpperCase),

The BigOut (big integer output) routine shall output a printable representation of the big
integer *A_Number, to A_File. The results shall be in radix Base (which a conforming
program shall only give a value from 2 to 36). [Expand that, including use of Base and
the flag.] The BigOut routine shall return the number of characters written to A_File,
except in the event of an error, in which case BigOut shall return a negative value.

8.2.27 BigRoL

#include <bigint.h>
void BigRoL(

22
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

Big_Int_T * Dest,

const Big_Int_T * Src,

Bit_Number_T ShiftCount,

const Int_Rep_And_Format_T * Layout).

The BigRoL (big integer rotate left) routine shall set the big integer *Dest to the result of
rotating the bits (including sign bit, if any) from big integer *Src left by ShiftCount bits.
The semantics in 4.7 Shift/Rotate Counts shall apply.

8.2.28 BigRoR

#include <bigint.h>
void BigRoR(
Big_Int_T * Dest,
const Big_Int_T * Src,
Bit_ Number_T ShiftCount,
const Int Rep_And_Format_T * Layout);

The BigRoR (big integer rotate right) routine shall set the big integer *Dest to the result
of rotating the bits (including sign bit, if any) from big integer *Src right by ShiftCount
bits. The semantics in 4.7 Shift/Rotate Counts shall apply.

8.2.29 BigShL

#include <bigint.h>
void BigShL(
Big Int_T * Dest,
const Big_Int_T * Src,
Bit_ Number_T ShiftCount,
const Int Rep_ And_Format_T * Layout);

The BigShL (big integer shift left) routine shall set the big integer *Dest to the result of
shifting the bits (including the sign bit, if any) from big integer *Src left by ShiftCount bits
(and shifting-in zeros on the right if necessary). The semantics in 4.7 Shift/Rotate
Counts shall apply.

8.2.30 BigShR

#include <bigint.h>

void BigShR(
Big_Int_T * Dest,
const Big_Int_T * Src,

23
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

Bit_ Number_T ShiftCount,
const Int_ Rep And Format T * Layout),

The BigShR (big integer shift right) routine shall set the big integer *Dest to the result of
shifting the bits (including the sign bit, if any) from big integer *Src right by ShiftCount
bits (and shifting-in ? on the left if necessary). The semantics in 4.7 Shift/Rotate Counts
shall apply. [What happens to sign bit?]

8.2.31 BigSign

#include <bigint.h>
Sign_T BigSign(
const Big_Int_T * Number,
const Int_Rep_And_Format_T * Layout);

The BigSign routine shall examine the big integer at *Number, test the data bits (and sign
bit if applicable), and return the Sign_T value indicated in the following table.

Layout->IntRep data bits sign bit returned value
NoSign Zero (none) SGN_ZERO
NoSign nonzero (none) SGN_POSITIVE
OnesComplement zero zero SGN_ZERO
OnesComplement zero one SGN_ZERO
OnesComplement nonzero zero SGN_POSITIVE
OnesComplement nonzero one SGN_NEGATIVE
SignedMagnitude zero Zero SGN_ZERO
SignedMagnitude zero one SGN_ZERO
SignedMagnitude nonzero zero SGN_POSITIVE
SignedMagnitude nonzero one SGN_NEGATIVE
TwosComplement zero Zero SGN_ZERO
TwosComplement zero one SGN_NEGATIVE
TwosComplement nonzero zero SGN_POSITIVE
TwosComplement nonzero one SGN_NEGATIVE

8.2.32 BigSMul

#include <bigint.h>
Boolean_T BigSMul(
Big_Int_T * Result,
long A_Number,
long Another_Number,
const Int_Rep_And_Format_T * Layout),

24
This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

The BigSMul (signed multiply to a big integer) routine shall multiply the long integer
A_Number by Another Number, and store the result in the big integer *Result. [But what
if Layout.IntRep is NoSign?] If an overflow occurred, BigSMul shall return
Boolean_True; otherwise BigSMul shall return Boolean_False.

8.2.33 BigSSet

#include <bigint.h>
void BigSSet(_
Big Int_T * Dest,
long NewValue,
const Int_Rep And_Format_T * Layout),

The BigSSet (big integer signed set) routine shall set the low order data bits of the big
integer *Dest to the bits of NewValue. BigSSet shall also propagate the sign bit to the
other data bits (and the sign bit, if applicable) of the big integer *Dest.

[But what if Layout.IntRep is NoSign?]

8.2.34 BigSub

#include <bigint.h>
Boolean_T BigSub(
Big_Int_T * Result,
const Big_Int_T * A Number,
const Big_Int_T * Another Number,
Boolean_T Previous Borrow,
const Int_Rep And_Format T * Layout);

BigSub shall set the big integer at *Result to the part of the result of subtracting the big
integer * Another Number (plus one, if Previous_Borrow is Boolean_True) from
*A_Number that fits in a big integer. [That wording is ambiguous; fix it!] If a borrow
occurred, then BigSub shall return Boolean_True; otherwise, BigSub shall return
Boolean False.

8.2.35 BigSwap

#include <bigint.h>

void BigSwap(
Big_Int_T * Dest,
const Big_Int T * Src,

9
N

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

const Int_ Rep And_Format_T * NewLayout,
const Int Rep And_Format_T * OldLayout),

The BigSwap (big integer swap MAUs) routine shall ?

8.2.36 BigUMul

#include <bigint.h>
Boolean_T BigUMul(
Big_Int_T * Result,
unsigned long A Number,
unsigned long Another Number,
const Int_ Rep_And_Format_T Layout);

The BigUMul (unsigned multiply to a big integer) routine shall multiply the unsigned long
integer A_Number by Another Number, and store the part of the product that fits into the
big integer *Result. If an overflow occurred, BigUMul shall return Boolean_True;
otherwise BigUMul shall return Boolean_False.

8.2.37 BigUSet

#include <bigint.h>
void BigUSet(
- Big_Int_T * Dest,
unsigned long NewValue,
const Int_Rep_And_Format_T * Layout);

The BigUSet (big integer unsigned set) routine shall set the low part of the big integer
*Dest to NewValue, and shall set the other data bits (and sign bit, if any) to zero.

8.2.38 BigXOr

#include <bigint.h>
void BigXOr(
Big_Int_T * Result,
const Big_Int_T * A_Number,
const Big_Int_T * Another_Number),

The BigXOr (big integer exclusive-or) routine shall set the big integer at *Result to the
bitwise exclusive-or of the big integers *A_Number and * Another Number. The sign bits
(if any) are exclusive-ORed together, just as the corresponding data bits are, in a bitwise
fashion.

This is an unapproved draft, subject to change.

Draft 0.1, Dated 1994-12-30

8.2.39 BigZero
#include <bigint.h>
void BigZero(
Big Int_T * Result);

The BigZero (big integer zero) routine shall set the big integer *Result to all zero bits
(including the sign bit, if any).

27
This is an unapproved draft, subject to change.

727]

