—

WG14/N411 X3J11/95-012 Page 1

From: Frank Farance

Date: 1995-03-24

Document Number: WG14/N411 X3J11/95-012
Subject: X3J11] Comments on IEEE 1003.1i/D2.0

Review of: ‘‘IEEE Project 1003.1i/D2.0, Standard for
Information Technology -- Portable Operating System
Interface (POSIX) -- Part 1: System Application Program
Interface (API) -- Amendment: Technical Corrigenda to
Realtime Extensions [C Langauge]’’

Please respond to me via E-mail if you have any further
questions.

Thank you for asking us to review your document. The
following are suggestions from various technical experts in
ANSI X3J11. Considering that the review period was very
short, X3J11l reserves the right to provide additional
comments on this document in the future.

X3J11 has reviewed a similar document: ‘‘Draft Amendment
ISO/IEC 9944-1:1990/DAM1, Information technology -- Portable
Operating System Interface (POSIX) -- Part 1: System
Application” Program Interface (API) [C Language], AMENDMENT
1: Realtime Extension (C Language)’’. The following is a
copy of our 1994-09-12 comments. Currently, we have no
other comments on D2.0.

Page ix, line 93: Typo -- too many quotation marks

Page 11, table: The "Key" field is not defined. It is in
1003.1. You should include the definitions of " (1)" and
m(2)", i.e., the explanatory text, in this document to make
it easier to review. Otherwise, all other columns in the
table are understood.

Page 12, section 2.7.3: You should mention here or
somewhere else that the names of the functions are not
strictly conforming to ISO/ANSI C because they are not all
unique in the first 6 characters. Not all linkers are
modern linkers. Even previous UNIX systems would have a

problem with "sched_setparam()" and "sched setscheduler ()"
because they are not unique in the first 7 characters
(assuming C compilers prepend names with " *} & . Thigridsue

was not a problem in 1003.1 because all the names are unique
in the first *6* characters. This problem can be easily
overcome by creating macro names (monocase and unique in the
first 6 characters) that replace the convenient long names
you’ve defined. You need to let the readers of your
document know that you’re aware of this limitation in *some*
linkers, but your API still can conform to ISO/ANSI C as
%Q?g as the implementor includes the mapping in the header
ile. ’



WG14/N411 X3J11/95-012 Page 2

Page 19, line 66: You should reference "sem unlink()" since
a semaphore may be unlinked upon process termination.

Page 19, line 76: You should reference "mg_unlink()" since a
message queue may be unlinked upon process termination.

Page 19, line 76: You make no reference to the shared memory
services. What happens to the objects accessed via

"shm open()"?. Part of the problem is that there is no
"shm_close ()" call. You should mention "shm_unlink()"

Page 29, section 3.4.2.1: Your new model and rationale for
extensions to signals misses an important aspect: most
library functions (especially C library functions) are not
required to be reentrant. Even "sprintf()", "sscanf()", and
"memcpy ()" can’t be used. In real-time applications, you
might not be using "fread()" and "fwrite ()", but you might
want to format error messages (with "sprintf()") or copy
blocks of memory (with "memcpy()"). You should require most
of the C library functions to be reentrant for your
extension. There are some C library functions that are
explicitly non-reentrant, e.g., "strtok()". As a rule of
thumb, you should require C library functions to be
reentrant that meet the following criteria:

- No I/0 is performed.

- No signals would be generated with normal .y
parameters (e.g., mathematical functions that cause

signals to be generated on overflows, divide by

zero, etc.).

- The function is not explicitly non-reentrant.

(This list doesn’t *exclude* I/O functions, it just
*includes* functions that don’t do I/0.)

Obviously, the biggest problem is that you can’t use
functions like "memcpy ()" in signal handlers. Also, it’s
clear you *intend* to use standard C I/O functions (see page
85, section 8.2.2).

The POSIX project on multi-threading should have a list of
functions like this since they have the same problem in
multi-threaded applications. You should require the same
list (possibly *including* I/0 functions) in the list above.

Page 140, section 12.4.2.5.3: The section explains that

traditional practice was to use an "mmap ()" followed by a

"close()". This was true *only* for files that were opened

with "open()". However, for System V shared memory, the

practice was "shmget ()", ‘"shmat()", "shmdt ()"

"shmctl (IPC_RMID)". You still need a "shm_close()"

operation. " This completes both paradigms:

File-based:

open e
mmap )

394



——~

WG14/N411 X3J11/95-012 Page 3

munmap -- optional
close

Memory-based:
shm open (like shmget)
mmap (like shmat)
munmap (like shmdt) -- optional
shm_close (like shmctl)

Just as you wouldn’t expect to close a semaphore with
"close", you shouldn’t expect to close shared memory with
"close". Conversely, you can just overload all of "open"
and "close" to include semaphores, message queues, and
shared memory. Maybe you only need to overload only close
(in this case you’d remove "sem close()" and "mg close()")
just like the way sockets work. But since most code is
specialized in its attachment (open) and detachment (close)
phases, i.e., the code has knowledge of what type of object
it is accessing and the methods needed to access it (e.g.,
"open", "shm open()", "socket()", "application open()",
etc.), the "open-mmap-close" paradigm would only apply to
file objects and "shm_open-mmap-shm_close" paradigm would
apply to shared memory objects.

33



