e

T\

Dec 14 17:46 1994 WG14 N393/X3J11 94-078 Page 1
Document Number: WG1l4 N393/X3J11 94-078

C9X Revision Proposal

Title: Adding support for distributed objects.
Author: Frank Farance
Author Affiliation: Farance Inc.
Postal Address: 555 Main Street, New York, NY, 10044-0150, USA
E-mail Address: frank@farance.com
Telephone Number: +1 212 486 4700
Fax Number: +1 212 759 1605
Sponsor: X3J11
Date: 1994-12-04
Proposal Category:
___ Editorial change/non-normative contribution
__ Correction
X_ New feature
___ Addition to obsolescent feature list
___ Addition to Future Directions
___ Other (please specify)
Area of Standard Affected:
__ Environment
X__ Language
Preprocessor
Library
___ Macro/typedef/tag name
__ Function
___ Header
Prior Art: Intel 80x86 compilers, C*, DPCE, HPF.

Target Audience: C programmers, distributed/MPP systems, array slicing.

Related Documents (if any): DPCE draft, HPF.

Proposal Attached: __ Yes X_ No, but what'’s your interest?
Abstract:

Some virtual memory systems provide discontiguous access to
data, e.g., segmented memory, distributed memory. In some
cases, there many be several layers in the memory hierarchy
(e.g., network node, processor number, process number, local
address). Pointers that access the data may be local (i.e.,
relative to some context, e.g., segment number, process
number, etc.) or global (i.e., the context is specified).
The local pointer can access contiguous data local to its
context, i.e., pointers can walk local data, but not cross
context boundaries. Global pointers can reference data
regardless of context. Global pointers are of two
varieties: local incrementing (cannot cross context
boundaries) and global incrementing (can cross context
boundaries automatically). In 80x86 systems, these pointers
are called "near", "far", and "huge". Memory hierarchies
that have more that two layers have increasing spheres of
locality (e.g., local to process, local to processor, local
to node, global). This proposal provides a general
mechanism, including layout operators, layout type
qualifiers, and a pointer hierarchy to access data on these
systems.

<D

1
Qo

4



Dec 14 17:46 1994 WG14 N393/X3J11 94-078 Page 2

The "layoutof ()" operator returns an array of "size_t" where
each element is the size of the ‘‘extent’’. For example, if
A is an array of 10 integers, distributed across two
processors (or segements) with 6 elements on the first
processor and 4 elements on the second processor, assuming
"int"s are 4 bytes:

layoutof (A) is { 24, 16 }

The "pointerof ()" operator (placeholder name until syntax
can be agreed) produces a list of pointers to each extent:

pointerof (A) is { 1000, 2000}
Given these two sets of values, distributed objects can now
be processed as C objects since address and size are known.

This is useful for writing distributed versions of "memcpy".

The type qualifier "layoutis()" is used to define layout.
For example:

int layoutis(layoutof(a)) B[10];

declares B with layout similar to A. The "layoutis()" type
qualifier may be used in function prototypes. The
"layoutis (?)" type qualifier is used when the programmer

wants the layout information passed with the argument:

void my_memcpy (void layoutis(?) *dst,
void layoutis(?) *src);

The local pointers are still known as "void *". The global
pointers with local incrementing are:

/* xxx is some layout specification */
void layoutis (xxx) *P;

The global pointers with global incrementating are:

/* xxx 1s some layout specification */
void (volatile layoutis (xxx)) *P;

Development Plan:
- Define result of "layoutof()".

- Determine changes to type system ("layoutis()").
- Create sample implementation.

=,

"ol

()]



