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Abstract:
This extension allows arrays to be considered as first class
objects. First class objects can be used in assignment and
argument passing. Array-like objects (ALO’s) are C arrays
that are first class objects. Arrays can be declared as
ALO’s or C arrays. A sample declaration might look like:

int A[4], B[4]; /* C array */
alo int C[4], D[4]; /* first class object */

f(A,B) /* passes two pointers as arguments */
g(C,D) /* passes four integers for each argument */

/*
* Function that receives two pointers. Adds
* the array Y to X. Returns the sum of all
* elements. NOTE: X is modified.
el
int £( int X[4], int Y[4] )
{
int i, sum = 0 ;
for (i =0 ;1 <4 ; i++)
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X[i] += Y[i];
sum += X[i];
}
return sum;
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/*
* Function that receives two arrays as values,
* i.e., 8 integers are passed as arguments.
* Adds the array Y to X. Returns the sum of all
* elements. NOTE: X is NOT modified.
7
int g( alo int X[4], alo int Y[4] )
{
int i, sum = 0 ;
for (i =0 ; i < 4 ; i++ )
{
X[i] += YI[i];
sum += X[1];
}
return sum;

}

The use of "alo" as a keyword is only a placeholder until
more appropriate syntax is developed. The semantics of an
ALO are:

alo int E[5];
is equivalent to:
struct { int arrayI[5]; } E;

In other words, an ALO is equivalent to a C array in a
structure. C arrays may be ‘‘cast’’ to ALO’s:

/* Note: The cast here produces an l-value. */
int A[4], B[4];

(alo)A = (alo)B;

ALO’s may be cast to a C array by using the keyword
"carray". The use of keyword "carray" is a placeholder
until better syntax is developed. Casting an ALO to
"carray" is equivalent to getting the pointer of the
beginning of the array. At first glance, this looks
equivalent to the address-of "&" operator. I prefer to use
the cast to "carray" for the purpose of developing semantics
rather than confusing the issue by overloading the "&"
operator. Ultimately, the syntax *might* be "&", but this
issue doesn’t have to be resolved now.

£( (carray)C, (carray)D );

Passing arrays as ALO’s (pass by value) are useful because
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they provide a faster private copy of the array on the stack
(rather than the function allocating memory for a temporary
array) .

ALO’s are simple to implement because they are simply
rewritten as an array inside a structure. Structure copying
and argument passing is already part of Standard C.

Development Plan:
- Determine how this affects the type system.

- Determine how this affects type casts.
- Develop appropriate syntax.



