169 /W39

Accredited Standards Committee x277) /Y- Jd7Y
X3, Information Processing Systems*

Date: 28 November 1994

Reply to: Craig Schaffert
Digital Equipment Corp
Cambridge Research Lab
One Kendall Square, Bldg 700
Cambridge, MA 02139

To: X3J Committee Chairs

Re: ISO/IEC DIS 10967-1
Language independent arithmetic -
Part 1: Integer and floating point arithmetic

Dear Committee Chair,

Your committee is listed as coordinating liaison for ANSI project 686-I (Language independent arithmetic,
part 1) currently under development by X3T2 and ISO/IEC JTC1/5C22/WG11.

I am enclosing copies of three documents that you might find of interest:

1. Responses to U.S. Comments on ISO/IEC DIS 10967-1 (X3T2/93-080)

2. Proposed U.S. Position on ISO/IEC DIS 10967-1 (X3T2/93-008)

3. Resolution of International Comments on LIA-1 (SC22/WG11 N401)
The public review comments are collected in document X3 /94-0048.

If you have any comments or questions on this document, please forward them to the X3T2 chair

John Sharp

Sandia National Laboratories
Org. 4400 — P.O.Box 5800
Albuquerque, NM 87185

Feel free to contact me as well.

Thank you for your help in this matter.
Sincerely,

Creies, 4

Craig Schaffert, for X3T2

*Operating under the procedures of the American National Standards Institute
X3 Secretariat: Computer and Business Equipment Manufacturers Association Tel: 202-737-8888
311 First Street NW, Suite 500, Washington, DC 20001-2178 Fax: 202-638-4922

020

X3T2/94-080

RESPONSES TO U.S. COMMENTS ON ISO/IEC DIS 10967-1
Language independent arithmetic --
Part 1: Integer and floating point arlthmetlc

April 1994

The draft international standard version of ISO/IEC 10967-1 [1] (LIA-1)
was reviewed in the U.S. from 12 November 1993 through 11 January 1994.

Comments from 9 individual reviewers were received, as well as one set of
comments from an X3 liaison committee. All of these comments were
considered in formulating the U.S. position on LIA-1 [3], and all are
addressed here.

COMMENT #1: Peter Farkas (Sun Pro)

Comments on the standards process: Comments on the general standards
development process should be directed to ANSI.

Comments on the goals of LIA-1: It is clear that not everyone agrees with
the goals of LIA-1. However, the majority of X3T2 feels that the current
goals are wvalid, and that the standard is valuable.

Specific proposals for changes: Virtually all of these proposals were
adopted as part of the official U.S. comments [3]. Some comments were
omitted because they contained no concrete suggestions.

COMMENT #2: Keith Bierman (Sun Pro)

Commentor’s pages 1 thru 4, comments on the standards process: Comments on
the general standards development process should be directed to ANSI.

Commentor’s pages 5 and 6: It is clear that not everyone agrees with the
goals of LIA-1. However, the majority of X3T2 feels that the current goals
are valid, and that the standard is valuable.

Pages 7 thru the end: Since this is a verbatim repetition of your previous
comments, please see our previous response to these comments.

COMMENT #3: Kenneth W. Dritz (Argonne National Lab)

Thank you for your kind words about the mathematical style chosen for LIA-1.

COMMENT #4: Robert Jervis (Sun Microsystems)

Comments on the goals and utility of LIA-1: It is clear that not. everyone
agrees with the goals of LIA-1. However, the majority of X3T2 feels that
the current goals are valid, and that the standard is wvaluable.

IEC 559 is more than adequate: We disagree. See our previous comments on
this issue, particularly <G8> and <G12> in [2].

Page 7, the arithmetic types: We agree that standard bindings are essential.
See comment Cl in [3].

Page 8, modulo integers versus overflow: You express concern about the
eff1c1ency of multiply, divide, and remainder in Sparcs, but the LIA-1

definition is exactly equivalent to the definition in IEEE P1754 (which
describes the Sparc architecture). You worry about other architectures, but
haven’t presented any machine in common use that cannot implement these
operations with acceptable efficiency.

Page 23, relationship with language standards: Since both topics are
properly addressed in language standards, we will retain the exilsting
section.

COMMENT #5: Paul Eggert (Twin Sun Inc)

Introduction: The introduction to an ISO standard is an informal description
of the standard’s content and purpose. It is not supposed to be a proof of
anything. The U.S. comments [3] do recommend eliminating claims that have
been misunderstood.

Scope: Holm’s approach was considered and excluded early on. Eye;y.approach
has its problems, but the majority felt that a more precise definition of
the basic floating point operations (one that allowed analysis of Dekker’s
algorithm, for example) was necessary.

As for Cray, the majority of participating countries think that excluding
Cray is a good thing.

Clause 5.1.2: What existing machines in common use are excluded by the LIA-1
definitions?

Clause 5.1.3: We agree, see comments Bl and B2 in [3].
Clause 5.3: We agree, see comments B3 and B4 in [3].

Clause 6.1: Notification by exceptional values is allowed by the DIS, but
the current text is clearly open to misunderstanding. The US comments [3]
call for clarification in this area.

The programming language (or binding) standard can devise any method for
notification whatsoever. 1If these standards don’t specify a method,
recording of indicators must be provided. Note that this does not preclude
the simultaneous use of other methods such as exceptional values. .

The reference to functional languages is part of an example, not a
restrictionh.. '

Annex A.5.2.0.4: We can add the cross reference, but see no reason to soften'

the wording on NaNs and infinities.

Annex A.6.1.1: Notification by exceptional values is allowed under clause 2,
not some convoluted reading of clause 6.

LIA-1 helps programmers know about rounding error (via parameters) and about
exceptions (via notification). LIA-1 constrains systems to provide this
information, but cannot force programmers to make use of it rationally.

Note that programmers must take some positive action to suppress a
notification completely.

Floating point arithmetic is intrinsically approximate (programmers who
expect exact arithmetic should use integers or fixed point). There is a
qualitative difference between rounding error (which programmers always have

to account for) and the events that require notification such as dividing by
zero or overflow.

Annex A.6.1.2: LIA-1 is compatible with solutions to this problem. Example

solutions include Ada style exceptions, per-thread indicators, and returning

exceptional values. It is better to point out the problem to language (and

library) designers than to remain silent. Error handling is a general 01)2
&,

TN

S

problem applying to all programming, it is not confined to arithmetic
processing.

The comment that "notifications do not get lost™ is advice, not a
requirement. Requirements never occur 1n informative annexes.

annex C: We agree that binding standards for IEC 559 are important. See
comment Cl in [3]. But we feel that effort should be put into official
standards, not into examples. Procedurally, this can be done faster

by working on each language separately, not by tying them all together.

Annex C.2: We agree.

Annex E: We disagree, reviewing such bindings for LIA-1 and then again for
an official binding standard would only lead to delay. Other groups are

already working on bindings to IEC 559, and it’s best not to muddy the
waters.

Annex E.1l: Good point, but this is up to the offiecial C binding.
Annex E.4, page 73: We agree.
Annex E.4, page 75: We agree, see [3].

annex F.4: We agree.

Annex F.5: OK, but other reviewers have suggested removing the clause
entirely.

annex G: Examples are not proofs. They are intended to show uses of
particular features, and must be short in order to be clear.

Annex G.l: We agree.

Annex G.3: These are terse examples, not intended to be complete in all areas.

Znnex G.5: True, but the code is correctly quoted from the original authors.
We will suggest noting that the original authors assume that exceptions will
not arise.

Annex G.6: Again, we will suggest noting that exceptions are being ignored
for clarity.

COMMENT #6: Russ Tuck (MasPar Computer Corp)

Russ Tuck’s comments are in support of Keith Bierman’s. See our response
above.

COMMENT #7: James Gosling (First Person Inc)

James Gosling’s comments are in support of Keith Bierman’s. . See our
response above.

IEC 559 is more than adequate: We disagree. See our previous comments on
this issue, particularly <G8> and <Gl2> in [2]. Note that LIA-1 is not a

;eplacement for, or alternative to, IEC 559. LIA-1 addresses different
issues. .

__________________________________ ekl A e e
COMMENT #8: Fred Tydeman (IBM) 1

Page vi: The modulo parameter seems to meet your needs. This suppresses
overflow checking and gives a well-defined result. Suppressing overflow
checking while leaving the result undefined was explicitly rejected by

02;

several previous reviewers.

Page 2: We don’t object, but enumerating all out-of-scope arithmetics could

go on forever.

Page 3: We agree.

Page 10: OK.

Page 11: No, which types are "useful" is application specific.
Page 18: We disagree that readers will be confused.

Page 19, integer to integer conversions: We agree, see [3].

Page 19, conversions to floating point: No, the majority of reviewers so far

have advocated some form of round to nearest for conversions to floating
point, and binding standards are free to alter this:

Page 20: No, LIA-1’s requirements apply to such programs. Do you mean that

LIA-1 does not say anything specific about such programs or treat them
differently? That’s true.

Page 30: No, language standards seldom set up a validation process.

Page 58: Sine, and other mathematical functions, will be handled in LIA-2.
Page 63: OK.

Page 63-64 and 643 We believe that this shold be covered by a more general
discussion of the relationship between the binding standard and the

implementation.

Page 75: This is really up to the C binding standard.

Page 83: No, we really mean the former Fortran standard, not the current one.

Page 97: OK.

COMMENT #9: David M. Gay

Para.z: We agree that IEC 559 bindings are needed. See Cl of [3].
The iec_559 flag will expose deviations form IEC 559 conformance.

Item 1l: The modulo parameter seems to meet your needs. This suppresses
overflow checking and gives a well-defined result. Suppressing overflow
checking while leaving the result undefined was explicitly rejected by
several previous reviewers.

Item 2: We explained our reasoning on this in <G23> of [2]. An additional
function to do what you suggest is clearly permitted, just not required.

Item 3: OK.

LIAISON COMMENT: X3J4, Cobol

Hewlett-Packard: We agree that fixed point should be covered in a future

Eiitlof the LIA family. However, decimal radix is covered in the current

Micro-Focus (add two references to Cobol): OK.

Victor Consulting: There is no Cobol annex because the Cobol standard is
currently being modified to add floating point types. An example binding

0

9

4

seems premature at this time.

wang Laboratories 1: LIA-1 covers multiple float radixes except for
conversions. Radix conversion will be covered in LIA-2.

Wang Laboratories 2: The annexes do cover Ada, C, and Fortran, which can all
support multiple integer types.

3IBLIOGRAPHY
1] JTC1/SC22/WGll N364R, Information technology -- Language independent
arithmetic -- Part 1:- Integer and floating point arithmetic, Version

4.1, 4 August 1993

[2] X3T2/93-123, Responses to U.S. Comments on ISO/IEC CD 10967-1.2 (LIA-1),
September 1993

[3] X3T2/94-008, Proposed U.S. Position on ISO/IEC DIS 10967-1 (LIA-1),
1 March 1994 (attached below)

()

0

el

X3T2/94-008

PROPOSED U.S. POSITION ON ISO/IEC DIS 10967-1 (LIA-1)
4 March 1994 '

The U.S. votes to APPROVE progression of ISO/IEC DIS 10967-1 (LIA-1).
In addition, the following comments are submitted.

Al:
page vi, paragraph 6

Delete it. 1In fact it does not comply with US comment 1.1 to 2nd
CD LIA-1.

A2: :
page vi, paragraph 7

Delete the last sentence. It does not comply with US comment 1.1
to 2nd CD LIA-1.

A3:

page vi, last paragraph
Delete it.

Ad:

page vii, second line
Replace "characterize" by "describe some ofM.

AS5:
page vii, first paragraph
Second and third aim need to be better formulated.

AG:
page vii, third, fourth, fifth, sixth paragraphs of The benefits

The Benefits section should be reexamined and modified to ensure that

it is accurate and does not create false impressions or contain false
promises.

A7: '
page 1, second paragraph
The last sentence should read: “Ra?her, this International Standard

ensures that the properties of the arithmetic of conforming arithmetic
types are made available to the user."

A8:
page 2, g) : ; : _ _
Delete it. It contradicts with requirements when iec_559 is true.
AO:
page 2, last sentence
Delete it.
Al10:
pages 4 and 5, "continuation values" and "exceptional values"

They need to be redefined properly, need clarifications, bringing
in tune with the common usage and with the usage of "exceptional
operands" and "exceptional results" in IEC 5594,

All:
page 5, "error", (2)

Should make it clear that except for those phrases, error and
exception are not synonyms.

Al2:

0

M

7

page 5, "exception" BN
Should get a better definition or be deleted.

Al3:
page 5, "exceptional value" ' ¥ _
See comments Al0 and All about continuation value and exception.

Al4:
page 5, "notification", second line o '
Replace "results in a notification" by "causes a notification".

AlS:
page 5, "rounding" By el
Needs a meaningful definition.

Al6:
page 6, "round to nearest" s

Add text along these lines: "If the adjacent values are equidistant
from u, either may be chosen according to precise rules which will be
properly documented, and available at run time".

Al7: &
page 6, paragraphs 2, 3, 4 in section 5
They need to be changed in accordance with comments made above.

This is a non-trivial editing task, beyond the scope of a comment or
simple request for change.

Al8:

page 7, first paragraph
Change it to "Whenever an arithmetic operation causes an exception,
"

Al9:
page 7, fourth paragraph (Note)
This should be elaborated on and placed in a more prominent place,

since it is basically defining what implementation and conformance
mean.

A20:
page 11, line after second Note
Delete "that spans all of R". The word span has a universally

accepted mathematical meaning which is different than the one implied
here.

A21:
page 12, section 5.2.2

This is at best misleading. Section 5.2.9 will define iec_559. 1In
case iec 559 is set, these operations are required to have "larger"
signatures, and further differentiation between the exceptional values
is required. Specifically, the section is OK as it stands when
iec_559 is not set, but it needs to be much more specific when iec_559
is set. i
A22:
sections 5.2.4, 5.2.5, 5.2.6, 5.2.,7
. US comment 5.4 to 2nd CD LIA-1 referred to these and it was -not
implemented. The US acknowleadges the difficulty the editor(s) is(are)
facing in eliminating the helper functions, but they should be
eliminated if the standard is to be useful.

Take the point of view of the user and of the compiler writer.
>From the point of view of the user, what he sees is an operation, e.g.
an gddition. This addition is close, but differing from the real
addition. This user needs to know in what ways and how much it is
differing, and what properties it has (e.g. what axioms it satisfies).
>From the point of view of the hardware manufacturer and compiler
writer it is also impractical to have to satisfy axioms involving

SRR i<

these helper functions. If the add* are appearing naturally through
the algorithms involved in the design of the hardware/software system,
everything is simple; otherwise there is no reasonable way they can

make sure they are providing a conforming implementation. The
standard should provide either precise algorithms or precise
descriptions of the result. What matters for everybody is the

properties of the operations visible to the user.

A23:
sections 5.2.4, 5.2.5, 5.2.6, 5.2.7

There is no point in going through detailed editing comments since
comment A22 just suggested that this part has to be completely
rewritten. The purpose of.this comment is to point out that one needs
to be careful with the usage of words. For example "shall" and
"should" is are reserved words in the language of the standard.
Therefore they should not be used in the context of add* and rnd rnd,
which are not required functions.

Another example is rounding. It is "defined" for the second time
at the beginning of 5.2.5, but this definition is not better than the
first one. The standard should either assume that the readers of this
standard know what rounding is, or give a serious definition.

The list of editing problems goes on: the note in 5.2.4 talks of
requirements in connection with add* which is not required, the last
sentence of 5.2.5 is grammatically bad.

A24:
page 17, section 5.2.8, Note
The reference is probably to A.5.2.8, not A.5.2.5.

A25:
page 17, fifth line from below

This is factually incorrect. The behavior is specified when
iec_559 is set.

A26:
page 17, last three lines

The definition of rnd style needs to also accommodate the case when
iec_559 is set. o

A27:
section 5.2.9

Section 5.2.9 is incomplete with respect to the relationship between
1.IA-1 and IEC 559. Both the overall relationship and the details need to
be defined. Having IEC 559 normatively included by reference in LIA when
the flag IEC 559 is true implies changing not only this section, but other
sections as well.

A28:
page 19, last line

The meanings of "shall" and "distinct" are probably not the usual
ones. 1In fact it is not clear what this sentence is meant to say.

A29:
section 6

The US has already called attention before to the need of rewriting
this section, and this comment is made to call attention to it again.
Also note that US comment 5.6 to 2nd CD LIA-1 was calling for
substantial clarifications. While WGll rejected US comment 5.6 to 2nd
CD LIA-1, it was agreed that certain clarifications will be made.
They were not made at all. It is not worth it going through the text
of this section trying to improve the words. The whole section needs
to be reworked. Without a clear understanding of what notification

means and how is to be done a major part of this standard becomes
useless.

A30:

029

section 7 '
Section 7 is still too vague. It needs to be improved.

Bl: '
The current definition of integer negate is

neg_I(x) = -Xx ifi=gdn Ic
= integer_overflow if =x not in I

The last line (integer_overflow) should be changed to

= wrap I(-x) if -x not in I and modulo = true
= integer_overflow if -x not in I and modulo = false
B2: g
The current definition of integer absolute value 1is
abs_I(x) = |x| if |x| in iy
= integer overflow 3 f" kxil .not in I
The last line (integer overflow) should be changed to
= wrap_I(|x]) if |x| not in I and modulo = true
= integer_overflow if |x| not in I and modulo = false

B3:
The current definition of integer to integer conversion is

cvt {Ia->Ib} (x) b4 if ix in Ib

integer overflow if x-not 1n/ Ib

The last line (integer overflow) should be changed to

wrap Ib(x) if x not in Ib and modulo_Ib = true
integer_ overflow if x not in Ib and modulo_Ib = false

where modulo_Ib is the modulo parameter for type Ib.

B4:
The current definition of floating point to integer conversion is .

cvt_ {F->I} (x) rnd {(F->1} (x) if rnd {F->I}(x) in I

integer overflow if.rrd_ {Ew>L}{x).not ;in I

o

The last line (integer_overflow) should be changed to

= wrap I(rnd {F->I}(x)) if rnd {F->I}(x) not in I and modulo I =
= integer overflow if rnd {F->I}(x) not in I and modulo_I =

where modulo_I is the modulo parameter for type I.

B5:
Since unsigned int and unsigned long in C are now recognised as

conforming types, the following C "cast" operations should be listed as
possible convert to integer operations on page 75.

(unsigned int) x, (unsigned long) x
In addition, the next paragraph should be reworded as follows:

The C standard requires that float to integer conversions round
toward zero. A proper C binding for LIA-1 should either accept C’s
rounding requirements for these conversions (and use the cast

notation), or provide separate LIA-1 conversion functions that round
to nearest.

true
false

0

~

0

——

B6:
The code example in annex G.3 is not legal ADA (it uses = rather than :=).
Replace it by

Approx, Previous Approx: Float;
N: constant Float := 6.0; -- an arbitrary constant value

Previous Approx := First Guess (input);

Approx := Next Guess (input, Previous_ Approx);

while abs (Approx-Previous Approx) > N¥LIAl.Unit_Last_Place (Approx) loop
Previous Approx := Approx; = o
Approx := Next Guess (input, Previous_Approx);

end loop:; -

B7:
WG1l1l should consider adding the following clause to the Rationale.

A.5.1.4 Relations among integer types

'An implementation may provide more than one integer type, and many
current systems do. When one modular integer type I is a subset of
another modular integer type J, it is desirable that the cardinality
(maxint-minint+1l) of J be an even multiple of the cardinality OFf TS
This property insures that conversions between I and J preserve the
modular structure of these types. For example, if x + y = z in J,
then

evt {J->T}{x) *+ cvt_{J->I}(y) = evt {J->1} (x)
9.1

B8:

In annex C, clarify that a binding standard for LIA-1 *should* include
bindings for all optional IEC 559 features, even though not all
implementations of IEC 559 will provide those features.

BO:

John Reid of Rutherford Labs has suggested various improvements to the
example Fortran binding. John Klensin of MIT has done the same for PL/I.
WG1ll should consider consulting with these experts to produce improved
versions of the example Fortran and PL/I binding.

Cilud
The US feels that binding standards for LIA-1 and IEC 339 are essential.
The US urges SC22/WGll and other standards bodies to take whatever steps are

needed to ensure that such binding standards are developed and adopted as
soon as possible.

021

SC22/WG11 N401

There were 18 votes to approve LIA-1 and 2 votes to disapprove (France and
Sweden). The French no vote can be reversed by correcting the French
translation of the document’s title. It appears that the Swedish no vote
cannot be resolved without substantial normative changes. These would set
the project back to the DIS or even CD stage, and would risk the loss of one
or more of the current yes votes.

Comments from France

Change French title [ACCEPT]:

WG1ll agrees that the current French title of LIA-1 is incorrect,
and urges the ITTF to adopt the title submitted by AFNOR.

Page 58 [ACCEPT]:
We will delete this comment on Fortran.
Page 83 [ACCEPT IN PART] :

This remains a correct comment about the (now obsolete) Fortran 77
standard. We will place it in the past tense.

Page 91 [ACCEPT IN PART]:
The parentheses will be removed from the print statement. The
expression involving "HUGE" seems no less portable (in a formal sense)
than any other expression containing a numeric literal.

Page 92, (G3) [ACCEPT] :
The assignment symbol will be corrected.

Page 92 (G4) [ACCEPT]:
The call keyword will be added.

Annex H [ACCEPTj:

The ANSI reference will be corrected.

Additional Comments from France

Three of the five additional comments are repetitions of comments addressed
above. For the other two:

Page 82 [REJECT]:

Fortran’s EXPONENT function is not quite the same as LIA-1’s EXPON.

Page 93 [ACCEPT]: riq;-

X will be replaced by Y as appropriate.

“omments from Sweden

'he recommended changes are all substantial normative changes. Adopting
-hem would require reballoting LIA-1 at the DIS or even CD level. Worse,
sdopting these recommendations would probably change at least one national
;ote from APPROVE to DISAPPROVE, resulting in no net improvement.

1) Add natural numbers [REJECT] :

Unbounded unsigned integers are not currently included in LIA-1 because
no standard language provides such a type, and because it would require
yet another parameter. However, WGl1 would like to invite Sweden to
propose an addendum to LIA-1 on this topic.

2) Remove modulo integers [REJECT]:

Modulp integers do have legitimate (if limited) uses. They are an
important datatype in C. We have received many expert comments stating
that including a definition of modulo integers is essential. (Note that
languages and implementations are not required by LIA-1 to provide
modulo integers.)

Additional text will be added in the rationale which describes the
hazards of modulo integers, and recommends that whenever systems provide
modulo integers, that they provide a corresponding non-modulo integer
type as well.

3) Replace add* by + [REJECT]:
Add* is needed to describe at least one prominent floating point
architecture. If the industry evolves as expected, it may be
appropriate to remove add* at the first 5-year review.

4) Div/Rem/Mod [ACCEPT IN PART]:

The truncation variants of div and rem are needed for compatibility with
Fortran. Removing them will not change Fortran (or any other language),
but will make it just that much harder to document a language’s, choices.

A similar argument applies for the Pascal variant of mod.
However, additional text will be added to clause A.5.1.3 to explain the
disadvantages of the truncating div and rem, and to recommend the
mathematically superior versions.
The superscripts on div, rem, and mod will be changed as follows:

div~*t and rem*t will be used for truncating div/rem

div~*f and rem*f will be used for flooring div/rem

mod*a will be used for mod of any modulus

mod*p will be used for mod restricted to positive modulus
A note will be added mentioning that rem”f is equivalent to mod”a.

Annex E will be reviewed for any inconsistencies with language
standards.

5) Convert F to I [REJECT]:

Several standard languages choose to leave this conversion weakly
defined (just as LIA-1 does). The three specifically recommended

conversions (ceiling, floor, and nearest) are already in the first draft
of LIA-2.

Comments from the United Kingdom

Clause 4.1 [ACCEPT]:

The word "non-empty" will be added.

Comments from the United States

Al [REJECT]:

No rationale for this change was given, and no alternative text was
submitted.

A2 [REJECT]:

No rationale for this change was given, and no alternative text was
submitted.

A3 [ACCEPT IN PART]:
The final sentence will be rewritten as "... particular set of parameter
values is selected, and all required documentation is supplied, the
resulting information should be precise enough to permit careful
numerical analysis."

A4 [ACCEPT]:
"Characterize" will be replaced by "describe".

A5 [REJECT]:

No explanation of the problem was given, and no alternative text was
submitted. '

A6 [REJECT]:
The benefits section was reexamined. No false promises were found.
A7 [ACCEPT]:

The phrase beginning "to determine" will be replaced by "to the
programmer'.

A8 [ACCEPT IN PART]:

The following clarifying sentence will be added: "However,
specifications for such values are given in IEC 559."

A9 [REJECT]:

No rationale for this change was given, and no alternative text was
submitted. :

A10 [ACCEPT IN PART]:
A note will be added to the definition of exceptional value stating that

"Exceptional values are not to be confused with the NaNs and infinities
defined in IEC 559. Contrast this definition with that of continuation

035

All

Al2

Al3

Al4

AlS

Al6

Al7

Al8

Al9

A20

A21

value above."
[ACCEPT] :

The following text will be added to the second definition of error:
"Error and exception are not synonyms in any other context."

[ACCEPT] :
The definition will be changed to

"Exception: The inability of an operation to return a suitable numeric
result. This might arise because no such result exists mathematically,
or because the mathematical result cannot be represented with sufficient
accuracy."

[ACCEPT] :

See resolution of Al0 and All.
[REJECT] :

The existing text seems fine.
[REJ?CT]:

No explanation of the problem was given, and no alternative text was
submitted.

However, the following text will be added: "Note that a suitable
representable result may not exist (see 5.2.6)."

[WITHDRAWN] :

The U.S. indicated that their real concern was the completeness of
information available at runtime. This is better expressed in A26.

[REJECT] :
No additional changes seem to be needed.

[ACCEPT IN PART]:

The text will be changed to "Whenever an arithmetic operation (as defined
in this clause) returns ...". The operations in clause 5 return
exceptional values in order to signify that a notification is required.

[WITHDRAWN] :

The U.S. has reconsidered this recommendation.

[ACCEPT] :

The phrase "unbounded extension" will be used instead.

[ACCEPT] :

°

A new definition of signature will remove this problem. The definition
of signature will be changed to:

"Signature (of an operation or function): A summary of information about
an operation or function. A signature includes the operation name, the
minimum set of inputs to the operation, and the maximum set of outputs

from the operation (including exceptional values if any). The signature

add I: I x I --> I u {integer_ overflow}

0326

A22

A23

A24

A25

A26

A27

A28

A29

states that the operation named add I shall accept any pair of I values
as input, and (when given such input) shall return either a single I
value as its output or the exceptional value integer overflow.

A signature for an operation or function does not forbid the operation
from accepting a wider range of inputs, nor does it guarantee that every
value in the output range will actually be returned for some input. An
operation given inputs outside the stipulated input range may produce
results outside the stipulated output range."

In addition the following note will be added to 5.2.2:

"NOTE -- Operations are permitted to accept inputs not listed above. 1In
particular, IEC 559 requires floating point operations to accept
infinities and NaNs as inputs. Such values are not in F."

[REJECT] :

This issue has been addressed before. The problem is that no one can
come up with suitable text. ©No alternative text was offered by the U.S.

[ACCEPT IN PART]:

The clauses will be rewritten to replace "shall" forms with "is" forms.
The word "requirements" will be avoided. The grammar of the final
sentence in 5.2.5 will be improved.

[ACCEPT] :
The reference will be corrected.
[ACCEPT] :

We will alter the sentence to read "... is not specified by this
definition.™

[REJECT] :

Any IEC 559 binding will include a way to find out which of the four IEC
559 rounding modes is currently selected. As for rnd_style itself, the
required values should not include non-conforming modes (the directed
roundings), and the two forms of nearest can be distinguished (in
practice) by looking at iec 559.

[REJECT] :

The U.S. did not explain why they feel this clause is incomplete, and no
alternative text was submitted.

[ACCEPT] :

The sentence will be changed to "different choices for rnd F->I or
nearest F can produce different conversion operations.”

[ACCEPT IN PART]:

After extensive discussion, the problem seems to be that readers are not
remembering the provisions of clause 2 while they are reading 6.1.1.
Thus, they do not realise that an exception handling mechanism defined
in a language or binding standard will take precedence over the
mechanisms introduced in clause 6.

To avoid this possible misreading, the title and first three sentences
of 6.1.1 will be replaced as follows:

130

B1

B2

B3

B4

B5

B6

B7

B8

6.1.1 Language defined notification

If the programming language in use defines an exception handling
mechanism that can

a) detect the occurrence of arithmetic exceptions,

b) report such exceptions to the executing program,

c) permit the programmer to specify to compensate for

such exceptions, and then

d) continue program execution,

then notifications shall be handled by that language defined mechanism.

Such a mechanism may be defined as part of the programming language
standard itself or by a separate binding standard.

NOTE -- The exception handling mechanisms of Ada and PL/I are
examples of language defined notification. In these languages, an
exception causes a prompt alteration of control flow to execute
user provided exception handling code. Other notification
mechanisms, such as continued execution with special non-numeric
"error values", may be appropriate for other languages.

This rephrases the current requirements in a clearer and more explicit
form, but does not add anything new.

Add to the first note on p.22: "If the iec_559 parameter is true, the
continuation values must be precisely those stipulated in IEC 559."

[REJECT] :

The U.S. did not explain why they feel this clause is too vague, and no
alternative text was submitted.

[ACCEPT] :

Accepted as written.
[ACCEPT] :

Accepted as written.
[ACCEPT] :

Accepted as written.
[ACCEPT] :

Accepted as written.
[ACCEPT IN PART]:

We will add (unsigned int) and (unsigned long) to the list of C
conversions on page 75. However, it became clear during discussions
that the subsequent paragraph is correct as it stands.

[ACCEPT] :

Accepted as written. Use boldface for "constant", "while",'"abs",
"loop", and "end" if practical.

[REJECT] :

This is really directed at language designers. However, WGll feels that
language designers already understand this issue.

[ACCEPT] :

{328

Add the following to annex C para 2: " A programming language binding
for a standard such as IEC 559 must define syntax for all required
facilities, and should define syntax for all optional facilities as
well. Defining syntax for optional facilities does not make those
facilities required. All it does is ensure that those implementations
that choose to provide an optional facility will do so using a
standardized syntax."

In the next sentence, change "those facilities"™ to "all IEC 559
facilities." Throughout the annex, weaken "must" to "should."

B9 [ACCEPT IN PART]:

These experts (and othérs) should be consulted, but preference should be
given to the development of normative binding standards, not polishing
the examples in LIA-1.

Cl [ACCEPT]:

WGll agrees with the U.S. on this point.

Comments from Individual Experts

A number of comments were received from individual experts. Those comments
that led to changes in the text are listed here.

Page vii, last sentence (Scowen) : Modify the sentence to read "the results
are reliable if and only if there is no notification.”

Page 7 (Schaffert): 2Add text to explicitly allow a language to include
non-numeric values in their F, and to allow additional operations.

Page 7 (Karlsson): Use italic I when introducing maxint and minint.
Page 15 (Kulisch and Walther): Delete ";" after F*.

Page 17 (Kulisch and Walther): 1In the first note, replace "lower bounds"
"with "smaller values for rnd error." ik

Page 21 (Karlsson): Change "save_indicators" to "current indicators."

Page 23 (Kulisch and Walther): Add Fortran to the list of languages that use:
== for equal.

Page 24 (Gay): Change "transformation" to plural.

Page 28 (Kulisch and Walther): Clarify that K-M arithmetic is entirely
compatible with LIA-1’s requirements, but is stricter.

Page 28 (Kulisch and Walther): Cite the following in addition to [331]:
U. Kulisch and W. L. Miranker: Computer Arithmetic in Theory and
Practice, Academic Press, New York, 1981

Page 39, Annex A.5.2.0.4 (Eggert): Add to the second para: "Howéver, be sure
to read 5.2.9 and C.1."

Page 44 (Karlsson): Italicize two occurrences ofix.
Page 55, first para (WGll): Change "portable" to "standard"
Page 59 (Karlsson): Delete rnd I from middle of page.

Page 61, 4th para (Schaffert): Change "requiring full accuracy" to
"requiring full conformity to LIA-1".

Page 64, Annex C.2 (Eggert): Change the spelling of divide-by-zero to
divide by_zero.

Page 68 (Karlsson): Cut "where x is an expression of type FLT"
Page 69 (Karlsson): rem”l is misspelled as mod.

Page 69 et seq (Karlsson): When a binding for mod”1l exists, use it for
rem”1l as well. (Bindings effected: Ada, Fortran, PL/I)

Page 73, Annex E.4 (Eggert): Prepend "Integer valued" to the sentence
"parameters and derived constants can be used in preprocessor
expressions."

Page 74 (Jones): Alter the FLT ROUNDS table as follows:
' truncate FLT ROUNDS = 0

nearest FLT ROUNDS =1

other FLT ROUNDS /= 0 or 1

Remove "and subtraction" from the subsequent note.

Page 75 (Karlsson): Replace "floor" with "intprt".

Page 76 (Jones): Use "|" for combining indicators.
Page 78 (Karlsson): Swap Lisp "rem" and "mod" as bindings for the two kinds
of rem I.

Page 84 (WGll): Restore the example binding for Pascal, appropriately
updated. Check other bindings against current standards and update as
needed.

Page 84 (Karlsson): Add "integer k".

Pages 84 to 87 (Klensin): Change PL/I references to

ANSI X3.74, PL/I General Purpose Subset
ISO 6522-1993, General Purpose PL/I

The editor is authorized to consult with Klensin and make appropriate

modifications to the PL/I binding example to conform to the above
standards.

Page 88 (WGll): Also reference IEEE 754.

Page 89, Annex F.4 (Eggert): Replace "defined in 754" with "implied by 754"

Page 90, Annex F.5 (WGll): Add a reference to the proper section in the
Fortran standard. Remove the citation [l1]. Add an example discussion

of extended precision intermediate values.

Page 91 to 94 (Karlsson): Align closing clauses as is common in
Fortran.

Page 93, G.5 and G.6 (Eggert): Explain that exception are assumed not to
arise, or are being omitted for clarity.

Page 95, annex H (Kulisch): Update reference [3] to the official ISO and
ANSI standards.

Page 95, ref [9] (Jones): Cut "First Edition" here and in refs. Lengthen
hyphens.

Page 97, annex H (Kulisch): Add " (eds.)" after "Miranker" in reference [33].

040

