W'Y/ N3 77

X 371/59- 062
Defect Report #060 SC22/WG14 Page 1

Defect Report #060

Submission Date: 19 Jul 93
Submittor: Project Editor (P.J. Plauger)
Source: Larry Jones

Question 1

When an array of char (or wchaxr_t) s initialized with a string literal that contains fewer characters than
the array, are the remaining elements of the array initialized?

Subclause 6.5.7 Initialization, page 72, only says (emphasis mine):
If there are fewer initializers in a brace-enclosed list than there are members of an aggregate,
the remainder of the aggregate shall be initialized implicitly the same as objects that have static
storage duration.

Correction

In the penultimate paragraph of subclause 6.5.7, add after the comma:

or fewer characters in a string literal or wide string literal used to initialize an array of known size,

197

Page 2 SC22/WG14 Defect Report #061

Defect Report #061

Submission Date: 19 Aug 93
Submittor: X3 Secretariat (USA)
Source: Ed Bendickson

Question 1

Iamrequesting an interpretation of white space in the format string of a scan statement. One of our customers
is concerned about this as it appears to conflict with some books on C. I am referring to subclause 7.9.6.2,

page 135, paragraph 3:
A directive composed of white space character(s) is executed by reading input up to the first
non-white-space character (which remains unread), or until no more characters can be read.
Page 135, paragraph 7 says:
If the length of the input item is zero, the execution of the directive fails: this condition is a
matching failure, unless an error prevented input from the stream, in which case it is an input
failure.
My questions are:
1) Iswhite space in the format string a directive which must be satisfied by white space in the input string?
2) What are the correct answers to the following examples? Note the white space in the format string.
Example 1:
inputString = "123ABCD";
numAssigned = sscanf (inputString, "$lu %1s", &ulongVal, junkchar);
Should the result be numAssigned equal to 1?
Example 2:
inputString = "123ABCD";
numAssigned = sscanf (inputString, "$lu%ls", &ulongVal, junkchar);
Should the result be numAssigned equal to 2?

Response

A directive composed of white-space character(s) can successfully match zero white-space characters in
the input stream. The paragraphs that intervene between your two quotations make clear that the second
paragraph applies only to a directive that is a conversion specification.

Thus, both examples should assign 2 to numAssigned.

Defect Report #062 SC22/WG14 Page 3

Defect Report #062

Submission Date: 19 Aug 93
Submittor: X3 Secretariat (USA)
Source: David J. Hendricksen

Question 1 _
If the only way to effectuate the renaming of a file on a given system is to copy the contents of the file, does
an implementation conform to the C Standard by always returning a failure from the rename function?
Footnote 113 would seem to imply this.
Response
Yes, subclause 7.9.4.2 permits the rename function to fail if it must copy the file contents, among other
reasons.

Page 4 SC22/WG14 Defect Report #063

Defect Report #063

Submission Date: 01 Dec 93
Submittor: Project Editor (P.J. Plauger)
Source: Thomas Plum

Question 1
[This is Defect Report #056, resubmitted for administrative reasons.]
The following requirement is implied in several places, but not explicitly stated. It should be explicitly
affirmed, or alternative wording adopted.
The representation of floating-point values (such as floating-point constants, the results of floating-point
expressions, and floating-point values returned by library functions) shall be accurate to one unit in the last
position, as defined in the implementation’s <£1loat . h> header.
Discussion: The values in <£1loat . h> aren’t required to document the underlying bitwise representations.
If you want to know how many bits, or bytes, a floating-point values occupies, use sizeof. The
<£float .h> values document the mathematical properties of the representation, the behaviors that the
programmer can count upon in analyzing algorithms. ‘
It is a quality-of-implementation question as to whether the implementation delivers accurate bits through-
out the bitwise representation, or alternatively, delivers considerably less accuracy. The point being clarified
is that <€loat . h> documents the delivered precision, not the theoretically possible precision.

Response
The C Standard imposes no requirement on the accuracy of floating-point arithmetic.
Further discussion:
The C Standard speaks directly to the matter of floating-point accuracy only in one or two areas. Subclause
6.2.1.4 Floating types, page 35, says of conversions from one floating type to one with less range and/or
precision:
If the value being converted is in the range of values that can be represented but cannot be
represented exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner.
And in subclause 6.2.1.5 Usual arithmetic conversions, page 35:
The values of floating operands and of the results of floating expressions may be represented
in greater precision and range than that required by the type; the types are not changed thereby.

Otherwise, arithmetic for both integer and floating types is defined in terms of the usual terminology of
mathematics. Nothing in the C Standard suggests that floating arithmetic is excused from the conventional
rules of arithmetic.

Nevertheless, it is commonplace for the functions declared in <math . h> to deliver results less accurate
than the underlying representation can support. It is not uncommon even for simple arithmetic expressions
to do the same. And still, implementations document in <£loat .h> properties of the underlying
representation, not the effective range and precision reliably delivered. The C community has typically
tolerated a certain laxity in this area.

Probably the most useful response would be to amend the C Standard by adding two requirements on
implementations:

Require that an implementation document the maximum errors it permits in arithmetic operations and in
evaluating math functions. These should be expressed in terms of “units in the least-significant position”
(ULP) or “lost bits of precision.”

Establish an upper bound for these errors that all implementations must adhere to.

The state of the art, as the Committee understands it, is:

correctly rounded results for arithmetic operations (no loss of precision)

1 ULP for functions such as sqrt, sin, and cos (loss of 1 bit of precision)

4-6 ULP (loss of 2-3 bits of precision) for other math functions.

Piag’

Defect Report #063 SC22/WG14 Page §

Since not all commercially viable machines and implementations meet these exacting requirements, the C
Standard should be somewhat more liberal.

The Committee would, however, suggest a requirement no more liberal than a loss of 3 bits of precision,
out of kindness to users. An implementation with worse performance can always conform by providing a
more conservative version of <€loat . h>, even if that is not a desirable approach in the general case.

The Committee should revisit this issue during the revision of the C Standard.

)5/

Page 6 SC22/WG14 Defect Report #064

Defect Report #064
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 1 — Null pointer constants
Consider the following translation unit:
char *£1 (int i, int *pi)

{
*pi = i;
return 0;

}

char *£2 (int i, int *pi)
{
return (*pi = i, 0);
}
In £1, the 0 is a null pointer constant (subclause 6.2.2.3). Since retuzrn acts as if by assignment (subclause
6.6.6.4) the function is strictly conforming.
In £2, the 0 is a null pointer constant. However, a constant expression cannot contain a comma operator
(subclause 6.4), and so the expression being returned is not a null pointer constant per se. Which of the
following is the case?
1) The property of being a null pointer constant percolates upwards through an expression, and the function
£2 is strictly conforming.
2) The property of being a null pointer constant does not percolate upwards, and the expression being
notionally assigned in the retuzrn statement, though of value zero, is not a null pointer constant but
only of type int, thus violating a constraint (subclause 6.3.16.1).

Response
Function £2 is not strictly conforming, because it violates a constraint for simple assignment (which applies

to converting the type of the return expression), because the return expression is not a null pointer
constant.

Defect Report #065 SC22/WG14 Page 7
Defect Report #065

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1
Item 2 — locales

Consider the program:

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

int main (void)
{
int i;
char *loc [] = { "English", "En UK", "Loglan", "" };

for (i = 0; ; i++)
if (setlocale (LC_ALL, loc [i]) != NULL)
{
/*
* We must eventually get here,
* because setlocale("") can’t yield NULL.
*/
printf ("Decimal point = ’%s’\n",
localeconv ()->decimal point);
exit (0):;
}
}
The valid locales are implementation-defined (subclause 7.4.1.1). Nevertheless, the output produced
depends only on the locale, not any other implementation-defined behaviour. Is the program strictly
conforming?
Response
The Committee affirms that the intent of this wording is that a program such as that above, whose output
varies only according to the locale selected and does not rely on the presence of a specific locale other than
the "C"™ locale or that selected by ", was always intended to be strictly conforming. Nevertheless, it is
agreed thata strict reading of the cited extract from subclause 7.4.1.1 could be read as making such programs
depend on implementation-defined behavior.
The Committee reaffirms that programs that depend on the identity of the available locales, as opposed to
their contents, are not strictly conforming.
The Committee believes that the term “implementation-defined” in the first sentence of the extract from
subclause 7.4.1.1 was intended in the sense of “implementation-documented.” However, the Committee is
reluctant to introduce a new term, with possibly new conformance requirements, in a Technical Corrigen-
dum. The Committee notes that the term “locale-specific,” while making the sentence read somewhat
awkwardly, carries the necessary requirements (the implementation must document the relevant details).
The Committee decided that, though the question only addresses one issue to do with locales, the above
discussion applies to all instances where the behavior of an implementation depends on the locale. For this
reason, the Committee decided to address all such issues at this time.

The Committee should revisit this issue during the revision of the C Standard.
Correction
In subclause 5.2.1.2 Multibyte characters, change:

wherein each sequence of multibyte characters begins in an initial shift state and enters other implementa-
tion-defined shift states

1772

Page 8 SC22/WG14 Defect Report #065

to:

wherein each sequence of multibyte characters begins in an initial shift state and enters other locale-specific
shift states

In subclause 7.3 Character handling <ctype . h>, change:

Those functions that have implementation-defined aspects only when not in the C locale are noted below.
The term printing character refers to a member of an implementation-defined set of characters, each of
which occupies one printing position on a display device; the term control character refers to a member of
an implementation-defined set of characters that are not printing characters.

to:

Those functions that have locale-specific aspects only when not in the C locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each of which occupies
one printing position on a display device; the term control character refers to a member of a locale-specific
set of characters that are not printing characters.

In subclause 7.3.1.2 The isalpha function, subclause 7.3.1.6 The islower function, subclause
7.3.1.9 The isspace function, and subclause 7.3.1.10 The isupper function, change:

is one of an implementation-defined set of characters

to:

is one of a locale-specific set of characters

In subclause 7.4.1.1 The setlocale function, change:

a value of " " for Locale specifies the implementation-defined native environment.
to:

a value of " " for locale specifies the locale-specific native environment.

In subclause 7.10.1.4 The strtod function, subclause 7.10.1.5 The stxtol function, and 7.10.1.6
The strtoul function, change:

In other than the "C" locale, additional implementation-defined subject sequence forms may be accepted.
to:

In other than the "C" locale, additional locale-specific subject sequence forms may be accepted.

Change Foomote 131 from:

If the implementation employs special bytes to change the shift state, these bytes do not produce separate
wide character codes, but are grouped with an adjacent multibyte character.

to:

If the locale employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

In subclause 7.11.6.2 The strerror function, change:

The strerrox function returns a pointer to the string, the contents of which are implementation-defined.
to:

The stxerror function returns a pointer to the string, the contents of which are locale-specific.
In Annex G, move the following bullet items from subclause G.3 to subclause G.4:

G.34, item 2 (“The shift states used for the encoding ...”)

G.3.14, item 3 (“The sets of characters tested for ...”)

G.3.14, item 33 (“The contents of the error message strings ..."”")

In Annex G.4 Locale-specific behaviour, change:

The following characteristics of a hosted environment are locale-specific:

to:

The following characteristics of a hosted environment are locale-specific and must be documented by the
implementation:

.“}"'l /5

4

Defect Report #066 SC22/WG14 Page 9

Defect Report #066

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1

Item 3 — locales

In a conforming implementation, can the value of any of the following expressions (subclause 7.4.2.1) be
a value other than 0 or 1? Can the value of the first expression be 0?
strlen(localeconv()->decimal point)
strlen (localeconv () ->thousands_sep)
strlen(localeconv()->mon_decimal ._point)
strlen(localeconv()->mon_thousands_ sep)

If the value can be greater than 1, can the string contain more than one multibyte character? If so, can the
string contain shift sequences? If so, can the string end other than in the initial shift state?

Response

Of the four strlen calls, the first must return 1, the second must return O or 1, and the other two must
return 0 or more, in a conforming implementation. There is a specific requirement for decimal point

in the second paragraph of subclause 7.4.2.1 Description, and in the individual descriptions “cCharacter” is
intended to imply O or 1 while “string” is meant to imply O or more.

hrs

Page 10 SC22/WG14 Defect Report #067

Defect Report #067
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 4 — definitions of types

The terms “signed integer type,” “unsigned integer type,” and “integral type” are defined in 6.1.2.5. The C
Standard also uses the terms “integer type,” “signed integral type,” and “unsigned integral type” without
defining them. Integer-valued bitfields are also introduced in 6.5.2.

a) For each of the following types, which if any of the six categories above do they belong to?

char
signed char
unsigned char
signed short
unsigned short
signed int
unsigned int
signed long
unsigned long
int : N /* i.e. bitfield of size N */
signed int : N
unsigned int : N
enumerated type
b) Foreach of these categories, do the const and/or volat i le qualified versions of the types belonging
to the category also belong to the category?

¢) Can an implementation extension add other types defined by the C Standard to any'of these six
categories?

d) Can an implementation define other types (e.g. __very long) which belong to any of these six
categories?

¢) If the answer to (c) or (d), or both, is yes, can size_t and ptrdif£f t be one of these other types,
or must it be a type in the above list?

Response

a) “signed integer type”, “unsigned integer type”, and plain “integer type” are used interchangeably with
“signed integral type”, “unsigned integral type”, and “integral type” in the C Standard. This observation
makes it easy to categorize the types in your list.

b) Yes, see subclause 6.1.2.5.

¢) No, the list in the C Standard is meant to be exhaustive. For example, “four” signed types cannot be read
as “four or more.”

Conforming implementations may add other distinct types (suchas__int24) to these categories, but must
not use such types where a standard-specified type is required. For example, size_t cannot be defined as
unsigned __ int24.

d) No strictly conforming program could contain an instance of such a type. The treatment of such types is
beyond the scope of the C Standard.

¢) No. For example, size_t cannot be defined as unsigned __ int24.

€.
|

o\

Defect Report #068 SC22/WG14 . Page 11

Defect Report #068

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1
Item 5 — handling of chax values
Values of the type chax must be treated as either “signed” or “nonnegative” integers (subclause 6.1.2.5).
a) Is the treatment determined strictly by the value of the expression CHAR_ MAX == SCHAR MAX?

b) If the treatment is as “signed” integers, does the type chaxr behave in every instance as the type
signed char (though of course being a different type)? If not, what are the differences?

c) If the treatment is as “nonnegative” integers, does the type chaxr behave in every instance as the type
unsigned char (though of course being a different type)? If not, what are the differences? In
particular, do the "no overflow, reduce modulo" semantics apply?

Response
a) Yes. .
b) and c¢) Yes. Subclause 6.2.1.1, “As discussed earlier, ...” indicates that this is the intent.

B

Page 12 SC22/WG14 Defect Report #069

Defect Report #069
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 6 — representation of integral types

Subclause 6.1.2.5 refers to the representation of a value in an integral type being in a “pure binary numeration
system,” and defines this further in Footnote 18. On the other hand, the wording of ISO 2382 is:

05.03.15
binary (numeration) system
The fixed radix numeration system that uses the bits 0 and 1 and the radix two.

Example: In this numeration system, the numeral 110,01 represents the number "6,25"; that is
1x22+1x21+1x22,

05.03.11

fixed radix (numeration) system

fixed radix notation

A radix numeration system in which all the digit places, except perhaps the one with the highest
weight, have the same radix.

NOTES

1. The weights of successive digit places are successive integral powers of a single radix, each
multiplied by the same factor. Negative integral powers of the radix are used in the
representation of factors.

2. A fixed radix numeration system is a particular case of a mixed radix numeration system; see
also Note 2 to 05.03.19.

05.03.08

radix

base (deprecated in this sense)

In a radix numeration system, the positive integer by which the weight of any digit place is
multiplied to obtain the weight of the digit place with the next higher weight.

Example: In the decimal numeration system the radix of each digit place is 10.

NOTE — The term base is deprecated in this sense because of its mathematical use (see
definition in 05.02.01).

05.03.07

radix (numeration) system

dix notation

A positional representation system in which the ratio of the weight of any one digit place to the
weight of the digit place with the next lower weight is a positive integer.

NOTE — The permissible values of the character in any digit place range from zero to one less
than the radix of that digit place.

05.03.04

weight

In a positional representation system, the factor by which the value represented by a character
in adigit place is multiplied to obtain its additive contribution in the representation of a number.

05.03.03

digit place

digit position

In a positional representation system, each site that may be occupied by a character and that
may be identified by an ordinal number or by an equivalent identifier.

/s

Defect Report #069 SC22/WG14 Page 13

a)
b)
c)

d)
e)
f)

g)

05.03.01

positional (representation) system

positional notation

Any numeration system in which a number is represented by an ordered set of characters in
such a way that the value contributed by a character depends upon its position as well as upon
its value.

What is the legal force of the footnote, given that it quotes a definition from a document other than ISO
2382 (see 3)?

Is the footnote wording correct, seeing that the ISO 2382 definition does not appear to allow any of the
common representations (note the word “positive” in 05.03.07)?

Does the C Standard require that an implementation appear to use only one representation for each
value of a given type?

Does the C Standard require that all the bits of the value be significant?
Does the C Standard require that all possible bit patterns represent numbers?

Do the answers to questions (c), (d), and (¢) depend on whether the type is signed or unsigned, and in
the former case, on the sign of the value?

If it is permitted for certain bit patterns not to represent values, is generation of such a value by an
application (using bit operators) undefined behavior, or is use of such a value strictly conforming
provided that it is not used with arithmetic operators?

In particular, are the following five implementations allowed?

h)

D

k)

Y}

Unsigned values are pure binary. Signed values are represented using ones-complement (in other
words, positive and negative values with the same absolute value differ in all bits, and zero has two
representations). Positive numbers have a sign bit of 0, and negative numbers a sign bit of 1. In both
cases, all bits are significant.

Unsigned values are pure binary. Signed values are represented using sign-and-magnitude with a pure
binary magnitude (note that the top bit is not “additive”). Positive numbers have a sign bit of 0, and
negative numbers a sign bit of 1. In both cases, all bits are significant.

Unsigned values are pure binary, with all bits significant. Signed values with an MSB (sign bit) of O
are positive, and the remainder of the bits are evaluated in pure binary. Signed values with an MSB of
1 are negative, and the remainder of the bits are evaluated in BCD. If ints are 20 bits, then INT_MAX
is 524,287 and INT_MIN is -79,999.

Signed values are twos-complement using all bits. Unsigned values are pure binary, but ignoring the
MSB (so each number has two representations). In this implementation, SCHAR _| ==
UCHAR MAX, SHRT_MAX == USHRT MAX, INT MAX == UINT MAX, and LONG_MAX ==
ULONG_MAX.

Signed values are twos-complement. Unsigned values are pure binary. In both cases, the top three bits
of the value are ignored (and each number has eight representations). For signed values, the sign bit is
the fourth bit from the top.

Furthermore:
m) Does the C Standard require that the values of SCHAR MAX, SHRT_MAX, INT_MAX, and LONG_MAX,

n)

p)

Q

defined in <limits . h> (subclause 5.2.4.2.1) all be exactly one Iess than a power of 2?

If the answer to (m) is “yes,” then must the exponent of 2 be exactly one less than CHAR BITS *
sizeof (T),where Tis signed char, short, int, or long, respectively?

Does the C Standard require that the values of UCHAR MAX, USHRT_ MAX, UINT MAX, and
ULONG_MAX, defined in <1imits .h> (subclause 5.2.4.2.1) all be exactly one less than a power of
2?

If the answer to (p) is “yes,” then must the exponent of 2 be exactly CHAR BITS * sizeof (T),
where T is unsigned char, unsigned short, unsigned int, or unsigned long
respectively?

.
c i)

Page 14 SC22/WG14 Defect Report #069

r) Does the C Standard require that the absolute values of SCHAR MIN, SHRT MIN, INT MIN, and
LONG_MIN, defined in <1imits . h> (subclause 5.2.4.2.1) all be exactly a power of 2 or exactly one
less than a power of 2?

s) If the answer to (r) is “yes,” then must the exponent of 2 be exactly one less than CHAR BITS *
sizeof (T),whereTissigned char, short, int, or long respectively?

t) If any of the answers to (m), (p), or (r) is “no,” are there any values for each of these expressions that
are permitted by subclause 5.2.4.2 but prohibited by the C Standard for other reasons, and if so, what
are they?

u) Does the C Standard require that the expressions (SCHAR MIN + SCHAR MAX), (SHRT MIN +
SHRT_MAX), (INT_MIN + INT MAX),and (LONG MIN + LONG_MAX) be exactly 0 or -1?
If not, does it put any restrictions on these expressions?

Response

Before providing detailed answers, we want to provide some clarified terminology. For any object type T,
the underlying bytes of the object can be copied into an array of unsigned char:

#define N sizeof (T)
union aligned buf {
T 'tr
unsigned char s[N]:;
} buf;
T object;

memcpy (buf.s, (const void *)&object, N);

The object representation of an object consists of the resulting sequence of N objects of type unsigned
char in the buffer. The object representation depends upon several features of the implementation such as
byte-ordering (“big-endian,” “little-endian,” etc.), “holes” (i.e., bits within a scalar object which do not
participate in forming the value of the object), and “padding” (i.e., bits in a non-scalar object which lie
between the component scalar objects or after the last scalar object).

The value representation of an object is a sequence of bits structured in a specific conventional way. The
scalar components are listed in their declaration sequence. Each scalar component is a sequence of bits (the
“participating bits”) arranged in a conventional ordering. The value representation of floating-point and
pointer types is implementation-defined. The value representation of an integer type is defined as follows:
The least-significant bit (the bit which represents the integer value 1) is also called the low-order bit or
rightmost bit; the most-significant bit is also called the high-order bit or leftmost bit. The sign bit (if any)
is the leftmost bit.

If all the bits in a scalar object representation participate in the value representation (i.e. no holes or padding),
then the value representation can be referred to simply as the representation. The bits of the value
representation determine a value, which is one discrete element of an implementation-defined set of values.
The conventional depiction of an integer value is as a decimal integer, optionally signed, such as 128 or—1.

Here isan example. Consider a (possibly hypothetical) ones-complement implementation whose int value
representation provides one sign bit and 40 integer bits.

b -— +
11 |
S -- -——+
1 40

Its object representation provides one sign bit, a hole containing seven non-participating bits, and 40 integer
bits (issues of byte ordering are irrelevant here):

B + s
Jch | |
e TR ————4
1 7 40
The value representation containing 41 zero bits designates the value 0:
e e e +
101000 Ssie 000]

/oD

Defect Report #069 SC22/WG14 Page 15

T e e e +
| 40

Depending upon the implementation, the value representation containing 41 one bits may designate the
same value 0, in which case it is indistinguishable from the other value representation; or it may designate
a distinguishable value, conventionally depicted as -0, which is arithmetically equal to 0 but distinguishable
by bitwise operations.

" -

111111 et 111|
1 40
Now for detailed replies:

a) Footnotes are not normative. The legality of a footnote is beyond the scope of WG14/X3J11.

b) Yes, the footnote is correct.

¢) No, there is no such requirement.

d) In view of the discussion above, we assume you mean the following question: does the C standard require
that all bits of the object representation participate in the value representation? For character types, all bits
of the object representation do contribute. See 7.9.2 (re binary streams) and 7.11.1 (re string functions) for
(indirect) justification. More precisely, any bits that do not contribute to the value of a character type must
not contribute to the value of any other object type. (Parity bits are an obvious example.) For other types,
the answer is no.

e) In view of the discussion above, we assume you mean the following question: does the C Standard require
that all possible bit patterns of the value representation represent numbers? For the type unsigned char,
the answer is yes. (And if all values of the type char are non-negative, then the answer is yes.) Otherwise,
the answer is no.

f) No.

g) Not applicable, since it is unclear what are the meanings of “bit pattern” and “value” in the question; see
the answer to part (€).

h) Yes, provided there is no other violation of the C Standard.
i) Yes, provided there is no other violation of the C Standard.
j) No. It is not a pure binary system.

k) Yes, provided there is no other violation of the C Standard.
1) Yes, provided there is no other violation of the C Standard.

m) Yes, because subclause 6.1.2.5 states that the representation of positive signed integers have the same
representation as the corresponding unsigned integers, and because signed integers use a pure binary
numeration system. The Committee intended to permit ones complement, twos complement, and signed
magnitude implementation.

n) No. There are architectures on which not all bits can be used.

p) Yes, because subclause 6.1.2.5 requires unsigned integers to behave as if a result “is reduced modulo the
number that is one greater than the largest value that can represented,” and unsigned integers use a pure
binary numeration system.

q) No. The memory occupied by a value of an integer is allowed to exceed the number of binary digits used
to represent the actual value.

r) Yes. See the answer to part (m).

s) No. See the answer to part (q).

t) Not applicable.

u) Yes, the expression must evaluate to 0 or —1.

-.‘/(/

Page 16 SC22/WG14

Defect Report #070

Defect Report #070

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1
Item 7 — interchangability of function arguments
Consider the following program:
#include <stdio.h>

void output (c)
int c;

{
printf("C == %d\n", ¢);
}
int main (void)
{
output (6) ;
output (6U) ;
return 0;

}

The constant 6 has type int, and 6U has type unsigned int (subclause 6.1.3.2), and they have the

same representation (subclause 6.1.2.5). Footnote 16, which is not a part of the C Standard, states that this

implies that they are interchangable as arguments. However, int andunsigned int arenot compatible

types, and so 6.3.2.2 makes the second call undefined.
Is the program strictly conforming?

Note that similar issues arise in connection with the other cases mentioned in Footnote 16 (function return

values and union members).
Response

The program is not strictly conforming. Since many pre-existing programs assume that objects with the
same representation are interchangeable in these contexts, the C Standard encourages implementors to allow

such code to work, but does not require it.

/52

Defect Report #071 SC22/WG14 Page 17

Defect Report #071

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1

Item 8 — enumerated types

The C Standard states (in effect) that an enumerated type is a set of integer constant values (subclause

6.1.2.5). It also states that an enumerated type must be compatible with an implementation-defined integer

type (subclause 6.5.2.2). Finally, the integral promotions (subclause 6.2.1.1) convert an enumerated type
to signed or unsigned int.

Consider:

enum foo { foo A = 0, foo B =1, foo C = 8 };

enum bar { bar A = -10, bar B = 10 };

enum qux { qux A = UCHAR MAX * 4, qux B };

a) If any value between zero and SCHAR MAX (inclusive) is assigned to a variable of type enum foo,
and the value of the variable is then converted to type int or unsigned int, does the C Standard
require the original value to result; or is the implementation permitted or required to convert it to one
of the three values 0, 1, and 8; or is the result of the assignment undefined?

b) Can a conforming implementation require all enumerated types to be compatible with a single type?

c) If the answer to (b) is “yes,” and assuming that the value UCHAR MAX * 4 is less than SHRT MAX
is the declaration of the type enum qux strictly conforming, or can a conforming implementation
require all enumerated types to be compatible with a single type which is a character type?

d) Can an implementation make the type that enum bar is compatible with be an unsigned type, even
though it uses an enumeration constant not representable in that type?

e) Cananimplementation make the type that enum qux is compatible with be either of signed char
orunsigned char,even though it uses an enumeration constant not representable in that type?

f) If the answer to (d) or (€) is “yes,” what is the effect of making one of the enumeration constants of an
enumerated type outside the range of the compatible type? What is the effect of assigning the value of
that constant to an object of the enumerated type?

g) Can the type that an enumerated type is compatible with be signed or unsigned long? If so,
what are the effects of the integral promotions on a value of that type? '

h) If an implementation is allowed to add other types to the list of integer types (see items 4(b) and (c)),
then can the type that an enumerated type is compatible with be such a type?

Response

a) Every enumerated type is compatible with some integer type (subclause 6.5.2.2). When conversion takes
place between compatible types, values are not altered (subclause 6.2). So for values between 0 and
SCHAR MAX, the original value must result, because no matter what type is chosen, the value can be
expressed in that type.

b) Yes it can.

¢) through g) It is the intention of the C Standard that all the members of the enumeration be representable
in the enumerated type, and that the compatible integer type be one which promotes to int or unsigned
int.

h) An implementation is not allowed to add other types to the list. (See reply to Defect Report #067.)
Correction

In subclause 6.5.2.2, change:

Each enumerated type shall be compatible with an integer type; the choice of type is implementation-de-
fined.

to:

tt

Page 18 SC22/WG14 Defect Report #071

Each enumerated type shall be compatible with an integer type. The choice of type is implementation-de-
fined, but shall be capable of representing the values of all the members of the enumeration. 15

)5

4
4

Defect Report #072 SC22/WG14 Page 19

Defect Report #072

Submission Date: 03 Dec 93
Submittor: WG14
Source:; Clive Feather

Question 1

Item 9 — definition of object
Consider the following translation unit:
#include <stdlib.h>

typedef double T;
struct hacked

{

int size;
T data [1]:;
};

struct hacked *f (void):;

{

T *pt;

struct hacked *a;
char *pc;

a = malloc (sizeof (struct hacked) + 20 * sizeof (T)):
if (a == NULL)

return NULL;
a->size = 20;

/* Method 1 */
a->data [8] = 42; /* Line A */

/* Method 2 */

pt = a->data;

pt += 8; /* Line B */
*pt = 42;

/* Method 3 */
pc = (char *) a;
pc += offsetof (struct hacked, data);

pt = (T *) pc; /* Line C */
pt += 8; i /* Line D */
*pt = 6 * 9;

pt = 6 ;

return a;

}

Now, Defect Report #051 has established that the assignment on line A involves undefined behaviour.

a)
b)

c)
d

€

Is the addition on line B strictly conforming?

If the answer to (a) is “yes,” are the three statements forming “method 2" a valid way of implementing
the struct hacked?

Is the cast of line C strictly conforming?
Is the addition on line D strictly conforming?

If the answer to (c) and (d) are “yes,” are the five statements forming “method 3” a valid way of
implementing the struct hacked?

Page 20 SC22/WG14 Defect Report #072

Now suppose that the definition of type T is changed to chax. This means that the last bullet in subclause
6.3 (“an object shall have its stored value accessed only by ... a character type™) now applies, and furthermore
it means that the location accessed is an integral multiple of sizeo£(T) bytes from the start of the
malloced object, and so constitutes an element of that object when viewed as an array of T.

f) Isthe assignment on line A now strictly conforming?
g) What are the answers to questions (a) to (¢) with this change?

Response
a) Defect Report #051 provides the rationale for why Line A results in undefined behaviour. The same rules
also apply to the assignment to pt, thus Line B results in undefined behaviour

b) Not applicable given the answer to question (a).

c) Assignment causes the base address of the structure to be assigned to pc. The response to Defect Report
#044, question 1, states that use of the o £ £set o £ macro does not result in undefined behaviour. The second
line causes pe to point at member data. Line C does not contain any construct that would result in the
program not being strictly conforming. :

d) Line D results in undefined behaviour. See answer (a) for rationale.

¢) Not applicable given answers (c) and (d).

f) Subclause 6.3 contains additional restrictions, not permissions.

g) The answers to questions (a)-(e) are not affected if T has chaz type.

Defect Report #073 SC22/WG14 Page 21

Defect Report #073

Submission Date: 03 Dec 93
Submittor: WG14
Source; Clive Feather

Question 1
Item 10 — definition of object
Consider the following translation unit:
struct complex
{
double real [2];
double imag;
}
#define D_PER C (sizeof (struct complex) / sizeof (double))

struct complex *f (double x)
{
struct complex *array = malloc(sizeof (struct complex) +
sizeof (double)):;
struct complex *pc;
double *pd;

if (array == NULL)
return NULL;

array [1].real [0] = x; /* Line ‘A */
array [1].real [1] = x; /* Line B */
array [1].imag = x; /* Line C */
pc = array + 1; /* Line D */
pc = array + 2; /* Line E */
pd = &(array [1].real [0]):; /* Line F */
pd = &(array [1l].real [1]): /* Line G */
pd = &(array [1l].imag); /* Line H */
pd = &(array [0].real [0]) + D_PER C; /* Line I */
pd = &(array [0].real [1]) + D_PER C; /* Line J */
pd = &(array [0].imag) + D_PER C; /* Line K */
pd = &(array [0].real [0]) + D_PER C * 2; /* Line L */
pd = &(array [0].real [0]) + D_PER C + 1; /* Line M */
pd = &(array [0].real [0]) + D_PER C + 2; /* Line N */

return array;

}
Subscripting is strictly conforming if the array is “large enough” (subclause 6.3.6). For each of the marked
lines, is the assignment strictly conforming?
Response
Lines A, B, C. The identifier array points at an object that is not large enough to hold two struct
complex objects. The dot selection operator is at hberty to require the complete struct denoted by its left
hand side to be accessed. Such an access would result in undefined behaviour.
Line D. If array is regarded as pointing to a single struct then creating a pointer to one past the end of
that object is permitted.
Line E. If array is regarded as pointing to a single struct then creating a pointer two past the end of that
object is not permitted. Since there is insufficient storage allocated to create a second struct object it is not
permitted to point one past this partial struct object.
Lines F, G, H. Same analysis as Lines A, B, C.
Lines I, J, K, L, M, N. All of these calculations will result in pointers that point outside the original object
(arrays or structs) and result in undefined behaviour.

\.J‘ i

Page 22 SC22/WG14 Defect Report #074

Defect Report #074

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1
Item 11 — alignment and structure padding
The existence of structure padding (subclause 6.5.2.1) can be detected by a strictly conforming program by
use of the sizeof operator and the o££seto£f macro.
a) If a structure has a field of type t, can the alignment requirements of the field be different from the
alignment requirements of objects of the same type that are not members of structures?

If the answer to (a) is “yes,” then where applicable the remaining questions should be assumed to have been
asked for both objects within structures and objects outside structures.

b) If an array has a component type of t, can the alignment requirements of the elements of the array be
different from those of independent variables of type t?

The alignment requirement of a type is that addresses of objects of that type must be multiples of some
constant (subclause 3.1); for some type t, this is written A (t) in this Defect Report.

¢) For any type t, can the expression sizeof (t) % A(t) be non-zero (in other words, can A (t) be
a value other than 1, sizeof (t), or a factor of sizeof (t))? It would appear not, because
otherwise adjacent elements of an array of objects of type t would either not be correctly aligned, or else
would not be contiguously allocated.

d) Cana(struct foo) be greater than the least common multiple of A (type_1),A(type_2),..,
A(type_n), where type 1 to type n are the types of the elements of struct £oo? In
particular, if a structure holds exactly one element, can A (structure type) be different from
A(element type) ? (In each case, if the answer to (a) is “yes,” A (type) should be interpreted
appropriately.)

e) If, at any point in a structure or union (obviously excluding the start), there is more than one size of
padding that can satisfy all alignment requirements, can any size be used, or must the smallest (possibly
zero) padding be used because that is all that is “necessary to achieve the appropriate alignment?”

f) If astuctured type has trailing padding to ensure that its use as an array element would be correctly
aligned, must objects of that type which are not array elements also have the padding? If not, what is
the effect of using memcpy to copy the value of one such object to another thus?

struct fred a, b;

/* ... */
memcpy(&a, &b, sizeof (struct fred)):;

It appears from subclause 6.3.3.4 (“the size is determined from the type of the operand”™) that sizeof a

must equal sizeof (struct fred).Isthiscorr :°

g) Whenan element of a structure is in turn a structur. - an trailing padding of the inner structure be reused
to hold other elements of the enclosing structure? : ur example, in:

struct outer

{

struct inner { long a; char b; } inner;

char c;

};
is it permitted for of£setof (struct outer, c) tobelessthan sizeof (struct inner)?
Response
Subclause 6.1.2.§ says, “... pointers to qualified or unqualified versions of compatible types shall have the
same representation and alignment requirements.”
Sublause 6.5.2.1 says, “Each non-bit-field member of a structure or union object is aligned in an implemen-

tation defmed_manner appropriate to its type.” And later, “There may therefore be unnammed holes within
a structure object ... as necessary to achieve the appropriate alignment.”

Defect Report #074 SC22/WG14 Page 23

a) It is possible for an implementation to state generalized requirements to satisfy sublause 6.1.2.5. These
requirements may be further strengthened using the implementation defined behavior made available in
subclause 6.5.2.1. Yes, the alignment requirements can be different. ;

b) In several places the C Standard states that a single object may be treated as an array of one element.
Nowhere does it give permission for array element types to have different alignment requirements from
isolated object types.

c) We agree with the answer given to this question.

d) Yes. A structure object can have an alignment that is greater than the least common multiple of the
alignments of its members.

e) The phrase “necessary to achieve the appropriate padding” is not considered to mean the use of the
minimum padding possible. The Committee does not see any advantage to changing this phrase.

f) Yes. Sec answer to question (b). sizeof (struct fred) mustequal sizeof a.

g) Such sharing of storage by objects would cause the requirements of subclause 6.3 to be violated and is
not allowed.

o~
~N

Page 24 SC22/WG14 Defect Report #075

Defect Report #075

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1
Item 12 — alignment of allocated memory
Is a piece of memory allocated by malloc required to be aligned suitably for any type, or only for those
types that will fit into the space? For example, following the assignment:
void *vp = malloc (1);
is it required that (void *) (int *)vp compare equal to vp (assuming that sizeof (int) > 1),
or is it permissible for vp to be a value not suitably aligned to point to an int?
Response
Subclause 7.10.3 requires allocated memory to be suitably aligned for any type, so they must compare equal.

v

Defect Report #076 SC22/WG14 Page 25

Defect Report #076

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1

Item 13 — pointers to the end of arrays
Consider the following code extracts:

and

int a [10];
int *p;

/* ... */
p = &a[10];

int *n = NULL;

int *p
/% ... */
P = &*n;

In the first extract, is the assignment strictly conforming (with p being set to the expression a + 10), or
is the constraint in subclause 6.3.3.2 violated because a [10] is not an object? Note that this expression is
often seen in the idiom:

for (p = &a[0]; p < &a[l0]; p++)
/* ... %/

In the second extract, is the assignment strictly conforming (with p being set to a null pointer), or is the
constraint in 6.3.3.2 violated because *n is not an object?

If only one assignment is strictly conforming, what distinguishes the two cases? If either assignment is

strictly conforming, what distinguishes it from the situation described in the following extract from the
response to Defect Report #012?

Given the following declaration:

void *p;
the expression &*p is invalid. This is because *p is of type void and so is not an lvalue, as
discussed in the quote from subclause 6.2.2.1 above. Therefore, as discussed in the quote from

subclause 6.3.3.2 above, the operand of the & operator in the expression & *p is invalid because
it is neither a function designator nor an lvalue.

This is a constraint violation and the translator must issue a diagnostic message.

Response
1) Subclause 6.3.3.2 requires the operand of & to be an lvalue designating an object; a [10] is notan object.
2) Subclause 6.3.3.2 requires the operand of & to be an lvalue; NULL is not an lvalue.

Since the use of either construct prevents a program from being strictly conforming, the remaining portion
of the question is not applicable.

Page 26 SC22/WG14 Defect Report #077

Defect Report #077

Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather

Question 1
Item 14 — stability of addresses
Is the address of an object constant throughout its lifetime? For example, if a pointer to an object is written
to a binary file using fwrite, and then read back later during the same run of the program using fread,
is it guaranteed to compare equal to the address of the original object taken again?
Response
The C Standard does not explicitly state that the address of an object remains constant throughout the life
of the object. That this is the intent of the Committee can be inferred from the fact that an address constant
is considered to be a constant expression. The framers of the C Standard considered that it was so obvious
that addresses should remain constant that they neglected to craft words to that effect.

The Committee should revisit this issue during the revision of the C Standard.

17

Defect Report #078 SC22/WG14 ' Page 27

Defect Report #078
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 15 — uniqueness of addresses
Consider the following translation unit:
unsigned int £ (unsigned int a)

{
unsigned int x, y;

x = a;
x=x*x+ a;
if (x > 100)

return x; /* Returned value must be > 100 */
if (&x = &y)

return 0;
y=a+1l;
y=y *y+ 19;
return y; /* Returned value must be >= 19 */

}

unsigned int gl (void) { return 0; };
unsigned int g2 (void) { return 0; };

unsigned int g (void)

{
return gl != g2;
}

unsigned int h (void)

const int jl =
const int j2 = 1;

{
return memcpy != memmove;

}

1;

unsigned int j (void)

a)

b)

{

return &jl != &j2;

}
Can £ ever return zero? An aggressive optimizer could notice that x and y are never used at the same
time, and assign them the same memory location. (The optimizer could be designed to conceal the fact
that x and y are sharing storage, for example by forcing the comparison to be unequal. Such an
application of the “as if” rule (subclause 5.1.2.3) would become increasingly difficult to implement in
the presence of operations such as writing out &x to a file (using fwrite or the fprintf $p
conversion specification) and then reading it back in later in the same run of the program. However,
this is irrelevant; the issue is whether or not the implementation is required to conceal it in the first
place.)

Can g ever return zero? A optimizer using an intermediate form can easily determine that the two
functions have identical effects.

o

Page 28 SC22/WG14 Defect Report #078

¢) Can h ever return zero? The library function memmowve (subclause 7.11.2.2) completely meets the
requirements for memepy (subclause 7.11.2.1) and so they could be implemented using the same code
(even if the answer to (b) is no, this could happen if the system library is not implemented in C).

d) Can j ever return zero? Since the two variables are constants, code which uses j1 instead of j2
anywhere except in an address comparison cannot distinguish them.

Response
a) £ can never return zero. There are three retuzrn statements:
i) Will always return a value greater than 100.

ii) x and y exist at different addresses. An optimizer may invoke the as-if rule to rearrange code provided
it always achieves the required effect. (Subclause 6.1.2.2: “Identifiers with no linkage denote unique
entities.”)

iii) Modulo arithmetic may wrap to produce zero. On a binary arithmetic CPU it is not possible to square
any number, add 19 and get zero as the result.

b) No, g cannot return zero.

¢) Yes, h can return zero.

d) j can never return zero. Subclause 6.7.2 says, “If the declaration of an identifier for an object has file
scope and an initializer, the declaration is an external definition of the identifier.” Subclause 6.5 says, “A
declaration that also causes storage to be reserved for an object or function named by an identifier is a

definition.” Taken together these two statements can be taken to imply that two file-scope definitions must
refer to different objects.

7Y

Defect Report #079 SC22/WG14 Page 29

Defect Report #079
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 16 — constancy of system library function addresses
(These questions approach the same problem from three slightly different directions.)
a) If a pointer to a given standard library function (say st rlen) is evaluated in two different translation
units, and the pointers compared, must they compare equal?
b) Can a conforming implementation declare a standard library function as having internal linkage, or
must the identifiers with file scope declared in standard headers have external linkage?
c) If the contents of the header <string.h> include the following definition of strlen, is the
implementation conforming?
static size_t strlen (const char *__ s)
{
size t _ len = 0;
while (* s++)

__len++;
return __ len;

}
Response
Since the answer to question (b) is needed for question (a) it is given first.
b) Since the library function prototypes are implicitly extezna, the standard library functions have external
linkage.
a) If the usage of “strlen” is such that standard library functions are referred to, the pointers must compare
equal by the requirements of subclauses 5.1.1.2 and 6.1.2.2.

c) The contents of system headers are implementation defined. For instance, they may contain code written
in other languages. It is not the job of this Committee to mandate implementation. Whatever their contents,
including a standard header must achieve the effects required by the C Standard.

)79

Page 30 SC22/WG14 Defect Report #080

Defect Report #080
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 17 — merging of string constants

Consider the following code:

char *sl = "abcde" + 2;

char *s2 = "cde";

Can the expression (s1 == s2) be non-zero? Is the answer different if the first string literal is replaced
by the two literals "ab" "cde" (because then there are identical string literals)?

Response

When the last paragraph of subclause 6.1.4 refers to “string literals” it is referring to the static arrays created
in translation phase 7 as specified in the previous paragraph. Although the current wording of the C Standard
may imply that only completely identical arrays need not be distinct, this was not the Committee’s intent.
Correction

Change the last paragraph of subclause 6.1.4 from:

Identical string literals of either form need not be distinct. If the program attempts to modify a string literal
of either form, the behavior is undefined. :

to:

These arrays need not be distinct provided their elements have the appropriate values. If the program
attempts to modify such an array, the behavior is undefined.

rs

o

Defect Report #081 SC22/WG14 Page 31

Defect Report #081
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 18 — left shift operator

The result of the left shift operator E1L << EZ2, when E1 is signed, is defined (subclause 6.3.7) as E1
left-shifted by E2 bits, with vacated bits filled with zeros. But what exactly does this mean?

The C Standard defines a bit (subclause 3.3) only as a unit of data storage. Bits are related to the value of
an object only in 6.1.2.5, which specifies the representation of certain types. It may therefore be claimed
that the left shift operator must act on representations, which are of fixed length. In this interpretation, the
left E2 bits (including the sign bit) are lost, as they would be if E1 was unsigned; the sign bit of the result
is taken from a bit in E1, E2 places to the right of the sign bit and, provided that the resultant bit pattern
actually represents a value of the result type, an exception is impossible.

On the other hand, it may also be claimed that the whole of subclause 6.3 specifies the meaning of operations
in abstract mathematical terms, subject to the general note about exceptions. In this view, the bit sequence
representing the non-sign part of a signed integer is converted by the shift operation to a bit sequence of
indefinite length, and, to avoid an exception due to overflow, this bit sequence must fit back in the non-sign
part without the loss at the left of anything but copies of the sign bit.

a) Which of these two views is correct?

b) If the answer to () is the first view, does undefined behaviour occur if the resulting bit pattern is not
the representation of an integer?

The following questions apply only if the answer to (a) is that the second view is correct.

¢) IfE1 is positive, and E1 times 2 to the power E2 is less than or equal to INT_MAX (or LONG_MAX),
is the result always E1 times 2 to the power E2?

d) Under what circumstances is the result undefined?

Response

Subclause 6.3, page 38, states that the binary operator <<, among others, has implementation-defined
aspects for signed types. Therefore, the answer to “what does it mean to left shift a signed value” is that it
is implementation defined.

)77

Defect Report #082

Page 32 SC22/WG14
Defect Report #082
Submission Date: 03 Dec 93
Submittor: WG14
Source: Clive Feather
Question 1

Item 19 — multiple varargs
Consider the following translation unit:

#include <stdarg.h>
#include <stdio.h>

extern int is_final arg (int);

void £1 (int n, ...)
{
va_list apl, ap2;

va_start (apl, n);
va_start (ap2, n);
while (va_arg (apl, int) != 0)

printf ("Value is %d\n", va_arg (ap2, int)):;

va_end (apl):;
va_end (ap2);
}

void £2 (int n, ...)
{

va_list ap;

va_start (ap, n);
for (:;)
{
n = va_arg (ap, int):
if (is_final arg (n))
{

va_end (ap);
return;
}
printf ("Value is %d\n", n);
}
}

void £3 (int n, ...)
{

va_list ap;

va_start (ap, n);

while (n = va_arg (ap, int), n != 0)
printf ("Value is %d\n", n);

va_start (ap, n):;

while (n = va_arg (ap, int), a != 0)
printf ("Value is still %d\a", n):

va_end (ap):

}

void fd4a (va_list *pap)

Defect Report #082 SC22/WG14 Page 33
{

int <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>