10

15

20

25

30

35

40

45

WeElY / ALY

Complex C Extensions xz//5/-050
/‘JJGJ/ 05D
WG14/3&81, X3J11/94-03%

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

Author's Note

Until X3J11°‘s June 1994 meeting, the effort to specify C extensions for complex arithmetic
has focused for some time on the pivotal issue of imaginary types. Now that X3J11 has
decided to proceed with imaginary types, we need to move on to a thorough review of all
aspects of the specification. And time is short, with just two mailings between June and
December when X3J11 is scheduled to conclude its technical report on numeric extensions.
The purpose of this version is to collect as much review as possible, so that for the second
mailing we can present a solid document which, after any minor changes indicated from the
December meeting, can be included in the technical report.

To do:

provide more definition for <fp.h> overloads;

evaluate additional functions for inclusion in library (norm, polar, cot's);
resolve what arg(0) should be;

add a foreword.

Contributors and reviewers to this specification include Jerome Coonen, W.M. Gentleman,
Bill Gibbons, David Hough, W. Kahan, David Keaton, David Knaak, Clayton Lewis, Tom
MacDonald, Stuart McDonald, Adolfo Nemirovsky, Tom Plum, David Prosser, and Fred
Tydeman.

1. INTRODUCTION

1.1 Purpose -

This document specifies a set of extensions to the C programming language, designed
to support complex arithmetic. The extensions are suitable for any implementation of
Standard C [1], [2], augmented according to “Floating-Point C Extensions” [3], which
the ANSI C committee X3J11 has approved for its technical report on numerical C
extensions. For implementations supporting the IEEE floating-point standards [4], [5],
these extensions allow complex arithmetic that is consistent with IEEE arithmetic.

This document is intended for the X3J11 technical report on numerical C extensions.

1.2 References

July 7, 1994 DRAFT Page 1
NN

10

15

20

25

30

35

40

45

50

WG14/351, X3J11/94-036 Complex C Extensions

10.

11.

12,

13.

. International Standard Programming Languages—C, (ISO/TEC 9899:1990 (E)).

. American National Standard for Information S ystems—Programming Language C

(X3.159-1989).

“Floating-Point C Extensions”, Jim Thomas (WG14/N350, X3J1 1/94-035—1July
7, 1994). A

. IEEE Standard for Binary Floating-Point Arithmetic (ANSIIEEE Std 754-1985).
. IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSIVIEEE Std

854-1987).

“Augmenting a Programming Language with Complex Arithmetic”’, W. Kahan and
J. W. Thomas (NCEG/91-039—November 15, 1991).

“Complex Extension to C” (Revision 11), David Knaak (WG14/N335/X3J11./94-
020—April 28, 1994).

“Imaginary Types for Complex Extensions to C”, Jim Thomas (X3J11.1/92-071—
October 24, 1992).

“Merging Complex and IEEE-754", Frederick John Tydeman (X3J11.1/92-061—
November, 1992).

Working Paper for Draft Proposed International Standard for Information Systems
-- Programming Language C++ (X3J16/94-0098, WG21/N0485—May 26,
1994).

“What To Do About The Complex Extension To C?”, David Knaak (X3J11.1/93-
016—April 5, 1993).

“Issues Regarding Imaginary Types for C and C++”, Jim Thomas and Jerome T.
Coonen, The Journal of C Language Translation, Vol. 5, No. 3, Pages 134-138
(March 1994).

“A Proposal for Standard C++ Complex Number Classes”, Al Vermeulen
(X3J16/93-0165, WG21/N0372—1993).

For additional discussion about complex extensions, see NCEG documents 89-002,
89-026, 89-036, 89-038, 90-005, 90-006, 90-030, 91-005, 91-026, and 91-053:
X3J11.1 documents 92-031, 93-020; and WG14/X3J11 document N362/94-047.

1.3

Organization of Document

This document follows the style conventions of [3]. The major subsections are:

1.
2.
o

Page 2

this introduction;
language syntax, constraints, and semantics;

library facilities.

DRAFT July 7, 1994

172

WG14/351, X3711/94-036

1.4 Definition of Terms

Other relevant terms are defined in [3].

5
* Complex type—a type for representing complex values. Any of the types
float_complex, double_complex, Or long_double_complex.
* Floating type—in this document, a real floating, imaginary, or complex type. In
10 [1], [2], floating type refers to just real floating types.
» Imaginary type—a type for representing (pure) imaginary values. Any of the types
float_imaginary, double_imaginary, Or long_double_imaginary.
13 » Imaginary unit—the number i such that i*; = -1.
» Real floating type—one of the types float, double, Or long double.
» Real type—an integral or real floating type.
20
2. LANGUAGE
2.1 Types (ISO §6.1.2.5; ANSI §3.1.2.5)
25 The integral types, together with the float, double, and long double types, are
collectively called the real types.
Inclusion of the header <complex.h> enables designations for imaginary and complex
types. The header defines macros
30

float_imaginary
double_imaginary
long_double_imaginary
float_complex-

35 double_complex
long_double_complex

which expand to keywaords in the implementation’s name space (see §3.1).
40 There are three imaginary types, designated as:

float_imaginary
double_imaginary
long_double_imaginary
45
Each has the same representation and alignment requirements as the corresponding real
type. The value is the value of the real representation times the imaginary unit.

July 7, 1994 DRAFT Page 3
By

10

15

20

25

30

35

40

45

50

55

WG14/351, X3J11/94-036 Complex C Extensions

Although not present in older complex arithmetic facilities, e.g. FORTRAN's, the
imaginary types naturally model the imaginary axis of complex analysis, promote
computational efficiency, and capture the completeness and consistency of IEEE arithmetic
for the complex domain. See [6], [12], and rationale in §2.3.6 of this document for more
discussion of imaginary types.

Because of their representation and alignment requirements, imaginary arguments can be
used like real arguments for fprintf and fscanf.

There are three complex types, designated as:

float_complex
double_complex
long_double_complex

Each is represented internally by a contiguous pair of representations of the
corresponding real type. The first and second elements of the pair represent the real
part and imaginary part, respectively, of the complex value.

The underlying implementation of the complex types is Cartesian, rather than polar, for
overall efficiency and consistency with other programming languages. The implementation
is explicitly stated so that characteristics and behaviors can be defined simply and
unambiguously.

Standard C specification for basic and arithmetic types applies to the complex and
imaginary types, except as specified otherwise.

An alternative would have been to introduce just two type macros, complex and
imaginary, and to designate the complex and imaginary types as float complex,
float imaginary, double complex,.... However, this approach would have precluded
implementation as a C++ library and would have been a slightly less straightforward
extension to C.

2.2 Constants

Inclusion of the header <complex.h> allows designation of an imaginary unit constant.
The header defines a macro 1 which expands to _Imaginary_1I, a keyword in the
implementation’s name space, denoting a constant with the imaginary type that
corresponds to the minimum evaluation format [3] and with the value of the imaginary
unit. For example, if the”minimum evaluation format is double, then 1 has type
double_imaginary.

Positing such a constant is a natural analog to the mathematical notion of augmenting the
reals with the imaginary unit. It allows writing imaginary and complex expressions in
common mathematical style, for example x + y*I. Note that the multiplication here
affects translated code, but does not cause an actual floating-point multiply, nor does the
addition cause a floating-point add.

The choice of 1 instead of i concedes to the widespread use of the identifier i for other
purposes. The programmer can use a different identifier, say j, for the imaginary unit by
following the inclusion of <complex.h> with

#undef I
#define j _Imaginary_I

Page 4 DRAFT July 7, 1994
274

10

15

20

25

30

35

40

45

50

WG14/351, X3J11/94-036

The i suffix to designate imaginary constants, proposed in [7], is not required.
Multiplication by 1 provides a sufficiently convenient and more generally useful notation
for imaginary terms.

2.3 Conversions (ISO §6.2; ANSI §3.2)

This specification includes conversion between any complex type and any arithmetic type
and between any imaginary type and any arithmetic type. Because of overloading
considerations, the C++ complex class library can be expected to be somewhat more
restrictive. For example, C++ may require an explicit function call to convert from a wider
complex or imaginary type t0 a narrower one. :

2.3.1 Imaginary types

Conversions among imaginary types follow rules analogous to those for real floating
types.

2.3.2 Real and imaginary types

When a value of imaginary type is converted to a real type, the result is a positive or
unsigned zero.

When a value of real type is converted to an imaginary type, the result is a positive or
unsigned zero.

2.3.3 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for real types.

2.3.4 Real and complex types

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the conversion rules for real types and the imaginary part
of the complex result value is a positive or unsigned zero.

When a value of complex type is converted to a real type, the imaginary part of the
complex value is diScarded and the value of the real part is converted according to the
conversion rules for real types.

2.3.5 Imaginary and complex types

When a value of imaginary type is converted to a complex type, the real part of the
complex result value is a positive or unsigned zero and the imaginary part of the
complex result value is determined by the conversion rules for real types.

When a value of complex type is converted to an imaginary type, the real part of the
complex value is discarded and the value of the imaginary part is converted according to
the conversion rules for real types.

July 7, 1994 DRAFT Page 5
i e L

10

15

20

25

30

35

40

45

50

55

WG14/351, X3J11/94-036 Complex C Extensions

2.3.6 Usual arithmetic conversions (SO §6.2.1.5; ANSI §3.2.1.5)

The real parts of imaginary and complex operands and results follow the pattern of the
usual arithmetic conversions for real types. Hence, for example, the product of a
float_complex and a double Or a double_imaginary entails a promotion of the
complex operand to double_complex, and the semantic result type is
double_complex.

Operations do not entail conversion of operands among real, imaginary, and complex
types. For example, the product of a double_imaginary and a float_complex does
not entail a conversion of the imaginary operand to complex.

Automatic conversion of real or imaginary operands to complex would require extra
computation, while producing undesirable results in certain cases involving infinities and in
certain cases involving signed zeros.

Examples

With automatic conversion to complex,

2.0 * (3.0 + i) => (2.0 + 0.0i) * (3.0 + o0i)
=> (2.0*3.0 - 0.0%0) + (2.0*e + 0.0*3.0)i
=> NaN + eoi

rather than the desired result, 6.0 + ooi.

Note that if the semantics included automatic conversion to complex, then NaN + eoi
would be the specified result. Hence optimizers for implementations with infinities—
including all IEEE ones—would not be able to eliminate the operations with the zero
imaginary part of the converted operand.

The following example illustrates the problem pertaining to signed zeros; [6] explains why
it matters. With automatic conversion to complex,

2.0 *(3.0-0.0i) => (2.0 + 0.0i) * (3.0 - 0.0i)
=> (2.0*3.0 - 0.0%0.0) + (-2.0*0.0 + 0.0*3.0)i
=> 6.0 + 0.0

rather than the desired result, 6.0 - 0.0i.

Imaginary types A
The problems illustrated in the examples above have counterparts for imaginary operands.
The mathematical product 2.0i ¢ (e + 3.0i) should yield -6.0 + ei. With automatic
conversion to complex,

2.0i * (o + 3.0i) = (0.0 + 2.0i) * (oo + 3.0i)
=> (0.0%c0 - 2.0%3.0) + (0.0*3.0 + 2.0*0)i
= NaN + oof

This also demonstrates the need for imaginary types. Without them, 2.0i would have to be
represented as 0.0 + 2.0i. implying NaN + eoi would be the semantically correct (though
still undesirable) result—regardless of conversion rules. Optimizers for implementations
with infinities—including all IEEE ones—would not be able to eliminate the operations
with the zero real part.

Page 6 DRAFT July 7, 1994
20

10

15

20

25

30

35

40

45

WG14/351, X3J11/94-036

In general, the imaginary types, together with the conversion rules and operator
specifications (below), allow substantially more efficient implementation. For example,
multiplication of a real or imaginary by a complex can be implemented straightforwardly
with two multiplications, instead of four multiplications and two additions.

Most programs are expected to use the imaginary types implicitly in constructions with the
imaginary unit 1, such as x + y*I, and not explicitly in declarations. This suggests
making the imaginary types private to the implementation and not available for explicit
program declarations. However, such an approach was rejected as being less in the open
spirit of C, and as not simplifying much. For the same reasons, the approach of treating
imaginary-ness as an attribute of certain complex expressions, rather than as additional
types, was rejected.

Another approach, put forth in [11], would regard the special values—infinities, NaNs, and
signed zeros—as outside the model. This would allow any behavior when special values
occur, including much that is prescribed by this specification. However, this approach
would not serve the growing majority of implementations, including all IEEE ones,
supporting the special values. In order to provide a consistent extension of their treatment
of special cases in real arithmetic, these implementations would require yet another
specification in addition to the one suggested in [11]. On the other hand, implementations
not supporting special values should have little additional trouble implementing imaginary
types as proposed here.

2.4 [Expressions so §6.3; ANSI §3.3)

2.4.1 Multiplicative operators (ISO §6.3.5; ANSI §3.3.5)

If an expression that has real type is combined by multiplication or division with an
expression that has imaginary type, then the result has imaginary type.

If two expressions that have imaginary type are multiplied or divided, then the result
has real type.

If at least one operand expression of a multiplication or division has complex type, then
the result has complex type.

The values of the imaginary and complex types are precisely the values of y*I and
X + y*I, respectively, where x and y are values of the corresponding real floating type and
I is the value of the imaginary constant 1. Hence, the following tables, taken from (6],
describe the types and results of multiplications and divisions involving real, imaginary, and
complex operands. x,Y, 4, V, 5, and ¢ denote real values.

Multiply
* X y*[x + y*
u x*u (y*u)*I (x*u) + (y*u)*I
V] (x*v)*I -y*y (-y*v) + (x*v)*I
%y, . ¥
U+ vl (x*u) + (x*v)*] (-y*v) + (y*u)* ((:*: +);c:x)'):l
Divide
July 7, 1994 DRAFT Page 7

27

WG14/351, X3J11/94-036 Complex C Extensions

/ X y*[X+ V¥
u x/u (Yu)*I (x/u) + (/u)*I
v¥I (-x/v)*1 /v (V) + (-x/v)*]
u+ v s+ 1* S+ 1* S + ¥

The computation of the product of two complex values should guard against undue overflow
and underflow. [6] presents algorithms for the cells labeled s + r*1. Also see [9].

5 2.4.2 Additive operators (ISO §6.3.6; ANSI §3.3.6)

If an expression that has real type is combined by addition or subtraction with an
expression that has imaginary type, then the result has complex type.

10 If two expressions that have imaginary type are added or subtracted, then the result has
imaginary type.

If at least one operand expression of an addition or subtraction has complex type, then
the result has complex type.
15
The following table, taken from [6], describes the types and results of addition and
subtraction involving real, imaginary, and complex operands. x, y, u, and v denote real
values.

20 Add/subtract

+ X y*J[X + y*/

u

Fu + y*

(xtu) + vl

v¥]

(viv)*]

X + (v+v)*]

u+ v¥/

(xtu) + v*/

Fu + (y1v)*]

(xtu) + (y+v)*I

Note that some operations can be handled entirely (and correctly) at translation time,
without floating-point arithmetic. Examples include y ¥, x + v * I, and [* I.

25
2.4.3 Relational operators (SO §6.3.8; ANSI §3.3.8)

The arithmetic operands of the relational operators are constrained to be real.

30 Some mathematical practice would be supported by defining the relational operators for
complex operands so that z1 op z2 would be true if and only if both
real(zl) Op real(z2) and also imag(z1) == imag(z2). NCEG voted against including
this specification.

35 2.4.4 Equality operators (ISO §6.3.9; ANSI §3.3.9)

Operands of the equality operators == and ! = can be expressions of any arithmetic type,
including imaginary and complex types.

40 Values of complex types are equal if and only if both their real parts are equal and also their
imaginary parts are equal. Any two values of arithmetic types (including imaginary and

Page 8 DRAFT July 7, 1994

278

10

15

20

25

30

35

40

45

WG14/351, X3J11/94-036

complex) are equal if and only if the results of their conversion to the complex type of
width determined by the usual arithmetic conversions are equal. For example,

is true, because (1) the usual arithmetic conversions promote the integer 0 to double (to
match the other operand), (2) the values 0.0 and -0.0*I convert to the double_complex type
as 0.0 + 0.0*I and 0.0 - 0.0*I , and (3) -0.0 equals 0.0 arithmetically, even if not bitwise.

2.4.5 Expression evaluation methods

The expression evaluation methods described in [3] govern evaluation formats of
expressions involving imaginary and complex types. For example, if the minimum
evaluation format is double, then the product of two float_complex operands is
represented in the double_complex format, and its parts are evaluated to double.

3. LIBRARIES

3.1 Complex Extensions <complex.h>

The header <complex.h> defines macros and functions that support complex
arithmetic.
The macro

COMPLEX___

expands to the constant 1, indicating inclusion of <complex.h>.
The macros

float_imaginary
double_imaginary
long_double_imaginary
float_complex
double_complex
long_double_complex

expand to distinct keywords in the implementation’s name space. For example,

#define float_complex _Float_complex

If the macro names later become standard keywords, then the implementor can remove the
macro definitions from the header and equate the internal names to the macro names in the
translator.

July 7, 1994 DRAFT Page 9

2179

5

10

15

20

25

30

35

40

45

S0

WG14/351, X3711/94-036 Complex C Extensions

The macro

I

expands to _Imaginary_I, a keyword in the implementation’s name space, denoting a
constant with the imaginary type that corresponds to the minimum evaluation format
and with the value of the imaginary unit.

See rationale in §2.2.

Lacking an imaginary type, [7] required macros in order to create certain special values. For
example, an “imaginary” infinity could be created by cMPLX (0.0, INFINITY). With the
imaginary type, imaginary infinity is simply the value of INFINITY*I. ([3] defines the
INFINITY macro.) And, in general, the values y*/ and x + y*I, where x and y are real
floating values, cover all values of the imaginary and complex types, hence eliminating this
need for the complex macros.

The subsequent sections specify the declarations for functions involving complex and
imaginary types. Semantic details, though outside the scope of this document, should
be documented thoroughly by the implementation. [9] specifies semantics for IEEE
implementations, and for other implementations with similar features.

3.1.1 Overloaded <fp.h> functions

When the header <complex.h> is included, some function designators from <fp.h>
[3] become overloaded with additional prototypes having complex and imaginary
parameters. The most common form for the extra prototypes is

floating-type function-designator (complex-or-imaginary-type) ;

Functions with extra prototypes of this form are:

acos cos acosh cosh exp
asin sin asinh sinh log
atan tan atanh tanh sgrt

For each of these functions, the implementation provides a set of prototypes—one for
each complex and imaginary parameter type. For all these functions, if the parameter is
complex then so is the return type. If the parameter is imaginary then the return type is
real, imaginary, or complex, as appropriate for the particular function; in particular, if
the parameter is imaginary, then the return types of cos and cosh are real, the return
types of sin, tan, sinh, tanh, asin, and atanh are imaginary, and the return types of
the others are complex. The format of the part(s) of the result is the wider of the format
of the part(s) of the parameter type and the minimum evaluation format.

Example

If the minimum evaluation format were double then for cos the implementation would
have

Page 10 DRAFT July 7, 1994
2.90

10

15

20

25

30

35

40

45

50

55

WG14/351, X3J11/94-036

double_complex cos(float_complex);

double_complex cos(double_complex);

long_double_complex cos(long_double_complex) ;

double cos(float_imaginary); /* cos(x*1) == cosh(x) */
double cos(double_imaginary) ;

long double cos(long_double_imaginary);

Exploiting the fact that some functions map the imaginary axis onto the real or imaginary
axis gains more efficient calculation involving imaginaries, and better meets user
expectations in some cases. However, dropping out of the complex domain may lead to
surprises as subsequent operations may be done with real functions, which generally are
more restrictive than their complex counterparts. For example, sqrt (-cos(I)) invokes
the real sqrt function, which is invalid for the negative real value -cos (1), whereas the
complex sqrt is valid everywhere.

For a call to one of these functions with a complex or imaginary argument, the
implementation chooses the prototype whose parameter matches the argument type.

This specification describes overload resolution rules in ad hoc fashion for various groups of
functions. In fact, for the case without widest-need expression evaluation [3], these
functions could be implemented for C++ with a set of overloaded prototypes in an ordinary
library, where the complex and imaginary types are classes.

With widest-need expression evaluation [3], if the evaluation format passed down to
the call is wider than the return-type parts of the chosen prototype, then the
implementation chooses instead the prototype whose return-type parts match the wider
format and whose parameter is of the same kind—complex or imaginary—as the

argument.
Example
If the minimum evaluation format is float, then in

double d;
float_complex fc;
float_imaginary fi;

fc =@ ian8int£i)s

an implementation without widest-need would choose the float_imaginary prototype for
sin. An implementation with widest-need would choose the double_imaginary prototype
for sin.

The fabs function has extra prototypes of the form
real-floating-type fabs(complex-or-imaginary-type)

The implementation provides a set of prototypes—one for each complex and imaginary
parameter type. The format of the real floating result is the wider of the formats of the
part(s) of the argument and the minimum evaluation format [3]. The matching of calls
to prototypes is analogous to the functions above.

The pow function has extra prototypes of these three forms:
complex-type pow(complex-or-imaginary-type,complex-or-imaginary-type)-

complex-type pow(complex-or-imaginary-type,real-floating-type)
complex-type pow(real-floating-type, complex-or-imaginary-type)

July 7, 1994 DRAFT Page 11

231

10

15

20

25

30

35

40

45

50

WG14/351, X3J11/94-036 Complex C Extensions

Of the first form, there are 36 combinations of types for the two parameters, hence 36
prototypes.

Of the second form, there are 6 possible types for the first parameter. For each of these
the implementation provides prototypes with the second parameter being the minimum
evaluation format through all wider real floating-point formats.

Of the third form, there are 6 possible types for the second parameter. For each of
these the implementation provides prototypes with the first parameter being the
minimum evaluation format through all wider real floating point formats.

For all three forms, the format of the parts of the complex result matches the wider of
the formats of the part(s) of the first and second parameters and the minimum
evaluation format.

Example

If the minimum evaluation format is long double, then the implementation provides the
36 prototypes of the first form, all with return type long_double_complex. Of the second
form it provides

long_double_complex pow(flcat_imaginary, long double);
long_double_complex pow(double_imaginary, long double);
long_double_complex pow(long_double_imaginary, long double);
long_double_complex pow(float_complex, long double);
long_double_complex pow(double_complex, long double);
long_double_complex pow(long_double_complex, long double);

and of the third form it provides

long_double_complex pow(long double, float_imaginary);
long_double_complex pow(long double, double_imaginary);
long_double_complex pow(long double, long_double_imaginary);
long_double_complex pow(long double, float_complex);
long_double_complex pow(long double, double_complex);
long_double_complex pow(long double, long_double_complex);

For a call to pow with at least one complex or imaginary argument, the implementation
chooses a prototype as follows. First, any integer argument is converted to double.
Then any real floating argument narrower than the minimum evaluation format is
converted to the minimunf evaluation format. Then the implementation chooses the
prototype whose parameters match the argument types.

With widest-need expression evaluation [3], if the evaluation format passed down to
the call is wider than the result-type parts of the chosen prototype, then the
implementation chooses instead the prototype whose result-type parts match the wider
format and whose parameters are of the same kind—real, imaginary, or complex—as
the argument.

3.1.2 Complex-specific functions

The header <complex.h> declares functions pertaining specifically to complex
arithmetic. They are overloaded to allow arguments of real, complex, or imaginary

Page 12 DRAFT July 7, 1994
LI =

10

15

20

25

30

35

40

45

50

WG14/351, X3J11/94-036

type. Note that in the overloading forms below, flocating-type includes complex and
imaginary types (unlike in [3]).

3.1.2.1 The arg function
Synopsis

#include <complex.h> :
real-floating-type arg(floating-type z);

Return types follow the same pattern as for fabs (§3.1.1).
Description

The arg function computes the argument or phase angle of z, in the range [-x, =].
Prototypes and matching of calls to prototypes follow the same pattern as for fabs.

Returns
The arg function returns the argument or phase angle of z, in the range [-=, x].
3.1.2.2 The conj function
Synopsis

#include <complex.h>
floating-type conj(floating-type z);

Return types match parameter types.

Description
The conj function computes the complex conjugate of z, by reversing the sign of its
imaginary part, if any. A call is matched to the prototype whose type matches the
argument type, after conversion of any integral argument to double.

Regarded as manipulation functions, conj and imag, proj, and real (below) have
somewhat different prototype schemes than arithmetic functions like sin.

Returns e
The conj function returns the complex conjugate of z.
3.1.2.3 The imag function
Synopsis

#include <complex.h>
real-floating-type imag(floating-type z);

Return types correspond to the formats of the part(s) of the parameters. For example,

float imag(float_complex);

Tuly 7, 1994 DRAFT Page 13
A%D

10

15

20

25

30

35

40

45

50

55

WG14/351, X3J11/94-036 Complex C Extensions

is one of the prototypes, regardless of the expression evaluation method.
Description

The imag function computes the imaginary part of z. A call is matched to the prototype
whose parameter type matches the argument type, after conversion of any integral
argument to the minimum evaluation format.

Returns
The imag function returns the imaginary part of z.
3.1.2.4 The proj function
Synopsis

#include <complex.h>
floating-type proj(floating-type z);

The return type is real if the parameter is real; the return type is complex if the
parameter is complex or imaginary. The format of the part(s) of the return type match
the format of the part(s) of the parameter.

Description

The proj function computes a projection of z onto the Riemann sphere: z projects to z
except that all infinities, even ones with one infinite part and one NaN part, project to
pesitive infinity on the real axis. A call is matched to the prototype whose parameter
type matches the argument type, after conversion of any integral argument to double.

Returns
The proj function returns a projection of z onto the Riemann sphere.

Two topologies are commonly used in complex mathematics: the complex plane with its
continuum of infinities and the Riemann sphere with its single infinity. The complex
plane is better suited for transcendental functions, the Riemann sphere for algebraic
functions. The complex types with their multiplicity of infinities provide a useful (though
imperfect) model for the complex plane. The proj function helps model the Riemann
sphere by mapping all infmities to one, and should be used just before any operation,
especially comparisons, that might give spurious results for any of the other infinities.

Note that a complex value with one infinite part and one NaN part is regarded as an infinity,
not a NaN, because if one part is infinite, the value is infinite independent of the value of
the other part. For the same reason, fabs returns an infinity if its argument has an infinite
part and a NaN part.
3.1.2.5 The real function
Synopsis

#include <complex.h> :
real-floating-type real(floating-type z);

Return types follow the same pattern as for imag (§3.1.2.3).

Page 14 DRAFT July 7, 1994

8¢

10

WG14/351, X3J11/94-036

Description

The real function computes the real part of z. Calls are matched to prototypes the
same as for imag.

Returns

The real function returns the real part of z.

July 7, 1994 DRAFT Page 15
A8

