
N3533: Standard secure networking

Document #: N3533
Date: 2025-04-21
Project: Programming Language C
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

In 2021, after WG21 decided to not proceed with standardising the then Networking TS into C++,
I was asked by senior leadership to bring to WG21 an alternative standard networking design with
these design goals:

1. There must be a hard ABI boundary across which implementation detail cannot leak. To be
specific, if an implementation uses Microsoft SChannel or OpenSSL then absolutely no details
of that choice must permeate the ABI boundary.

Rationale: Standard library maintainers are not in the business of specifying cryptography
libraries, and it’s a hole nobody rational wants to dig.

2. No imposition must be taken on the end user choice of asynchronous i/o model i.e. if the
user wants to use libuv or any other third party async framework, this API is to enforce no
requirements on that choice.

Rationale: A majority of ‘simple’ use cases for networking just need to operate one or a
few sockets, and don’t need a full fat async framework or one which can pump millions of
concurrent connections per kernel thread. Fully blocking i/o, or non-blocking multiplexed i/o
with poll() is all they need and having to master a complex async i/o framework just to
pump a single socket is not a positive end user experience.

3. Whole system zero copy i/o, ultra low latency userspace TCP/IP stacks, NIC or kernel accel-
erated TLS and other ‘fancy networking tech’ ought to be easily exposable by the standard
API without leaking any implementation details.

Rationale: It is frustrating when networking implementations assume that the only net-
working possible is implemented by your host OS kernel, but you have a fancy Mellanox card
capable of so much more. This leads to hacks such as runtime binary patching of networking
syscalls into redirects. Avoiding the need for this would be valuable.

4. The design should be Freestanding capable, and suit well the kind of networking available on
Arduino microcontrollers et al.

Rationale: On very small computers your networking is typically implemented by a fixed
size coprocessor capable of one, four or maybe eight TCP connections. Being able to write
and debug your code on desktop, and it work without further effort on a microcontroller, is
valuable. Also, as the proposed API design never unbounded allocates memory, it is suitable
for embedded systems without a dynamic malloc() available.

1

mailto:s_sourceforge@nedprod.com

5. We should accommodate, or at least not get in the way of, implementer’s proprietary net-
working implementation enhancements. As examples: on one major implementation the only
networking allowed is a proprietary secure socket running on a proprietary dynamically scaling
async framework; on another major implementation there is a proprietary tight integration
between their proprietary secure socket implementation, their whole system zero copy i/o
framework, and their dynamic concurrency and i/o multiplexing framework.

Rationale: Leaving freedom for platforms to innovate leaves open future standardisation
opportunities.

I dutifully designed and implemented a reference implementation, and presented it to WG21 in 2022
as [P2586] Standard Secure Networking. It was, unfortunately, not warmly received as it was felt to
be too ‘low level’.

P2586’s API is 99% C compatible, so my question to WG14 is this: Would the C standard like to
standardise a similar API instead? If the committee decides yes, I will port the C++ reference
implementation into a C reference implementation based on https://en.wikipedia.org/wiki/

Mbed_TLS1 suitable for as-is inclusion into any C standard library – implementers can drop in a
copy of that reference implementation into their standard libraries, or roll their own, up to them.

This porting work would be a fair bit of effort, so if I do this work, I would like to not repeat my
experience at WG21 where I invest nine months of my free time only to see the proposal dismissed
out of hand by the committee. If WG14 could give strong direction based on the examples of use
below, I would appreciate it.

1 Examples of what the API would look like

As the C library does not exist yet, these are necessarily mock ups of a potential API. However, they
are a direct port from the examples in P2586 slightly adjusted to be C not C++. They therefore
would be representative of the semantics of a real, working, implementation.

To be clear, I minimised the name changes from the examples in P2586 to preserve API naming
fidelity. In any actual real C library, I would use more C like naming and design. The semantics
shown below would be preserved however.

1.1 Example: Retrieving a web page over HTTPS

This example of use shows how one might retrieve a HTML page from a website via Transport
Layer Security (TLS) using this proposal:

1 static constexpr char test_host[] = "github.com";
2 static constexpr char get_request[] = "GET / HTTP/1.0\r\nHost: github.com\r\n\r\n";
3

4 // Get the default TLS socket source for this platform. There
5 // can be many TLS socket sources, each with different
6 // properties, and you can filter and enumerate and examine
7 // them. This just gets the standard library’s suggested default.

1This is a permissively licensed TLS implementation for embedded systems. For desktop and server, at least
Ubuntu and RHEL provide maintained system packages which would be dynamically loaded, this means bug fixes
etc are not a problem for the standard library maintainer.

2

https://en.wikipedia.org/wiki/Mbed_TLS
https://en.wikipedia.org/wiki/Mbed_TLS

8 //
9 // Note that while this could be an allocated instance, it does NOT

10 // mean that the instance returned is dynamically allocated!
11 // It may be a reference counted singleton, or a static singleton.
12 // This goes for all the other pointers returned in this
13 // proposal, they can come from an internal fixed size static
14 // array. No malloc required!
15 tls_socket_source_t tls_socket_source =
16 tls_socket_source_registry_default_source_create();
17

18 // Create a multiplexable connecting socket from the TLS socket
19 // source. Multiplexable means you can do i/o on more than one
20 // of them at a time per kernel thread (which on POSIX would mean
21 // they are non-blocking, on other platforms e.g. Windows it means
22 // they are OVERLAPPED).
23 tls_byte_socket_t sock =
24 tls_socket_source->multiplexable_connecting_socket(AF_ANY);
25 {
26 // Connect the socket to the test host on port 443, timing out
27 // after a five second deadline. This sets the TLS session host
28 // from the hostname, and the default is to authenticate the TLS
29 // certificate of things we connect to using the local system’s
30 // certificate store. The host name is therefore needed.
31 //
32 // This is just the convenience API. If you want to, you can go
33 // do each step here separately. In fact, this convenience API
34 // is actually implemented 100% using other public APIs.
35 int r = sock->connect(test_host, 443, 5000);
36 if(r != 0)
37 {
38 if(r == ETIMEDOUT
39 || r == EHOSTUNREACH
40 || r == ENETUNREACH)
41 {
42 printf("\nNOTE: Failed to connect to %s"
43 " within five seconds. Error was: %s\n",
44 test_host, strerror(r));
45 return;
46 }
47 abort();
48 }
49 }
50

51 // The string printed here will be implementation defined. A non-normative
52 // note will suggest item separation with commas.
53 printf("\nThe socket which connected to %s"
54 " negotiated the cipher %s\n", test_host, sock->algorithms_description());
55

56 // Create a buffer sequence from which to write the HTTP/1.0 request to the host.
57 struct iovec get_request_buffer[1] = { { get_request, sizeof(get_request) - 1 } };
58

59 // Write the HTTP/1.0 request to the host.
60 size_t written = sock->write(get_request_buffer, 1);
61 TEST_REQUIRE(written == sizeof(get_request) - 1);
62

63 // Fetch the front page. The connection will close once all data is sent

3

64 // due to that being HTTP 1.0 default semantics, and that causes reads to
65 // return no bytes read. Note the deadline in case remote doesn’t close the
66 // socket in a timely fashion.
67 char *buffer = malloc(4096);
68 size_t offset = 0, buffer_size = 4096;
69 struct iovec vec[1] = { { buffer, buffer_size } };
70 for(size_t nread = 0; (nread = sock->read(vec, 1, 3000)) != (size_t) -1;)
71 {
72 offset += nread;
73 if(buffer_size - offset < 1024)
74 {
75 buffer = realloc(buffer, buffer_size + 4096);
76 buffer_size += 4096;
77 }
78 vec[0].iov_base = buffer + offset;
79 vec[0].iov_len = buffer_size - offset;
80 }
81 printf("\nRead from %s %zu bytes. The first 1024 bytes are:\n\n",
82 test_host, offset);
83 fwrite(buffer, 1, (offset < 1024) ? offset : 1024, stdout);
84 puts("");
85

86 // Gracefully shutdown the TLS connection and close the socket
87 sock->shutdown_and_close();
88

89 // Potentially free the socket source
90 tls_socket_source->destroy();

Why this example explicitly needs a multiplexable socket is worth explaining. Firstly, the difference
between a multiplexable and a non-multiplexable handle is that the former can require up to two
syscalls per i/o, whereas the latter never requires more than one. Non-multiplexable i/o may be
more amenable to Direct Memory Access (DMA) in certain circumstances on some platforms than
multiplexable, and the kernel scheduler may make more intelligent scheduling decisions if i/o blocks.
We therefore default to non-multiplexable as it is the more efficient choice, and it also has portable
semantics across all platforms for all types of i/o handle.

Some implementations may be able to implement the above perfectly well with non-multiplexable
sockets, however some may refuse non-zero non-infinite deadline i/o on a non-multiplexable socket
(just to be clear here, an implementation may support zero length waits or infinite waits but nothing
in between). In the above, we accept the efficiency hit for convenience.

1.2 Example: Multiplexing TLS server connections

One can create listening TLS sockets, and poll for new things happening on them:

1 const char *host; // set to one of my network cards
2

3 // Get me a FIPS 140 compliant source of TLS sockets which uses kernel
4 // sockets, this call takes bits set and bits masked, so the implementation
5 // features bitfield is masked for the FIPS 140 bit, and only if that is set
6 // is the TLS socket source considered.
7 static constexpr tls_socket_source_implementation_features required_features =
8 tls_socket_source_implementation_features_FIPS_140_2

4

9 | tls_socket_source_implementation_features_kernel_sockets;
10 tls_socket_source_t tls_socket_source =
11 tls_socket_source_registry_default_source(required_features,
12 required_features)->create();
13

14 // Create a listening TLS socket on any IP family.
15 listening_tls_socket_t serversocket = tls_socket_source
16 ->multiplexable_listening_socket(AF_ANY);
17

18 // The default is to NOT authenticate the TLS certificates of those connecting
19 // in with the system’s TLS certificate store. If you wanted something
20 // different, you’d set that now using:
21 // serversocket->set_authentication_certificates_path()
22

23 // Bind the listening TLS socket to port 8989 on the NIC described by host
24 tls_addr_t addr = tls_socket_source->make_address(host, 8989);
25 serversocket->bind(addr);
26 addr->destroy();
27

28 // poll() works on three arrays. We deliberately have separate poll_what
29 // storage so we can avoid having to reset topoll’s contents per poll()
30 tls_byte_socket_t *pollable_handles = calloc(1024, sizeof(tls_byte_socket_t));
31 poll_what *topoll = calloc(1024, sizeof(poll_what));
32 poll_what *whatchanged = calloc(1024, sizeof(poll_what));
33

34 // We will want to know about new inbound connections to our listening
35 // socket
36 pollable_handles[0] = serversocket;
37 topoll[0] = poll_what_is_readable;
38 whatchanged[0] = poll_what_none;
39

40 // Connected socket state
41 struct connected_socket {
42 // The connected socket
43 tls_socket_handle_t socket;
44

45 // The endpoint from which it connected
46 tls_addr_t endpoint;
47

48 // The size of registered buffer actually allocated (we request system
49 // page size, the DMA controller may return that or more)
50 size_t rbuf_storage_length;
51 size_t wbuf_storage_length;
52

53 // These are ptrs to memory potentially registered with the NIC’s
54 // DMA controller and therefore i/o using them would be true whole system
55 // zero copy
56 tls_socket_handle_registered_buffer_t rbuf_storage, wbuf_storage;
57

58 // These slices of byte and const byte index into buffer storage and get
59 // updated by each i/o operation to describe what was done
60 struct { size_t len; struct iovec *iov; } rbufs;
61 struct { size_t len; struct iovec *iov; } wbufs;
62 };
63 struct connected_socket *connected_sockets = calloc(1024, sizeof(struct connected_socket));
64 size_t connected_sockets_len = 1;

5

65

66 // Begin the processing loop
67 for(;;) {
68 // We need to clear whatchanged before use, as it accumulates bits set.
69 FILL(whatchanged, 1024, poll_what_none);
70

71 // Wait until the deadline for something to change
72 size_t handles_changed
73 = tls_socket_source->poll(whatchanged, pollable_handles, topoll,
74 connected_sockets_len, -1 /* infinite timeout */);
75

76 // Loop the polled handles looking for events changed.
77 for(size_t handleidx = 0;
78 handles_changed > 0 && handleidx < 1024;
79 handleidx++) {
80 if(whatchanged[handleidx] == poll_what_none) {
81 continue;
82 }
83 if(0 == handleidx) {
84 // This is the listening socket, and there is a new connection to be
85 // read, as listening socket defines its read operation to be
86 // connected sockets and the endpoint they connected from.
87 struct pair { tls_socket_handle_t sock; ipaddr_t endpoint; } s;
88 struct iovec[1] = { { &s, sizeof(s) } };
89 serversocket->read(iovec, 1);
90 connected_sockets[connected_sockets_len].socket = s.sock;
91 connected_sockets[connected_sockets_len].endpoint = s.endpoint;
92 connected_sockets[connected_sockets_len].rbuf_storage_length = getpagesize();
93 connected_sockets[connected_sockets_len].wbuf_storage_length = getpagesize();
94 connected_sockets[connected_sockets_len].rbuf_storage =
95 socket->allocate_registered_read_buffer(
96 &connected_sockets[connected_sockets_len].rbuf_storage_length);
97 connected_sockets[connected_sockets_len].wbuf_storage =
98 socket->allocate_registered_write_buffer(
99 &connected_sockets[connected_sockets_len].wbuf_storage_length);

100 connected_sockets[connected_sockets_len].rbufs =
101 connected_sockets[connected_sockets_len].rbuf_storage->iovecs();
102 connected_sockets[connected_sockets_len].wbufs =
103 connected_sockets[connected_sockets_len].wbuf_storage->iovecs();
104

105 // Watch this connected socket going forth for data to read or failure
106 pollable_handles[connected_sockets_len] = s.sock;
107 topoll[connected_sockets_len] = poll_what_is_readable | poll_what_is_errored;
108 connected_sockets_len++;
109 handles_changed--;
110 continue;
111 }
112 // There has been an event on this socket
113 auto *sock = &connected_sockets[handleidx - 1];
114 handles_changed--;
115 if(whatchanged[handleidx] & poll_what_is_errored) {
116 // Force it closed and ignore it from polling going forth
117 sock->socket->close();
118 sock->rbuf_storage->destroy();
119 sock->wbuf_storage->destroy();
120 pollable_handles[handleidx] = nullptr;

6

121 }
122 if(whatchanged[handleidx] & poll_what_is_readable) {
123 // Set up the buffer to fill. Note the scatter buffer list
124 // based API.
125 size_t bytesread = sock->socket->read(sock->rbufs.iov, 1);
126 // Do something with the buffer
127 // Reset the buffer
128 sock->rbufs = sock->rbuf_storage->iovecs();
129 }
130 if(whatchanged[handleidx] & poll_what_is_writable) {
131 // If this was set in topoll, it means write buffers
132 // were full at some point, and we are now being told
133 // there is space to write some more
134 if(sock->wbufs.iov[0].iov_len > 0) {
135 size_t byteswritten = sock->socket->write(sock->wbufs.iov, 1);
136 sock->wbufs.iov_base += byteswritten;
137 sock->wbufs.iov_len -= byteswritten;
138 }
139 if(sock->wbufs.iov[0].iov_len == 0) {
140 // Nothing more to write, so no longer poll for this
141 topoll[handleidx] & =~poll_what_is_writable;
142 // Reset the buffer
143 sock->wbufs = sock->wbuf_storage->iovecs();
144 }
145 }
146

147 // Process buffers read and written for this socket ...
148 }
149 }

poll() has by definition linear scaling to sockets being polled, and as a result most OS kernels
refuse to accept more than a few hundred inputs per poll(). Despite this, this simple method of
multiplexing i/o on a single kernel thread will get you surprisingly far in most real world use cases
for i/o multiplexing – only when you operate thousands of concurrent connections per kernel thread
do scalability issues emerge, and then becomes important alternative techniques such as epoll or
io_uring for Linux, Grand Central Dispatch for Apple Mac OS, or IOCP and RIO for Microsoft
Windows. I would argue that WG14 does not need to standardise anything beyond poll() at the
present time. Absolutely leave open potential for future standardisation in that area, but let’s leave
that off for now, and standard library implementators can of course add additional APIs to support
their proprietary i/o reactor if they wish.

1.3 Example: Wrapping a third party socket implementation with TLS
1 // I want a TLS socket source which supports wrapping externally
2 // supplied byte_socket_handle instances
3 static constexpr tls_socket_source_implementation_features required_features =
4 tls_socket_source_implementation_features_supports_wrap;
5 tls_socket_source_t tls_socket_source =
6 tls_socket_source_registry_default_source(required_features,
7 required_features)->create();
8 byte_socket_source_t byte_socket_source =
9 byte_socket_source_registry_default_source_create();

10

7

11 // Create raw kernel sockets.
12 byte_socket_t rawsocket
13 = byte_socket_source->connecting_socket(AF_ANY);
14

15 listening_byte_socket_t rawlsocket
16 = byte_socket_source->listening_socket(AF_ANY);
17

18 // Attempt to wrap the raw socket with TLS. Note the "attempt" part,
19 // just because a TLS implementation supports wrapping doesn’t mean
20 // that it will wrap this specific raw socket, it may error out.
21 //
22 // Note also that no ownership of the raw socket is taken - you must
23 // NOT move it in memory until the TLS wrapped socket is done with it.
24 tls_socket_handle_t securesocket
25 = tls_socket_source->wrap(rawsocket);
26 listening_tls_socket_handle_t serversocket
27 = tls_socket_source->wrap(rawlsocket);

To support non-standard socket implementations, TLS socket sources may be able to wrap a third
party supplied socket implementation – any implementation of byte_socket_handle or
listening_byte_socket_handle which meets the API guarantees is suitable, and this can include unit
test suite fake sockets, pipes, or any arbitrary transport which quacks like a socket. There isn’t
much more to say here, other than that this facility would exist in the proposed standardisation.

2 Why not IETF TAPS instead?

Since when [P2586] was rejected by WG21, [P3482] Design for C++ networking based on IETF
TAPS has been proposed for C++. This would add to the C++ standard library an implementation
of https://datatracker.ietf.org/doc/rfc9622/, which is the IETF TAPS standard.

There are similarities between this proposal and IETF TAPS:

1. Both have a queryable registry of transport implementations which manufacture instances.

2. Both are compatible with Apple’s Network Framework, though for different reasons.

There are many differences however:

1. This proposal supports only reliable stream based transports. TAPS supports packet based,
datagram based, and many others.

2. This proposal supports only TLS as the security layer. TAPS theoretically supports security
layers not yet designed.

3. This proposal is designed to work very well on embedded systems where networking is provided
by a coprocessor, and where dynamic malloc() may not be available.

4. This proposal does one thing specifically, whereas TAPS is absolutely enormous and covers
every conceivable type of networking connection – packet-orientated, message-orientated etc
– and includes potential future types of networking connection for which the application was
not intentionally written.

8

https://datatracker.ietf.org/doc/rfc9622/

5. This proposal supports blocking and non-blocking i/o only, whereas TAPS requires an asyn-
chronous i/o implementation.

6. This proposal rather hand waves away how to handle TLS certificates as standardising that
portably is very hard (we provide a ‘name’ setting with platform-specific meaning, and we
allow enable/disable of ‘whatever the system defines as certificate validity’. Everything else is
left to platform-specific APIs). TAPS has a full fat attempt to standardise trust verification
and identity challenge across platforms, and speaking personally I’m not 100% sure what they
propose is implementable in some use cases.

In short, I think TAPS is great as an ecosystem supplied library. I think it far too large for
the C standard library. I would point out that this proposal would be one of several potential
implementation backends for a TAPS implementation, but you would need a lot more code to
achieve a compliant TAPS.

3 Conclusion

Being able to connect to a web server and retrieve a HTTPS page has become one of the fundamental
things software needs to do. The technologies involved – sockets and TLS – are mature by this point.

The question I put to WG14 is this: should the standard C library provide a standard socket and
TLS implementation?

The two main arguments against I think are:

1. The standard C library should not standardise something that the ecosystem
ought to provide.

This is fair, however there is the portability argument, and when US$2 microcontrollers can
do TLS based secure networking, I think there is a fair case that standardising a portable API
has become time.

2. Is not secure networking still evolving quickly i.e. HTTP/3?

Every HTTP/3 server will continue to provide HTTP/2 same as they continue to provide
HTTP/1.1. There is also a large ecosystem of non-HTTP TLS secured socket based services
out there which will stay using TLS forever, not least because HTTP/3 uses UDP rather than
TCP as its underlying transport e.g. SSH is very likely to remain TLS based for decades to
come for the simple reason that it’s plenty good enough for that use case.

This proposal enables standard HTTPS page fetches, but you still have to implement all the
HTTP stuff yourself. This proposal would only standardise the secure networking part of
things, and I don’t see that technology changing much any time soon.

4 References

[P2586] Douglas, Niall
WG21 P2586: Standard Secure Networking
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2586r0.pdf

9

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2586r0.pdf

[P3482] Rogers, Thomas; Kühl Dietmar
WG21 P3482: Design for C++ networking based on IETF TAPS
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3482r0.html

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3482r0.html

	Examples of what the API would look like
	Example: Retrieving a web page over HTTPS
	Example: Multiplexing TLS server connections
	Example: Wrapping a third party socket implementation with TLS

	Why not IETF TAPS instead?
	Conclusion
	References

