Wel ’//»/35‘.3
X370/ 9y-03%

From: Frank Farance

Date: 1994-06-08

Document Number: WG14/N353, X3J11/94-038
Subject: Fortran 90 VLA/Data Parallel Report

This document is an analysis of features comparing the following
language specifications:

MacDonald VLA Proposal

Ritchie VLA Proposal

Cheng VLA Proposal

Farance APL-VLA Proposal

DPCE Proposal

Fortran 90 (F90) Standard

High Performance Fortran (HPF) Document
APL Standard

At the 1993-12 meeting in Kona, several questions were raised:

1. Why was the APL standard used as a basis for the DPCE-APL

(now APL-VLA) proposal? Answer: The F90 definition and APL
definitions of "shape" (rank and dimensions) are basically the

same. However, the F90 definition of "scalar to array promotions"
are particularly weak -- the APL definition gives precise semantics.

2. Is there commonality between the VLA and DPCE proposals?
Answer: Yes. From the perspective of data definition, the VLA
proposal passes arrays by reference and the DPCE proposal passes
arrays by value (ALO’s -- array-like objects). Both proposals can
pass shape with the pointer or the value. The following table
summarizes the features with respect to *implicit* information the
is passed across the function call boundary:

117



No

No

No

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

Yes

Yes

Pointer/vValue

Pointer

Value

Pointer

Value

Pointer

Value

Pointer

Value

Description

Traditional C pointer, or
pointer to be used in
subsequent explicit "paste"
with shape (and layout).

C object, or array passed by
value. The array *may* be
used subsequently with
explicit "paste" with shape.
Possibly an ALO (array-like
object) where shape is known
externally (explicit "paste").

VLA prototype with "[?]",
npxn, wpsyr, “or "shapeis(?)",
depending upon the proposal.
Compiler generates code to
pass shape info on the stack.

ALO prototype with "[?]",
"shapeis(?)", or "int:void",
depending upon the proposal.
Compiler copies value and its
shape onto the argument stack.

Pointer and layout info are
passed. Pointer to a
distributed object.

Value and layout info are
passed. Distributed object
is passed on stack, e.qg.,
pieces of object on stacks
of different processors.

Distributed VLA. Layout,
shape, and pointer are
passed on stack.

Distributed ALO. Layout,
shape, and value are passed
on stack. Distributed
object might be distributed
on stacks of different
processors.

8%



3. How do these VLA proposals compare to each other? Answer:
The attached matrix compares these proposals with respect to
"shape" (rank and dimensions), "layout" (distributed memory
objects), and "selectors" (indexing, slicing, scatter-gather).
The following are details of the criteria used to evaluate the
proposals.

S T T S S e e e e e e e e e e e e e e o e e e e e e e e e e e o e e e e - ————————————

This section evaluates the proposals on "shape" (i.e., rank and
dimensions), pass by reference, and pass by value.

Comparing the proposals on "shape", i.e., rank and dimensions.

Variable size in array declaration: Can a non-constant expression
be used in an array declaration?

Allows variable size in prototype declaration: Can a varying size
array be used in a prototype?

Auto allocation/free of array: If varying size array is declared
in a block, is memory allocated (e.g., on stack) on entry and freed
on exit from the block?

Explicit pasting of pointer and shape: Given a separate pointer
and shape, can a varying size array be declared by "pasting" the
information, e.g.:

int £ ( int n, int *aa )
{

}

Explicit pasting of pointer and shape in prototype: Can a pointer
and shape be "pasted" in the prototype:

int a[n] = aa;

int £ ( int n, int a[n] )
/* shape, pointer =*/

Unordered explicit pasting of pointer and shape as argument: Can
the shape appear after the pointer (Stallman proposal)?

int £ ( int a[n], int n )
/* pointer, shape */

[ 17



Implicit combined value and shape as argument: The value and its
shape are both passed on the stack. Also known as ALO’s
(array-like objects).

main ()
{ 3
int a[17];
f(a); /* passes shape (17) and value (whole array) */
}
int £ ( int alo a[?] )
{
/* both shape and value passed */
}

Pass whole array (by value) as argument: For arrays, are they passed
by value (shape is not required to be passed):

main()
{ 3

int a[(17];

f(a); /* passes shape (17) and value (whole array) */
}
int £ ( int alo a[17] )
{

/* only value passed - shape agreed upon otherwise */
}

"Shape Of" operator/function: Is there some operator or function that
returns the size of the dimensions of an array?

Variable rank declarations: Can arrays be declared at run-time with
varying rank?

Variable rank arguments: Can prototypes define arguments with varying
rank?

Reshape operation: Is there an operator or function that changes the
rank and dimensions of an operand?

Explicit pasting of value and shape: Can a variable be declared by
constructing is value and shape as separate components?

int S:a = b; /* DPCE: shape == S, value == b */
int shapeis(X) a = b; /* APL-VLA: shape == X, value == b */



Constant shapes: Once a shape is fully defined (for certain
declarations), must the shape of these variables remain constant.

Shape checking on assignment: For expressions like "a = b" where
the shapes must be compatible, is shape checking performed?
Legend: R=run-time, C=compile-time, O=optional

Bounds checking: Are array bounds checked a run-time?
Legend: Y=yes, N=no, O=optional, Q=quality of implementation

Fat pointers - global: Are there pointers that access data across
all of distributed memory?

Fat pointers - wider than "void *": Are there pointers whose size
is wider than "void #*",

Fat pointers - address and shape: Are there pointers that have more
information than the address, i.e., shape information is included
(some kind of dope vector).

Fat pointers - address and layout: Are there pointers that have more
information than the address, i.e., layout (memory distribution)
information is included (some kind of dope vector).

Fat pointers - address, shape, and layout: Are there pointers that
have more information than the address, i.e., shape and layout
information is included (some kind of dope vector).

This section evaluates the proposals on layout (i.e., data in
distributed memory systems).

Distributed memory: Can objects be distributed in discontiguous
memory?

Specify layout: Can the data distribution preferences be specified
in the object declaration?

Extract layout: Can the actual data distribution scheme be
retrieved from (e.g., "layoutof") a distributed object?

Operate with incompatible layouts: Can two operands interact (e.g.,
addition) if they have incompatible layouts?

Near pointers (local and fast): Are there pointers to objects in
local memory (short pointers) that have fast pointer increments?

Far pointers (global and fast): Are there global pointers (long
pointers) that have fast pointer increments, but cannot walk the
object across distributed memory segments?

Huge pointers (global and slow):Are there global pointers (long
pointers) that can be incremented and walk the object across
distributed memory segments?

/2



This section evaluates the proposals on selectors, e.g., indexing,
slicing, scatter-gather.

Vector value subscripts: Can specify arbitrary elements (e.g.,
elements 7, 2, 3).

A[7 2 3] /* APL */
Cross product: Can specify multi-dimension vector value:
B[1 3][2 4 6]

specifies:

Wwwwoww
Lo M e W M e M
WWWRE R
(SN S N R R S
—— e
D NN
[ N R S

Dot product: Can specify arbitrary elements for multiple
dimensions:

[0]Al = 1;

[1]A1 = 2;

[2]Al = 3;

[0]A2 = 4;

[1]A2 = 5;

[2]A2 = 6;

[0]A3 = 7;

[1]A3 = 8;

[2]A3 = 9;

[(Al][A2][A3]X; /* DPCE Specifies: */

/* [11[4])[7]X */
/* [2][5][8)X */
/* [3]1[6][9]X */

Conbine cross and dot product: Can both styles be used
simultaneously?

First-last-stride triplet slice: Array slicing specified by the
first element, the last element, and the increment (stride)
between elements.

First-length-stride triplet slice: Array slicing specified by

the first element, the number (length) of elements, and the
increment (stride) between elements.

[ 22



FRANK FARANCE

e e e T HE BRI
i ] ____: _ ___..UJ ! L 3 b [ | ' { H 1 |
*S B~ ;6. 3 1

'\l ' i
5 3:_‘! : | "S}\qui’—cmi‘cﬂq ' ‘

:i;\‘ Hm%

/ Var\o.hh, €/_2—¢ n aff‘aj a(ec(araf‘fdn

s 7 s \/. / ™ Al ot ] Vdr:@\m size in Proto. doel

| [ O T D T s P T A e

!
;
|
|
|

M
T\ Ritchie

X

\

L\

§
N
<
\

.Am'\’a n\\oc,/@rec o@ar!*oj

|

!
4
\,
b
N

Exgu H— Paxhgj Pﬁ* +sha,

E‘%P(\U’)' pa&+113 P1"r+sl'\qpe mpro)-o

()r\or‘olereo\ exptxu—i— OOA‘I"H’\ﬁ '!
p“ff‘-l-_ckape m prw‘-a S o

l
i
\1 £ qi j; ;;_ SN

IM p&?, 7"’ co-mbfhéo( mlue,ts/wm a9

ST ] 7| Pas ool array Cogveluden Z)
: 7 | "skape OF mwfﬁmmn

; \[cu‘\a\oLL “ranle leclle T
| v \far\a\ah mx\karcsumﬂmﬁ'(

\K _Q o

<\
q
N
IS
N
q
‘ Sl

ﬁ@& kape+opem '/‘7‘cm '

L :

NN
T
™N
'\ﬁ\
\T1
><
>
NIl
_(: |
:‘r‘
V-
§
CERS
S|

%
N
¥
—
kg

o
e
lL\_

/3\’52




FRANK FARANCE

0

‘—"‘ &\'\apa crﬂ’@m Q’“—‘

! ¢
! | i
i ! |
T ; ‘
i
i
| | i :
i § 2

i

-/

SMPes CQJKQn?LJGRUK C{‘((/A”DC>

Slm(u;_chukm_ _CE\_@SQL nw* -
C= cowp\&—h\w = un—-hm,_ orr\'bna

ik BOUJ‘\OK C\\Qc,\mnﬁ OAJW)QS_
| Y= N=No, 0= Opfma/

Q &ua(}g oP fMp(Q,mM%UM

oA

F&T Do 1 r\"‘m 3( ob &J

Q"r DO\\&:&S MolQrT“Nn Uolols

Tl

.

7l

%’r Po\m - ado(ru& +YA%> ’

WA Sk povied = allsess 1 oy

| PR A//l P&%‘ ?b\n—\fﬂ céArus la:,m,___4
R4 HH | Bl

LT A A




FRANK FARANCE

P \/_,,_r ‘%Fec“%'taaﬂuf’ i
o E:xmt_La@ouT R

<[

|

ParZal Mmcﬁaﬂyw—? ((oca/ Gorol %D““:
| T petes ( globComd )|
. #6472 />a//zlc/.f i ?/oén(_zzm( J/OW)____
%%%% St Sclec'hjﬂ? i BN
1= /\/ Vec& vume___gubscmpﬁ’ ‘

J __&Q_7DTUOCLL¢7"

!

'\<l\\
SIS
|\.
‘?
ré’
§
;t
,31
el
R
&
~
\Z‘
B

<_
'zv .
13>

i T . )
i

! i H i
1 '

i H
I: ' i £ - 9
P / — b4 i

i 7 ~ EE

| [
[ R

TR N R

! i ! i i | : : i ! i i
; H i : : i i ! i i t | : ! : ! i
L L L T A A D A





