July 7, 1994 1 WG14/N352
X3J11/94-037

Minutes of San Jose X3J11 Meeting
6-10 June 1994

Hotel Sainte Claire
Santa Vesta Room
San Jose, California

Attendees

David Alpern, John Benito, Harry Cheng, Jerome Coonen, Frank Farance, Ron
Guilmette, Doug Gwyn, Rex Jaeschke (Chair), Bob Jervis, Larry Jones, David
Keaton, John Kwan, Tom MacDonald, Stuart McDonald, Randy Meyer, Dave
Mooney, Esther Park, Tom Plum (Vice Chair), Linda Stanberry (Acting Secretary),
Jim Thomas, Fred Tydeman, Douglas Walls, Jeff Zeeb, Jonathan Ziebell.

Legend

The following symbols in the left margin of these minutes have the indicated
meaning:

A General approval

SV Straw vote

MSP Moved, seconded, passed (formal vote)

- Action item

The activities reported here are grouped by subject and do not necessarily follow
the exact chronological order of presentation during the meeting.

Formal votes are reported as:
In-favor / Opposed / Abstaining / Not-voting / Total-eligible

Secretary's note: "McDonald" refers to Stuart McDonald and "MacDonald" refers
to Tom MacDonald in these minutes.

1. Opening Activities
1.1 Opening comments, goals and purpose of the meeting
Jaeschke convened the meeting at 9 AM, 6 June 1994.
The goals and purpose of the meeting were announced.
« This is the first meeting since the merger of NCEG with J11, so meeting for
5 days instead of 3.
« With respect to NCEG issues, this is business as usual: wrap up the 3 groups
already submitted to J11, continue with remaining 4 groups.
« New item since the Kona meeting is the new C standard charter.

1.2 Host Facilities

51

July 7, 1994 2 WG14/N352

1.3

14

1.5

X3J11/94-037

Benito (Perennial) and Kwan (Hewlett Packard) were the hosts, and described
arrangements for duplicating and file printing. Information on local eateries was
also provided.

Introduction of Participants

Attendees introduced themselves and indicated roles as focal points for NCEG
subgroups or other work items. A copy of the attendance sheet is attached to
these minutes.

Approval of previous minutes [N321/94-005, N315/93-062]
The minutes from thé Kona meeting were accepted as distributed.
Status of action items from previous minutes

[From the Kona J11 meeting, N321/94-005]

Gwyn agreed to provide write up on editorial changes [to Defect Report?] and
post it to X3J11. Work must be done by Plauger. Done, in document.

Jaeschke [will] get resolution of LIA review. Responded on our behalf, "not
rejecting, just not actively supporting.”

Plum will investigate availability of machine readable X3J16/WG21 document.
Sent DOS floppy to Jaeschke. Is available to standards members on floppies
through Randall Swan. The discussion in J16 was that it was not to be distributed
otherwise (e.g., on reflectors). Benito offered to make copies available to J11
members at this meeting.

Jaeschke will review SC21/WG3 ISO 10728 "C Binding IRDS Database." No
action taken prior to deadline.

Farance will review [Portable Common Tool Environment (ECMA)] document.
Done.

Farance will do electronic document pilot project. Continuing activity, will report
on status later in this meeting.

Jaeschke will be a focal point for getting [revision of C standard] organized.
Done, N328/94-012, proposed charter in mailing.

Plauger, Feather, and Gwyn are review committee [for edited RR and TC]. Done.
Keaton will take responsibility for [Designated Initializers and Compound
Literals] document since Prosser is unavailable. Revised version in first mailing.
Done.

Meissner and MacDonald will reconcile [NCEG and J1 1] mail reflectors.
Inaction, but MacDonald reports no mail to NCEG reflector since the last
meeting. .

MacDonald will post an announcement to the NCEG reflector that it will be

5.

July 7, 1994 3 WG14/N352
X3J11/94-037

discontinued and future postings should be sent to the J11 reflector since the two
committees have now merged. To subscribe to the J11 reflector, send to

x3jll-request@osf.org

Benito will verify that Convex is still hosting the December, 1994, meeting.
Done-Convex to distribute meeting information at this meeting.

Jaeschke will talk to X3 sceretary and X3J16 about joint WG14/X3J11 meeting
schedule and mechanics - how X3 feels about it. Jaeschke was informed that we
cannot hold "joint" meetings, but that we can "co-locate” our meetings (sigh!).
Plum noted that we should not refer to "joint committees" either as there is no
such thing.

MacDonald will do WG14 mailings. Done.
Farance will investigate electonic distribution [of mailings]. Done.

Gwyn will write up exact wording specified [for defect report in N297 #2]. Done,
included in the mailing.

[From the Kona J11.1 meeting, N315/93-062]

Jaeschke will email both the NCEG and J11 reflectors to notify anyone who may
be affected on the rules for attendance and voting after the merger. Done.

Keaton will take over work on the compound literal/designated initializers
proposal, and pursue answers to questions raised at [the Kona] meeting. Done.

MacDonald/Homer will produce revised proposal for aliasing. Done, N334/94-
019. .

MacDonald will recommend changing the names defined in <complex.h> to use
underscores to Knaak. Done, N335/94-020.

Thomas will prepare draft #2 of the FPCE document with [Kona meeting
proposed] changes. Done, N319/94-003.

Farance will investigate other languages' features (Fortran 90 and HPF) that may
have an impact on the DPCE and VLA proposals. Done, will report later in this
meeting on findings.

Meissner will determine what is the official dictionary for terms not defined in the
C standard. No word on this as yet, and Meissner not attending. Gwyn notes that
the answer to this may be relevant for one of the defect reports.

Meissner will expand and revise the fat pointer proposal for the next meeting.
Farance will contact Meissner about this.

Thomas will provide his comments for his votes on the CRI VLA proposal [to
MacDonald]. Not done yet.

MacDonald will forward the CRI VLA propbsal to J11. Done, N317/94-001.

53

July 7, 1994 B WG14/N352

1.6

1.7

MSP

X3J11/94-037

Kwan will revise the <inttypes.h> proposal for the next meeting. Done, N349/94-
034.

Distribution of new documents

New documents were assigned WG14/X3J11 numbers, and will appear in the next
X3J11 mailing. Available documents were distributed.

N348/94-033 "Extending C with Arrays of Variable Length," Cheng, distributed.

N349/94-034 "Extended Integers for C," Kwan, distributed.

N350/94-035 "An Alternative to Imaginary Types," MacDonald, distributed.

N351/94-036 "Model Electronic Document Project Status," Farance, distributed.

N352/94-037 "Minutes of San Jose X3J11 Meeting," Stanberry.

N353/94-038 "Fortran 90 VLA/Data Parallel Report," Farance, distributed.

N354/94-039 "Complex C Extensions," Thomas, distributed. (Formerly X3J11.1
93-048)

N355/94-040 "Extended Integer Range and Portable Data Structures," Farance,
distributed.

N357/94-041 "Designated Initializers," Prosser and Keaton.

N356/94-042 "Compound Literals," Prosser and Keaton.

N358/94-043 "Dallas Meeting Information," Meyer, distributed.

N359/94-044 Letter to Jaeschke from William Rinehuls, distributed.

N360/94-045 "A Brief Note Regarding Defect Report Processing Procedures,"
Guilmette, distributed.

N361/94-046 "Call for volunteers X3J11," Arnold.

N362/94-047 "Comments on Complex vs Imaginary Types for C," Gentleman,
distributed.

Approval of the agenda

Jaeschke identified papers to be addressed under each agenda topic. The agenda
was slightly modified to accommodate new requests for agenda time and time
conflicts for some members.

Jaeschke noted that he would like to have formal votes during the agenda time for
the Designated Initializers/Compound Literals, Alisasing, and FP/IEEE subgroups
to freeze these documents at this meeting. Gwyn asked for clarification on
whether TR items are to become part of a revised standard. There was lots of
discussion on this point: many believed the TR is a "starting point" for future
standards. Thomas suggested that we need to find the right middle ground for
what weight we assign to the TR. Gwyn suggested the TR could have status of
POSIX-like optional extensions. Plum wanted to clarify whether the TR would
have rigorous or optional status.

Move that we clarify that adoption of the TR is not necessarily an endorsement of
a future C standard. (Plum, Gwyn)
15/0/1/3/19

Gwyn suggested that the introductory wording of the TR should include this
clarification. Thomas noted that parts of the TR are not for universal audience,
and that we should recommend some parts for specific classes of implementors
and users.

S¢

July 7, 1994 5 WG14/N352

1.8

X3J11/94-037
Identification of voting members

After the attendance list was circulated, Plum announced that there were 19
eligible voting members, of whom 16 were attending.

Liaison reports

wGl4

Benito reported that the only new item is the need to form a position on the DAM.
21 1

Plum noted that he will bring up additional liaison issues as they are discussed in
their agenda times. There are several areas in which C++ is watching C.

Gwyn pointed out that the latest C++ working paper does not list the C standard
as a base document. Plum verified this and stated that it is unfortunate from the C
compatibility viewpoint.

Thomas asked if there was any interest in the C++ committee in maintaining
Jargest compatible subset as suggested by Plauger. Plum replied that there is none
at the moment; chapter 13 of the current working paper is the best attempt to
provide a listing of what differs between C and C++.

Plum indicated that the Waterloo meeting in July is critical for making CD
registration vote, which is the first in what is now a 3-step sequence for ballotting.

. Eight months after the CD-registration vote, there is a CD ballot, and eight

months after that, a DIS ballot. Hence, it will be roughly 2 years plus 8 months
until the final standard. This is relevant for us as we begin revision of the C
standard-it is very difficult to do ISO ballotting in less than 8 months.

Farance asked if WG14/J16 is aware of our beginning work on a revised
standard? Plum indicated they are not. Jaesckhe added that it is better not to
inform them now, but postpone any announcement until we are fully organized
and then Plauger will notify them when necessary.

X3H5

Jaesckhe reported that he had received a letter from William Rinehuls, Chairman
of the OMC (used to be SPARC), notifying him that X3HS has requested that it
be changed from an active to a maintenance technical committee, and enquiring
whether or not J11 is interested in assuming the responsibility of producing the C
binding for the X3H5 model. OMC cannot grant the request to change the status
of X3HS until they complete publishing of their standard, including the binding
for C. We need to respond to them by 10/21.

Farance suggested this be discussed under VLA or DPCE agenda time.

Gwyn asked for clarification: are we being asked to create a binding for a non-
existent standard? Jaeschke indicated that there would be a standard.

55

July 7, 1994 6 WG14/N352
X3711/94-037

MacDonald noted that the X3HS model includes shared memory as a part of their
charter.

Further discussion was deferred to other business.

X3H2
Tydeman reported that the US voted to accept LIA 1/94.

MacDonald asked if we know what the implications are for language standards.
Plum believes that each committee will be tasked at the next review to critically
review and justify any non-compliance. MacDonald asked do we specify what
part of the C standard to use for LIA? Plum emphasized that LIA is a standard for
standards committees, not for implementors. Tydeman, however, believes that an
implementation must provide a LIA-compliant switch. Plum reiterated that the
main impact will be on the next revision, and that a standards committee is
entitled to say, "This requirement does not exist well with this language
architecture."

POSIX

o Farance will review API - C Binding for File Transfer and respond on our behalf.

X312

Jaeschke reported that he had received notification they have a liaison with our
committee.

" Jaeschke will take on task of being our liaison to X3T2.

Miscellaneous

Farance reported that he had attempted to get information from ANSI on where
our money is spent with respect to the International Program Fees. What he
learned is: they collect $100K-1M; very little is spent on travel; but no response
was received on repeated questions on where it IS spent. Farance suggested that
X3 members should pay fee since they have the most to gain and membership not
available to most J11 members. Plum questioned these assumptions about the
restrictions on membership.

Farance reported on the Electronic Document Project [N341/94-036]. SGML is a
standard for documents. Farance will help authors put documents in SGML .
format. Other organizations are far behind us in investigating this area.

SV Infavor of giving Farance permission to respond on behalf of X3J11 to RFI's
from CBEMA on how to publish and produce electronic documents.
Lots Yes. 0 opposed.

. Farance will circulate his response to CBEMA RFI's on electronic documents to
J11;

Farance has begun conversion of the RR and TC documents to SGML and will
convert other documents if provided. Gwyn asked if there will be an SGML to
postscript translator. Yes, Farance will provide this support for multiple UNIX

56

July 7, 1994 7 WG14/N352

SV

SV

X3J11/94-037

targets. Thomas asked about how to edit converted documents. Farance
responded that he would not be taking on the task of doing mass editing.

Designated Initializers and Compound Literals [N302/93-049]

Keaton presented proposed changes to these proposals since the Kona meeting
and subsequent discussions with Prosser. These changes only affect the
compound literals part of the proposal.

Prosser indicated that there was no intent to imply dynamic allocation nor scope
other than ordinary block scope as had been questioned at the Kona meeting.
Keaton proposed changes which would clarify this.

Change page 2, line 8 of compound Htéral proposal to specify "enclosing block"
rather than "enclosing function body." Delete page 3, lines 7-18.
Lots Yes. 0 opposed.

Mooney proposed that we change the example on page 3, line 21 because of
conflict with proposed response to one of the defect reports regarding sharing of
string literals. Gwyn and Plum suggested that we also delete next example for
similar reasons.

Change page 3, line 21 to read:
(const char([]) {"abc"} == "abc"

and delete two sentences and following example on lines 22-25.
Lots Yes. 0 opposed.

The reference on page 3, line 32 for subclause 7.5.7 should be corrected to 6.5.7.

Guilmette asked for clarification of the lvalue-ness of compound literals: would it
be simpler if they were not treated as lvalues? how does this relate to Plum's
concerns about C++ compatibility? Keaton clarified that compound literals
behave as auto variables, not as casts.

Plum repeated concerns raised at the Kona meeting about compound literals vs.
C-++ constructors for creating temps. Note, there is no problem with designated
initializers, nor with compound literals used in initializers at file scope. The
problem is with auto temps. For constructors, need to specify interface for
creating temps of structured type. The compound literals proposal attempts to
solve the same problem with an incompatible syntax, as in:

.::member_type{ ... }

Gywn and MacDonald pointed out that you can't do this syntactically in C.
MacDonald further stated that there is a philosophical difference here that the C
extension is to be handled in the compiler without requiring the user to specify a
constructor. Gwyn added that this is simpler, involving no function overhead.

It was also noted that compound literals apply to arrays, and constructors don't.
The constructor syntax would also require allowing function members which

57

Tuly 7, 1994 8 WG14/N352

MSP

MSP

X3J11/94-037

would probably not be accepted as a C extension. Plum promised to raise this
objection again if J11 considers adding member functions.

Keaton asked to accept the proposed changes and freeze the amended proposal.
Plum suggested that the proposal be separated into two proposals, which would
require reordering/revising some examples, and/or cross-referencing the
proposals. If they were separated, we can revisit objections to the compound
literals proposal without affecting the designated literals proposal.

Move that we separate the compound literals and designated initializers proposal
into two proposals. (Plum, Gwyn)
8/5/1/5/19 : '

Thomas asked if we could vote on freezing the proposals now, or if we would
have to review the revised proposals. It was decided to appoint a review
committee and conditionally freeze the proposals subject to this committee's
review.

Keaton will split the compound literals and designated initializers proposals into
two proposals.

MacDonald, Mooney, and Gwyn will review the separated compound literals and
designated initializers proposals.

Move that, after we make the indicated changes to the compound literals and
designated initializers document, we adopt the amended documents as the final
versions, subject to review by the review committee. (Keaton, Jones)
16/0/0/3/19

Variable Length Arrays [N317/94-001, N348/94-033]

MacDonald stated that the CRI proposal is done—taken as far as it can go.
Farance indicated he had a new document that will be in the pre-Dallas mailing.
Cheng has a revised document to present.

Plum reported C++ liaison issues. The C++ area that is most affected by these
proposals is parts of the library, such as support for dynamic arrays. All such C++
proposals have currently been put on hold, however. The C++ array objects
proposed will probably be some struct with bookkeeping information (i.e., a dope
vector). As an aside, Plum encouraged DPCE subscripting to consider using a
parenthesized list of comma-separated subscripts as these could be treated as
overloaded operators.

MacDonald noted that F77 can be done without dope vectors but that F90 used
dope vectors for slicing. :

Cheng gave a whirlwind tour of his revised proposal for VLA's, N348.

* Overview
* Deferred-Shape arrays
* Assumed-Shape arrays
« Pointers to array of assumed-shape
* Rationale and Differences between this proposal and others

58

July 7, 1994

9 WG14/N352
X3J11/94-037

« Definitions of array, rank, extent, shape, and size were reviewed

» VLA type includes
* Deferred-shape arrays
+ Assumed-shape arrays
+ pointers to array of assumed-shape (fat pointers)
+ Example showing syntax of these types:

int A[10][100], B[4]1([8], C[10], g[1l0];

void funct (int af:1[:], (*b)[:], cll, n, m) {
/* a: assumed-shape array */

/* b: pointer to array of assumed-shape */

/* c: incomplete array completed by function call */

int d[4)([5); /* d: fixed-length array */
int e[n][m)]; /* e: deferred-shape array */
int (*f)[:]; /* f: pointer to array of assumed-
shape */
extern int g[]; /* incomplete array completed by
external linkage */
int h[] = {1,2}; /* incomplete array completed by
initialization */
}
funct (A, B, C, 10, 100);
funct (B, A, C, 4, 8);

Note: all VLA array extensions have been implemented and tested!

« Deferred-shape arrays
« Constraints and semantics:

« The size of a deferred-shape array type is obtained at program execution
time and the value of the size shall be greater than zero. The size of a
deferred-shape array type shall not change until the execution of the block
containing the declaration has ended.

« Deferred-shape arrays shall be declared in block scope such as variables
inside functions and nested functions. Arrays declared with the static
storage class specifier in block scope shall not be declared as deferred-
shape arrays. The behavior for declarations of deferred-shape arrays with
file or program scope is undefined.

« Pointers to deferred-shape arrays shall not be declared.

« Deferred-shape arrays shall not be declared at the function prototype
scope.

« Deferred-shape shall not mix with incomplete array type.

« The initializers of objects that have static storage duration are evaluated
and the results are stored to objects at compilation time. But, the
initializers of objects with automatic storage duration and size expression
of deferred-shape arrays are evaluated and values are stored in the object
at program execution time.

« The deferred-shape array shall not be initialized.

« For two array types to be compatible, both shall have compatible element
types and the same shape.

« Switch statement - same as CRI proposal, essentially
« Goto statement - differs from CRI proposal because of allowing nested
functions.

57

July 7, 1994 10 WG14/N352
X3J11/94-037

MacDonald clarified that he was talking about longjmp problems in Kona, not
addressing nested functions.

* Members of structs and unions
* offsetof is built in operator ; must be computed at run time if member is
a deferred-shape array;.
* sizeof - must be computed at run time for deferred-shape arrays and structs
or unions that contain deferred-shape members.
* Other data types and pointer arithmetic - same as fixed length arrays

* Assumed-shape arrays

+ Constraints and semantics
* Assumed-shape arrays shall be declared at the function prototype scope
or in a typedef declaration. The assumed-shape array is a formal argument
which takes the shape of the actual argument passsed to it. That is, the
arrays for actual and formal arguments have the same rank and same
extent in each dimension. The shape of assumed-shape arrays cannot be
determined until execution time. The rank of an assumed-shape array is
equal to the number of colons in the assumed-shape specification.
* Assumed-shape arrays may also appear in a typedef declaration.
* Only variables of fixed-length, deferred-shape, or assumed-shape array
type can be used as an actual argument of a formal argument of assumed-
shape array type in function parameters. A pointer or pointer to array,
which does not have the complete shape information, shall not be used as
an actual argument of a formal argument of assumed-shape array type.
* Although complete arrays can be extracted from a pointer to array, they
shall not be used as actual arguments of an assumed-shape array.
» If the operand of a polymorphic operation or function is an element of an
assumed-shape array, the data type of the result and operation depend on
the data type of the formal argument. However, if the formal and actual
data types of an argument are different, but they are compatible, the
operand will be cast to an operand with data type of the formal argument
before operation takes place. If an element is used as an lvalue, the rvalue
is cast to the data type of the actual arguement if they are different. In
other words, elements of the actual array are coerced to the data type of
the assumed-shape array at program execution time when they are fetched
whereas they are coerced to data type of the actual argument when they
are stored.

* Sizeof - must be evaluated at run time for assumed-shape arrays.

* Pointers to array of assumed-shape
+ Constraints and semantics

* When a null pointer is converted to a pointer to array of assumed-shape,
a null pointer is installed at the base pointer of the assumed-shape array
and the bounds of the assumed-shape array are undefined.
* An array, including fixed-length array, deferred-shape array, and
assumed-shape array may also be converted to a pointer to assumed-shape
array. The base pointer to array and all bounds are stored types that do not
have the array shape information shall not be converted to a pointer to
array of assumed-shape.
* For two pointer types to be compatible, both shall be identically qualified
and both shall be pointers to compatible types. For two pointers to fixed-
length arrays to be compatible, both shapes of array pointed to by the

#e)

July 7, 1994 11 WG14/N352
X3711/94-037

pointer shall be the same and the shapes shall evaluate to the same value at
program execution time.

* Function prototype scope
« A pointer to assumed-shape array can be used as an argument parameter
of a function to pass arrays of different size to the function.

« Typedef - can use assumed-shape arrays in typedefs.

» Same as pointers to fixed-length arrays

« Rationale and Differences between this proposal and others
« No deferred-shape arrays allowed at block scope with static storage duration
« Differences between deferred-shape arrays and CRI's VLA's
« OK in CRI proposal, not in Cheng proposal
« deferred-shape arrays at function prototype scope
« pointers to deferred-shape array A
« deferred-shape array mix with incomplete array type
« Not in CRI proposal, OK in Cheng proposal
+ deferred-shape arrays as members of structures and unions, new
semantics for sizeof, typedef, offsetof.
« deferred-shape arrays in nested functions, structures and unions with
members of deferred-shape arrays, new semantics for goto, obsolete
features for setjmp(buf) and longjmp(buf).
« deferred-shape arrays with static storage duration at file or program
scope as vendor extension.
« Order of evaluation defined in CRI proposal, undefined in Cheng
proposal for side effects in deferred-shape array declarations:
int n;
int a[n++], blnt++];
« Pointers to assumed-shape arrays (PASA) versus fat pointers (FP)
« PASA - implemented and tested. FP - conceptual proposal.
« PASA - complete similarity between pointer to fixed-length array,
integrated with deferred-shape arrays and assumed-shape arrays. FP -
details are not specified.
+ PASA - in nested functions. FP - unknown.
» Syntax differences - ? vs :
« Sizeof: PASA - same as pointer to fixed-length array. FP - the total
number of bytes of the array pointed to.
« If a null pointer is assigned to the pointer, the bounds of the array are:
PASA - implementation-dependent. FP - set to zero.
« Assumed-shape arrays (ASA) versus pointers to assumed-shape array
(PASA)
« Sizeof: ASA - the total number of bytes of the array pointed to. PASA -
the same as pointer to fixed-length array.
« Anti-aliasing: PASA - can be used with restrict. ASA - can't.
« Passing array of different data type to functions. Any other typed
languages - can't. PASA - can't. ASA - can.

« Implemented as C/Unix shell interpreter.
Farance presented his APL/VLA proposal.
« Features

» shape

« varying size arrays . -
+ shapeof(x) construct

bl

July 7, 1994

* shapeis(x)

» shapeis(?)
* layout

* layoutof(x)

* layoutis(x)

* layoutis(?)

* near, far, huge ptrs

* selectors

* slicing

* scatter-gather
» parallelism

* scalar/array promotion

* iterators

12 WG14/N352
X3J11/94-037

» Methods of passing information (arguments) to functions

6216l il

int f(int n,

* shapeof(x)

e returns array of size_t

int A[3][4];
shapeof (A)
6 155 il 64

shapeof (C)

I~
Il

= P Pointer
22 A% Value
S P VLA
S A\ ALO
I P Pointer to distributed value
— Vv Distributed value
S P Distributed VLA
S A% Distributed ALO
int a[n])
int a[?]
int af[:]
int al[*]
e o T

null array => scalar

» rankof(x) => # of dimensions

int A[3][4];
int B[4];
TN ey

rankof (A)
rankof (B)
rankof (C)

2
1
0

* C arrays vs. ALO's (Array-Like Objects)
* No differences except ALO's stand alone or become first class objects
* So can freely cast one to the other '
* Give programmers what they know
* New type qualifier "alo"

int B[10];

PR

July 7, 1994 13 WG14/N352
X3J11/94-037

int alo C[10];

B + 1 <- same as &B[1]

C + 1 <- adds one to each element
(alo)B + 1 <- adds one to each element
(carray)C + 1 <= &Gkl

+ Argument passing
* passes by value —1i.e., a COpy of whole array
« note in example, shape is not part of arg since shape is fixed

int £(int alo al3])
{
1t «gum ool
sum = 0;
for (i=0; i<3; i++)
sum += al[i]l;
return sum;

}

main ()

{
int alo b[3];

f(b); /* Passes whole array */

}

« Reshape - used in casts
« allows dynamically determined shape

shapeis (x)
int A[12]
(shapeis ({3,4}))A

« reshapes array to 3x4
« if too few elements, wrap around to beginning
« if too many, take first N elements

Guilmette asked if this compares to (int [3] [4]) A which statically determines
fixed rank shape and type. Yes.

Keaton asked what happens to contents during reshape. Constructs new ALO
value.

+ Shape in declaration

int A[3][4];
int (shapeis(shapeof (A))B;

- creates B with same shape as A

« Qualifiers to shapeis—behavior under const and volatile qualifiers

July 7, 1994 14 WG14/N352
X3711/94-037

int shapeis(x) Y¥:
/* can change shape */
int (const shapeis(x)) ¥;
/* shape doesn't change */
int (volatile const shapeis(x)) Y;
/* shape doesn't change; shape checking on
assignment */
int (volatile shapeis(x)) Y;
/* array bounds checking */
int (const volatile shapeis(x)) Y;
/* array bounds checking; shape doesn't change */
int (volatile const volatile shapeis(x)) Y;
/* array bounds checking; shape doesn't change;
shape checking on assignment */

MacDonald suggested {:A) that if restrict is added, it would mean that no else
has this shape!

+ Interaction of shapeis and array declaration
int A[3][4];
/* equivalent to */
int (const shapeis({3,4})) A;

* Unknown shape
f(int a[?][?])
/* Passes pointer + shape (fixed rank) */

f(int shapeis(?) a)
/* Passes pointer + shape (varying rank) */

* Layout — data distribution
* block + scale layout descriptors defined elsewhere

"layoutof(x) - size of extents
shapeof (layoutof (x)) = shapeof (x)

int alo by(7) x[10];
layoutof(x) = { 4,4,4,4,4,
4,4,4,4,4 }
&x = { 1000, 1004, 1008, 1012, 1016,
1020, 1024, 2000, 2004, 2008 }
layoutof ((void)x) = { 28, 12 }
&(void)x = { 1000, 2000 }

Gwyn pointed out that you can't take the & of a cast to void. Farance said this
would be an extension.

* layoutis operator

int alo /* layout spec */ x[100];

bt

July 7, 1994 15 WG14/N352
X3J11/94-037

int alo layoutis(layoutof(x)) Y[100];
+ similar to redistribute in HPF

MacDonald asked what is being redistributed? Copies object, doesn't distribute in
place as HPF does.

f(int layoutis(?) a[100])

/ \
passes layout passes ptr
/* Distributed VLA */

* Near, Far, Huge ptrs
* Near:

int *P; /* local ptr */
o Far:
Phel Jayoutis ¢oiii)iikp;

« fast increment (local part only)
» can NOT walk across extents
* Huge:

int (volatile layoutis(...)) *PB;

» global ptr - slower
« CAN walk across extents (incr works)

« Summary of shape + layout features
shapeof (x)
shapeis (x)
{ const/volatile } shapeis(x)
shapeils (?)
2]
alo
carray
rankof (x)
layoutof (x)
layoutis(...)
layoutis (?)

+ Missing features/issues
« explicit ptr + shape paste in proto

£ (19t ‘n; 4ntNa’nl)

/ \ \

shape ptr \
paste

Resolution: will add in next revision
« unordered args:

LS

July 7, 1994 16 WG14/N352

SY

Sy

X3J11/94-037

f(int a[n], int n)
Resolution: will not add this or Stallman proposal

Jaeschke asked if the status quo is the CRI VLA paper. MacDonald answered
Yes, since that is the only one that is finished. Jaeschke asked if we want to
continue to have VLA as part of the TR. Need to get sense of committee on
continuing work on each proposal.

Cheng asked for feedback on how he could further his proposal. MacDonald
suggested removing nested functions and polymorphic stuff. Gwyn added that he
should concentrate on standard C and arrays. Thomas suggested that Cheng
might want to present as extensions to the CRI proposal. Cheng pointed out that
he had merged features (FP) from Meissner's proposal—i.e., ASA's and FP's are
not in the CRI proposal.

Plum expressed that it is hard to vote. We have heard N proposals. Need to know
strategy of the committee before voting. Gywn asked if we would publish a
merged proposal or separate ones. Plum asked if we would include rationale on
others.

MacDonald reiterated that he is done. He has no more time to spend on this
proposal.

Farance is willing to host VLA meeting to facilitate merging proposals.

Cheng observed that his and the CRI proposal are much closer, the Farance
proposal is much different than the others.

Plum noted that the CRI proposal has been around for some time, it's
implemented and in use. MacDonald added that Stallman also uses it.

Thomas believes that in the time frame allowed, it is unlikely to get other than the
CRI proposal in TR.

Jaescke called for straw poll of voting members:

In favor of the CRI proposal being the official VLA proposal in the TR.
9 Yes. 2 No. 5 Undecided.

Farance stated that he wants to continue his VLA proposal as an alternative to the
DPCE proposal.

Plum wants to be sure that the adopted proposal could be implemented as a class
with a dope vector. Is it mandatory that it be implemented as a single pointer?
MacDonald replied that the CRI VLA is compatible with void * so therefore only
a pointer. Farance indicated that, except for iterators, APL/VLA has all been
implemented in C++ by Farance, Inc.

We then voted as if it were a formal vote to determine if any work still needed to
be done.

In favor of the CRI proposal being the official VLA proposal in the TR.

Gb

July 7, 1994 17 WG14/N352
X3711/94-037

11 Yes. 3 No. 2 Would not vote.

Jaeschke then called for a formal vote. Thomas asked if this can be undone or
edited. Yes, we can always change our mind.

Farance expressed concern that he had moved to VLA because he was unhappy
with DPCE. Gwyn suggested that J11 would consider continued work as useful
to parallel proposals.

MSP Move we forward the CRI VLA proposal as part of the TR. (MacDonald,
Stanberry)
11/3/0/5/19

Farance asked that the following comment be recorded in the minutes:
It is unfortunate that there now lacks a formal forum for APL/VLA work.

Farance announced that he will sponsor a meeting 8/22-23 to work on extensions
to VLA proposal. Gwyn, MacDonald, and Farance expressed interest in
attending. Jaeschke suggested that Farance should announce the meeting on the

* J11 email reflector.

Cheng indicated that he has already tried to integrate his proposal with standard C
and other VLA proposals, so unless there are specific suggestions from the
committee for changes, he will just continue on his own.

Farance also asked for feedback from the committee. Would it help to break his
APL/VLA proposal into 3 or 4 separate proposals, to allow the committee to pick
and choose? MacDonald was in favor of this since some will have more cost than
others. Would C++ compatibility description help? Gwyn noted that you can't do
syntax extensions through class library. :

There was discussion of whether other proposals could also become part of the
TR. Jaeschke suggested we should get the sense of the committee on this—e.g., do
we give agenda time for these proposals? MacDonald said we must be careful not
to mislead anyone.

Jaeschke asked if there was any objection to giving agenda time? Gwyn noted
that this should be conditional on having papers in the mailings. Thomas also

noted that preference should be for other issues, and these should be discussed
only as time allows.

5. Complex [N335/94-020, N339/94-024, N350/94-035, N354/94-039]

MacDonald reported that the status of this subgroup is still trying to decide
between two proposals, differing mostly in whether or not to include an imaginary
type. CRI has a revised proposal that resolves differences between their earlier
proposal and one from Vermeulen for C++, and a paper on alternatives to

imaginary types.

Thomas has new rationale papers for including imaginary types, and suggests that
we decide at this meeting on one of the complex proposals to be forwarded.

C7

July 7, 1994 18 WG14/N352

X3J11/94-037

MacDonald established the goals of this agenda time to determine direction for
the subcommittee on the issue of adding an imaginary type. Knaak will edit the
proposal if no imaginary type, and Thomas will edit the proposal if there is an

imaginary type.
MacDonald presented changes in the CRI complex proposal, N335. ‘

* Goal
* Resolve differences with Alan Vermeulen's C++ proposal
* Provide compatibility with complex classes in C++
* Enable programs to work with both languages

« _STD_COMPLEX
* A macro defined in <complex.h> header
+ Allows programs to distinguish these new types
* Identical between C and C++

* New Type Names
* float_complex
+ double_complex
* long_double_complex

* Portability
+ Use type names instead of keyword types
* Use the CMPLX macros instead of the "i" suffix
* Use CMPLX macros and "creal"” and "cimag" functions to convert a complex
value from a higher precision to a lower precision type
+ For complex math functions, add macros such as:

#1f defined(_STD_COMPLEX) && defined(_ cplusplus)
#define csin sin
#endif

Plum noted that in C you can get conversion automatically across assignment but
it is ambiguous in C++.

There was some discussion of using overloaded functions instead of macros to
redefine the math functions. Consensus was that this would be nice if the next
revision of the C standard includes overloading. Thomas and Plum suggested that
if overloading is implemented, use the versions in <fp.h> or add words that the
macros that map complex functions to the right names are only available if
overloading is not available.

Thomas presented an overview of his proposal for complex, N354.

» Complex C Extensions
* Spirit of FPCE
* Competing proposal-Knaak: Complex Extensions to C (N335)
* Modem vs. classical
* Several secondary differences, but ...
* One key difference: imaginary types
* Very substantive issue

» Modem vs. Classical

(3

July 7, 1994 19 WG14/N352

X3J11/94-037
* Modemn
. Mo;lels mathematical concepts
i“=-1

real * i -> imaginary

real + imaginary -> complex

symmetry between real and imaginary

real * complex, imaginary * complex are scalar multiplications
« More natural from mathematical & OOD points of view

+ Classical
+ Motivated by data representation
complex <—> array of 2 reals
« Limited by data representation
imaginary values are second class -
real * complex, imaginary * complex require complex multiplications
« More in Fortran tradition

Gwyn questioned why the * is called scalar in modern and complex in classical.
MacDonald stated that the issue is introduction of 0's that happens in classical *'s.

« Semantic/Efficiency Problem of Classical Approach
* Modern
2.01 * (oo + 3.0i) => -6.0 + ooi
2 *'s
+ Classical
2.01 * (e + 3.01) => (0.0 + 2.01i) * (e + 3.01)
=> (0.0% = 2.0*3.0)
+ (0.0%3.0 + 2.0%*=) i
=> NaN + ecoi
4 *'sg, 2 +'s

(even real * i would require 4 *'s, 2 +'s)

MacDonald reminded the committee that it is only a problem for NaN's, infinities,
and possibly signed 0's, and argued that in the complex plane, NaNs and infinities
essentially give same the same information, that is, that something exceptional
happened. Gwyn and Coonen disagreed: infinity is better than NaN since itisa
real number.

o IEEE Compatibility

* Modemn
Natural compatibility with IEEE arithmetic
Completeness
Consistent treatment of special values (infinities, NaNs, and signed zero)
Major features of [EEE
IEEE is dominant standard

+ Classical
Fundamentally incompatible with IEEE arithmetic
Acceptable efficiency prohibits completeness
Special values must be excluded from model
Reasonable behavior depends on optimization

July 7, 1994 20 WG14/N352
X3J11/94-037

Gwyn suggested that this could be handled by special rules for introduced values,
reducing the answer when appropriate: behave as if an imaginary type, but don't
have one. MacDonald said this is really difficult, even though you want your
optimizer to give this behavior. Plum observed that IEEE doesn't have a
representation to map an imaginary exactly onto the complex plane because there
is no way to represent "exactly 0" which is what optimizers have to do. Coonen
appealed for us not to drift into arguing virtues/faults of IEEE specifications.

McDonald pointed out that Thomas' proposal allows keeping imaginary results
imaginary rather than having to coerce them to real. MacDonald argued that
exceptional cases are so rare that it's not too much to ask the user to deal with
them. Thomas and Coonen replied that means you have to deal with exceptional
cases all the time, even though they occur only rarely, which is an undue
overhead. MacDonald countered that there are only a few places where checking
needs to occur. Gwyn added that IEEE rules allow delaying of some checks.

« Efficiency

* Modern
Natural speed efficiency
Supports overloading on imaginary types
Natural space efficiency

* Classical
Speed efficiency depends on optimization
Space efficiency requires implementation from reals

On the issue of overloading for imaginary types, MacDonald suggested why not
just use real types and then multiply by i?

« Simplicity
* Modern
More types require more language specification
Basic implementation is more complicated
Simpler for users
Better model for mathematics
Compatibility between real and complex domains
Predicatable behavior of special cases
Flexible
Natural efficiency
Supports classical programming model
* Classical
Simpler language specification
Requires more optimization
More complicated for users

Final arguments were made for choosing between complex with or without an
imaginary type.

Gwyn stated that, from a scientific point of view, an imaginary type simplifies
tasks for users. Can be done with reals, but user must track which reals are
actually imaginary. So from users' view, would prefer to have imaginary types.

Plum gave the C++ liaison point of view. There has been increasing compatibility
between the C++ and C proposals, so thanks. It is doubtful that the C++ proposal
will get into the standard. Plum is convinced that an imaginary type class

| 70

July 7, 1994 21 WG14/N352

Sy

SV

MSP

X3J11/94-037

implementation could overlay a complex class implementation. There is still a
problem of what to do with I. But he believes it is better to provide needed user
functionality over inconveniencing implementors who don't believe in it.

Keaton asked if without an imaginary type is there anything that tells an optimizer
when it's ok to change IEEE 0 into a true 0? For example, when IEEE O is an
operand of *, ok to produce true 07 There was considerable discussion on this:
are imaginary types only necessary for [EEE implementations? There was not
general agreement, citing the document from Gentleman, N332, and others.

MacDonald argued that the cost of adding 3x 2 = 6 new types is too much.

McDonald stated that there is an overwhelming need for some complex type so
doing nothing would be the worst decision.

Keaton suggested taking a vote on requiring imaginary type only for [IEEE
implementations. Kwan believes need for imaginary type will go beyond IEEE so
doesn't want to separate them.

In favor of having an imaginary type. (Voting members only)
6 Yes. 2 No. 7 Undecided.

If a formal vote, would you be in favor?
10 Yes. 4 No. 1 Would not vote.

Move that we proceed with proposal for complex with imaginary type. (Thomas,
Gwyn) ,
10/4/0/1/19

MacDonald asked that the following be recorded in the minutes with CRI's No
vote:
"The additional complexity of adding imaginary types isn't warranted by the
benefit users will see.”

Plum asked if any member wished to record comment with No vote. No one else
did.

MacDonald, Tydeman, Plum, and Keaton will serve as review committee for the
proposal.

Jaeschke noted that, since there is little time left to complete this proposal by the
end of this year, that it is possible to get a futher extension for the TR to allow
sufficient public review of this and other proposals that are finishing up. We will
need to make such a decision in December.

Aliasing

MacDonald reported on the status of the CRI restricted pointer proposal. At the
Kona meeting, there was discussion of a proposed edit which was revisited.

Restricted pointer edit

« Revise old section 1.6: Aliasing of unmodified objects
« Move it and two other sections on design choices into an appendix.

71

July 7, 1994 22 WG14/N352
X3]11/94-037

+ In the Semantics subsection of section 2, delete the "If O is modified,
then" phrase, leaving "All references to values of O shall be through
pointer expressions based on P."

Review: the intent 1
Consider types with two successive restricted pointer derivations, as in:

int * restrict * restrict p;
int * restrict * restrict g;

The intent was that p and g can be analyzed as if they were arrays:

int p[][n]);
int q[][m];

Review: the problem

void fl(int n, int * restrict * restrict p,
int * restrict * restrict q)
{

intst, I /* without edit, */
for (i=0; i<n; i++) /* optimization */
for (j=1; j<n; Jj++) /* is inhibited. */

pli] [J] += qli](3-1);

Without the edit, p and q may point to the same array of restricted
pointers, since that array is not modified.

* The most natural usage does not promote optimization.

Review: VLA example

void f2(int n, int (* restrict) pl[n],
int (* restrict) gln])
{

int 4,4 /* Optimization */
for (i=0; i<n; i++) /* is easy. */
for (j=1; j<n; Jj++)
pli][J] += ql[i][j-1];

Here, since p and q point directly to the modified objects, those objects
must be different (with or without the edit).

* The original intent was that £1 should be no more difficult to optimize
than £2, and this intent is realized by the edit.

Review: a disadvantage

The disadvantage is that function calls that result in aliasing of unmodified
objects will now have undefined behavior, even in those cases in which no
optimizations are at stake.

void f(int n, int * restrict p, int * restrict gq,

i >

July 7, 1994 23 WG14/N352
X3711/94-037

int * restrict r)

int i;
for (i=0; i<n; i++) pli] = q[i] + TG
}

«Acall f(n, a,b,b) will be undefined (even though it will almost
certainly give the expected results).

A solution

const and restrict can be used together to solve this problem by
making the appropriate aliasing assertion:

void f(int n, int * restrict p, int * cohst a,
{nE"™* “‘const’ r)
{ ,
THE MG
for (i=0; i<n; i++) pli]l = qli] + r[i];
}

« The prototype alone asserts that p [*] is not aliased by g [*] or r [*].
« This allows the loop to be optimized with minimal analysis.

« £(n, a, b, b) has defined behavior.

« Could introduce block scope pointers for incrementing (instead of
indexing).

Issue: read-only objects not affected by restrict.
Goal: remove wording making behavior undefined if modified. Intent was

always to treat as if arrays.
Dilemma: ok if restricted pointer to array, but not ok if restricted pointer to

restricted pointer.
Resolution: use const pointers instead of restricted pointers for read-only
arguments to functions.

Plum raised two issues: (1) What happens in the function? and (2) What does the
prototype tell you? (In C++ prototype, the const means nothing-much argued
over, but finally agreed that it is of no interest to the interface.) MacDonald
clarified this is (1) definition vs. (2) prototype distinction: const tells the
compiler what to do with definition with respect to optimization. Plum suggested
that one could also use const int * const to further indicate the read-only
nature of the argument. Gwyn asked whether one could still give up exclusive
access to a restricted pointer argument. MacDonald clarified that this could be
done within the function.

MSP Move we adopt N334/94-019, which includes this edit to restricted pointers, as
the final aliasing component of the NCEG TR. (Plum, MacDonald)
16/0/0/3/19

Plum made an appeal for help for strategy to get C++ to adopt this proposal.

MacDonald can get volunteers ~ come give proposal presentation to the C++
committee.

73

July 7, 1994 24 WG14/N352
X3J11/94-037

7. FP/IEEE [N319/94-003, N320/94-004, N338/94-023]

Thomas led the discussion on the FPCE proposal. His goal was to (1) get the
proposal approved as a TR, (2) clarify significance of TR, (3) see if there are any
remaining FPCE issues, and (4) get advice on where to go from here with FPCE.

There have been no changes to the proposal document since the last meeting, so
what issues remain?

MacDonald has already documented his issues with the proposal document.

Plum asked for clarification on several points. Since this is clearly aimed at an
IEEE audience, are there parts of the proposal where IEEE is not required? Yes,
itis a 2-level implementation specification. What parts require IEEE? Nothing in
the basic proposal, and it is clearly documented where IEEE is required.

What about those extra relational operators? These had been presented to the C++
committee, and not warmly received. They are there to support partial ordering.

Thomas indicated this was addressed in the rationale presented in N338: achieve
predictable behavior with exceptional values; user does not have to be conscious
of exceptional values flowing through the code. He gave examples of a typical
problem for which the extra operators were useful, and indicated what the
alternatives would be without the extra operators:

Using C operators:
* if (fabs(x) < t) return x; else ... ;
but want to return X if x is a NaN, so
* if (fabs(x) >=t) ...; else return X;
but this raises an exception to protect against code that is not NaN-aware
* if (isnan(x) || fabx(x) < t) return X; else ...;
awkward, inefficient - costs an extra test

Macro solutions:
* if (fpcompare (fabs(x),FP_LESS |FP_UNORD, y))
return x; else ...;
* if (iscmp 1t un(fabs(x),y)) return X; else ...;
awkward, efficiency questionable

New operators:
* if (fabs(x) <? t) return x; else ...;

conflicts with trigraphs?
. if (fabs(x) !>= t) return x; else Feoi s
efficient!

Plum asked how is efficiency guaranteed? what is meant by efficiency?

Coonen stated that most of the extra operators are implemented by a single
compare and branch operation. Another measure of efficiency is that these
operators make programmers more efficient and make more maintainable, more
robust code.

e

July 7, 1994 25 WG14/N352

SV

SV

X3J11/94-037

Gwyn was skeptical of how these operators would free users from NaN-
awareness. He argued that you need to think about NaN's at the beginning of each
library function, check parameters before comparisons, and then know the
algorithm will work for the body of the function, so isnan() is sufficient.

Plum made another objection to the new operators:_there is really no way to
distinguish whether written code has been "robustified" since sometimes the C
operators are correct. isnan() doesn't help. An alternative would be to require
optimization of "(isnan(a) | a relop ...)" to underlying compare and branch
operation.

MacDonald complained that the new operators don't help programmer
productivity, that they are allowed where it is foolish (although not harmful), and
that the precedence level of the new operators is different from the non-!'d
operators.

In favor of endorsing the new relational operators from the FP/IEEE proposal.
6 Yes. 9 No. 5 Don't know/don't care.

Thomas reminded us that we have previously voted these operators out of the
document, and then voted them back in.

We repeated the straw vote, asking for members to vote as if it were a formal vote
(i.e., no abstentions), to determine if the inclusion of the new relational operators
was a show-stopper.

In favor of freezing the FP/IEEE document as is (with the new relational
operators).
15 Yes. 3 No. 2 Not voting.

Thomas asked that before we take a formal vote, should clarify who is served by
removing the new operators. He wants some reassurance that the desired
optimizations will still be possible without them. There was considerably more
discussion on the possibility of replacing them with macros, focusing on function
call overhead vs. optimization overhead that could be involved.

Plum argued that an implementation with macros in <fp.h> would be more likely
to have wider use/acceptance. He pointed out that there are better known
mechanisms for implementing in-line versions of functions for optimizations.

Plum suggested requiring macros in addition to the operators. Mooney noted that
would violate the "one way" to do things.

Coonen asked what advantage macros have over operators with respect to "real
estate." MacDonald stated that macros are optional to implement, but syntax is
not; if NaN's not supported, the macros can be defined in terms of other operators.

Gwyn suggested that the programmer would have more flexibility to provide
portability to specific environments if macros were not standardized.

Jaeschke noted that if we support two different ways to implement, already
indicates a compromise.

75

July 7, 1994 26 WG14/N352

X3J11/94-037

Gwyn asked if it was just the awkwardness of the macros that was objectionable?
Thomas stated that the major concern is to guarantee efficiency. Consensus was
that this is as easy to guarantee with macros as with operators.

Reluctantly, Thomas agreed to present macros as an alternative to the new
operators, and to outline the needed changes to the document as a result.

* There are two issues:
* Be able to test, and
* No exception raised if NaN generated

+ Add macros like C relationals, except quiet:
isless
islessequal
isgreater
isgreaterequal

and, also quiet:
isunordered
islessgreater

¢ Near match with IEEE identified useful comparison operators:

IEEE FPCE FPCE

Identified Current Proposed

X 2?2y X !<>=y isunordered(x,y)

X <>y X <>y islessgreater(x,y) - quiet only
X <>=y X <>=y ! isunordered(x,y) - quiet only
X ¥ X I<=y ! islessequal (x,y)

X ?2>=y Xat Iy ! isless(x,y)

X0 2w ¥ X I>=y ! isgreaterequal (x,y)

X <=y % by ! isgreater (x,y)

X ?=y X <>y ! islessgreater(x,y)

Proposed changes by section:

*§3.3.2
* Remove entire section up to For IEEE Implementations
+ Change the For IEEE Implementations part to be

Each of the relational operators—<, <=, >, >=—yields 0 and raises the
invalid exception if its operands are unordered, that is, if one or both of
the operands is a NaN.

This is as required by the IEEE standards. The IEEE standards
identify need for a total of 26 comparison predicates. The
comparison macros in §4.3 supplement the Standard C equality
and relational operators to address this need.

* §4.3 P33 L42. Add (for example)

The macro

76

July 7, 1994 27 WG14/N352
X3J11/94-037

isunordered (arithmetic-expr, arithmetic-expr)

evaluates to an int expression that is nonzero if and only if its arguments
are unorderd.

The macro
isless (arithmetic-expr, arithmetic-expr)

evaluates to an int expression that is nonzero if and only if its first
argument is less than its second argument. The return value of
isless(x,y) isalwaysequal tox<y; however, unlike x<y,
isless (x,y) does not raise the invalid exceptions when x andy are
unordered.

Gwyn raised the question of how to write these macros for any type. Will this
require conversion to a common type and could that generate the exception we are
trying to avoid? Not if to a wider type—that conversion can not raise exception.

Guilmette asked if these macros can be used in initializers for file scope objects.
No, not guaranteed to expand to constant expressions (e.g., could expand to the
new relational operators, if those were implemented).

Mooney and Jaeschke suggested they could be functions instead of macros.
Advantages: no multiple side effects for operands. Disadvantages: have to
specify argument type!

Jaeschke and Plum believe that something must be said about possible multiple
side effects. Plum suggested could create a hidden function to implement safe
macro (no multiple side effects). That is, cast argument to long double and call
function to implement macro. Then, according to §4.1.6, the operands are
evaluated only once. Needed for other macros in <fp.h> as well?

+ §4.3 P34 L19.

Add:

The translator should recognize the comparison macros (isless,
islessequal, isgreater, isgreaterequal, isunordered,
islessgreater) and implement them to be as efficient as if they were
built in operators.
Typical IEEE hardware will support efficient implementation.
Move rationale from §3.3.2 to here.
Add rationale for removing operators.

Add table showing near match with IEEE identified relationals and say why
the difference doesn't matter. A

Show trivial macro definitions for implementations without NaNs, e.g.

77

July 7, 1994 28 WG14/N352
X3J11/94-037

#define isunordered(x,y) O
#define isless(x,y) ((x)<(y))

*§A2,A4
Remove sections, adjust numbers, fix up references

* §B.3 Relational operators

X<y —>1isless (x,y) (and similarly for <=, >, >=). Though equal these
expressions are not equivalent on IEEE implementations if x or y might be a
NaN, and the state of fenv access is on. This transformation, which
would be desirable if extra code were required to cause the invalid exception
for unordered cases, could be performed provided the state of £ env_access
is off.

Example
nor to
if (isgreaterequal(a,b)) g(); else f();
/* calls f without raising invalid if a and b
are unordered *./

nor, unless the state of fenv_access is off, to

if (isless(a,b)) f£(); else g():
/* calls g without raising invalid if and b
are unordered */

«8C.3
Include macros.

+ §F.9.2 The fmax function

fmax might be implemented as

isnan(y) ? x : (islessequal(y,x) ? x : y)

Some applications may be better served by a max function that would
return a NaN if one of its arguments was a NaN:

isnan(y) ? y : (isgreater(y,x) ? Yy : X)

Thomas asked for help with rationale for these changes. Plum suggested:
* To make it easier to implement in C++ and therefore encourage C++
implementations. '
* To make better acceptability in the market place, and hence encourage more
vendors to implement.

July 7, 1994 29 WG14/N352

MSP

X3J11/94-037

Coonen expressed that everyone loses if macros not efficiently implemented in
sub-optimal compilers. It was noted that the operators will still be in the
rationale, and appendix. Keaton added that the macros describe the architecture,
and operators are an allowed implementation of that architecture.

Coonen noted a nice result of these changes is these macros can actually reduce
multiple tests to one.

Subject to editorial review, move that we freeze the FP/IEEE proposal after these
proposed edits. (Thomas, Farance)
16/0/0/3/19

Meyer, Tydeman, Kwan, and Keaton will review the edited document.

Tydeman asked whether wording under 4.2. 1.2 about translation-time vs.
execution-time conversions should be for only when limits are not exceeded.
After discussion of possible alternatives, however, objection was withdrawn.

Gwyn noted that on pages 8 and 10 and possibly other places, "should" should be
replaced with "shall” since "should” has no meaning in the C standard. Thomas
noted that "should" is defined on page 4 to have the desired meaning for the
proposal.

Guilmette suggested that the document be separated into (1) a binding, and (2) a
set of extensions, where (1) could be further subdivided into (a) binding for IEEE
and (b) binding for non-IEEE. Thomas agreed this would be possible, but
Jaeschke believes that as a working document, it is best bundled as one.

Thomas noted that he had also received a request for an implementor's guide.
N338 identifies what are extensions in a more succinct format.

Extended Integers [N349/94-034, N355/94-040]

Kwan brought a revision of the <inttypes.h> proposal to the meeting, reflecting
the input received at the last meeting. Looking for more input with the hope of
resolving to a final proposal by December.

Plum asked about the liaison status with C++. Kwan indicated that he had
provided a copy of the proposal to Lenkov.

Kwan presented an overview of the revised <inttypes.h> proposal.

* Purpose
« Make C the programming language of choice
« Provide a way to write portable code by:
« Defining new integer types
« Providing consistent properties and behavior
+ Easily implemented
« Takes a minimalist approach

* <inttypes.h>
« Integers of exactly n bits

79

July 7, 1994 30 WG14/N352
X3J11/94-037

typedef 7 int8_t
typedef ? int16_t
typedef ? int32_t
typedef ? int64_t
typedef ? uint8_t
typedef 7 uint16_t
typedef ? uint32_t
typedef ? uint64._t

* Largest integer supported
typedef ? intmax_t
typedef 7 uintmax_t

* Other types

* Most efficient integer type
typedef ? intfast_t
typedef ? uintfast_t

* Integer data types that are large enough to hold a pointer to void (*void)
typedef ? intptr_t
typedef ? uintptr_t

Note: not all pointers are the same size in some systems

Plum remarked that it would be desirable to have a feature test to ask whether
there is such a type; make it a property of these types, if feature exists, that you
can assign to and then get back the same pointer. MacDonald suggested that these
could then be macros instead of typedefs. Plum stated C++ would argue that they-
should be typedefs.

Gwyn also noted that there also were no feature tests for the "at least" types
(because of upper bound of 2n?), and may not be able to implement them as
specified. Would prefer "smallest type of at least n bits (period)." Keaton added
that you need "smallest, most efficient" to prevent implementations using shift
and mask.

Plum asked if all the underlying types must be native. Yes.

Keaton recalled that we wanted "most efficient" types in the proposal. Jones said
Yes, but not necessarily "a" most efficient type. Kwan noted that intfast_t and
uintfast_t are supposed to be these types. The "exactly" and "at least" types are

not necessarily most efficient.

Mooney asked how does the user choose? Use intfast for algorithms and others
for portability. Gwyn believes these are orthogonal issues; the Farance proposal
will address "fast n" types.

* Limits
* Fixed length integer type
#define INT8_MIN (-128)
#define INT16_MIN (-32767 - 1)
#define INT32_MIN (-2147483647 - 1)
#definé INT8_MAX (127)
#define INT16_MAX (32767)
#define INT32_MAX (2147483647)
#define UINTS_MAX (255)

¥0

July 7, 1994 31 WG14/N352
X3]11/94-037

#define UINT16_MAX (65535)

#define UINT32_MAX (4294967295)
« Implementation defined limits

#define INTMAX_MIN ?

#define INTMAX_MAX?

#define UINTMAX_MAX ?

#define INTFAST_MIN ?

#define INTFAST _MAX ?

Kwan noted that these macros serve a dual role as they can also be used as feature
tests; if the corresponding type is not implemented, the macro is not defined.

Gwyn believes these are incomplete, other feature tests are needed.

Jaeschke asks what is the type of the macros—needs to be specified. Also need
conversion rules.

Plum asked what if that type can't be stated in portable C.
Must be consistent with responses to DR earlier this week (#697?).

» Integers of "at least” n bits

« Signed integral types of at least n but less than 2n bits:
typedef ? int_least8_t
typedef ? int_least16_t
typedef ? int_least32_t
typedef ? int_least64_t

« Unsigned integral types of at least n but less than 2n bits:
typedef ? uint_least8_t
typedef ? uint_least16_t
typedef ? uint_least32_t
typedef ? uint_least64_t

+ Formatted I/O

« Extend the "width" specifier
"wnd" where n is the width of object in bits
printf("int 16 is %w16d\n",s16);

« Use * as the "width" and sizeof operator
printf("int fast 16 is %w*d\n", sizeof(intfast16_t)*bits_per_byte,

myint);

can be used with data types of "at least" n bits

* Requires no extensions
use predefined macros
always cast to intmax_t

Gwyn and MacDonald believe all compilers can support the PRI macros, but not
the SCN macros, which leads to a portability problem. Plum suggested that could
scan into a native type and then use feature tests to determine which type to use to
assign result. Jones and Gwyn stated this speaks for using intmax_t. Plum thinks
this would be inefficient for 8, 16, and 32 macros.

Gwyn thinks this is too much complexity when all you want is access to a long
long type! MacDonald said that doesn't address portability for exact types. Gwyn
argued that exact sizes don't guarantee portable layout; least size types are more

3l

July 7, 1994 32 WG14/N352
X3J11/94-037

useful, and he thought we had decided exact size types weren't useful.
MacDonald and Farance both replied that we go through this at every meeting and
end up confirming that we need 3 types: exact, at least, and fastest.

There was some discussion of extending the specification for supporting 24, 30,
60, or 80 bit machines.

Farance noted that applications know the sizes they need and we shouldn't try to
"fix" them. His proposal will solve all these problems. Plum noted, however, that
<inttypes.h> can solve problems right now. Kwan added that <inttypes.h> is not
intended to solve all portability problems.

Plum brought us back to the issue at hand, how to mange I/O. We seemed to be
leaning towards macros rather than extensions.

* Conversion functions
* Only 2 conversion functions are necessary
extern intmax_t strtoimax();
extern uintmax_t strtoumax();

* Constants
* #define __CONCAT__(A<B) A ## B
* #define INT16_C(c) (intl16_t) c
* #define UINT16_C(c) ((uint16_t) _ CONCAT__(c,u))
» #define INTMAX_C(c) ((int64_t) __CONCAT__(c,l1))
implementation defined

» Some issues
* Should the extended type be promoted to "int" when used as a parameter to
functions without prototype?
It loses its meaning if promoted
* In general, the following types are not always compatible:
int32_t
the base type int
* The library used must be consistent with the application in using the same
header. :
* Integral promotion rules should be the same as the underlining base type

Gwyn believes promotion will "fall out" depending on type used as target.

Plum repeated that we need to resolve all remaining questions so that users can
start using <inttypes.h>!

Farance presented an alternative approach, detailed in N355.

* Purpose
* Applications with known (portable) precision
* Need more types and long long is not enough
* Need more precision or certain level of precision
* Applications access data with known representation - portable data
» values representable :

This generates two intermediate level problems:

'S0l

July 7, 1994 33 WG14/N352
X37111/94-037

(1) Providing known precision to applications without constraint of
implementation-defined types (int, long, short, char).

(2) Providing known data structures that may be ported to different machine
architectures (e.g., via FTP or NFS). This issue concerns bit/byte ordering
and bit/byte alignment.

« Integer precision
* need:
« fastest with >= n bits
« smallest with >= n bits
« exactly n bits

» proposed syntax:

long:n /* fastest */
short:n /* smallest */
int:n /* exact */

If you don't have these, user must manage, and this is error prone.

« Bit/Byte ordering
« Write on one machine, read on another
« FTP and NFS are other examples
+ proposed syntax:

« bit order
msb /* msb is bit 0 */
1sb /* 1sb is bit 0 */

Used for bit fields in structures
* byte order

bigend

littleend
* example:

lsb bigend int:32

« Without this, users have to make mappings for these orderings, usually
constructing a table with offset, bit order, byte order information.

MacDonald asked if bit ordering was the same as left pack vs. right pack. Gwyn
believes the bit ordering seemed to apply to the overall struct rather than just
individual bit fields. Anticipates problems if both were specified in the same
struct. Farance clarified that it indicates whether to fill on left or on right.

Plum raised two points: (1) there are more than 2 byte orderings - at least 3 or 4;
and (2) if we consider this direction, ought to consider architectural concerns.
Will we be biasing application programs towards inefficient solutions? Farance
believes there are also maintenance aspects to consider in addition to efficiency.

Gwyn thinks this could potentially prevent a lot of bugs in network programming.

« Bit/Btye alignment - bit fields
* suggested syntax:

bitalign: 0 /* force next bit */
bitalign:N /* round up to N bits */
bytealign:0 /* force next byte */

33

July 7, 1994 34 WG14/N352

SV

X3J11/94-037

bytealign:N /* round up to N bytes */

Note: bytealign:0 is similar to "pack" on some systems
* example:
{ bytealign:0;
lsb bigend int:32 A;
bytealign:4;
lsb bigend int:32 B;

}
Note: you can take the & of fields A and B now!

Mooney asked if bytealign affects every field following. No, only the next
immediate field.

Jaeschke asked what is the type of & of one of these bit fields, and how do I
declare it? Just int:32 *. Jones asked what if you pack into the wrong "end"
for addressing on machine and then take &. Could get around this with char *.

* Open issues
» printf/scanf - would go in same direction as Kwan's proposal.
* need a 1g2 macro - to derive # bits from range

* Comparison to Kwan's proposal? Bottom line is that this approach is easier.

In favor of Kwan continuing with <inttypes.h> proposal?
17 Yes. 0 No. O Abstaining.

In favor of including such a facility as Farance outlines in the TR?
4 Yes. 4 No. 10 Abstaining.

MacDonald expressed doubts about it being ready for the TR. Jaeschke said it
could at least go into rationale if not ready.

Coonen suggested that maybe the solution should proceed more along the lines of
filters (library support) rather than compiler support. :

Kwan stated that he would have no problem with this as an extension, but would
not want it as part of next standard because it adds too much complexity.

Farance asked if ok to present at the next meeting. Jaeschke indicated there may
be a problem getting agenda time since will need to give preference to endorsed
proposals, but there would be no problem with a paper for the next meeting.

Plum indicated the motivating factor would be finding a vendor interested in

implementing this approach. Gwyn observed that none of the vendors present
expressed such an interest.

DPCE and Array Syntax [N329/94-014, N330/94-015, N336/94-
021, N340/94-025]

Farance announced his resignation as focal point for the DPCE:

Rt

July 7, 1994 35 WG14/N352
X3J11/94-037

"I am leaving DPCE and resigning as chair. I've spent 5 years representing
X3J11's interests in this subcommittee. I believe DPCE does not want to
follow the will of X3J11. This is my reason for resignation. I've tried
focusing the DPCE subcommittee on the standards process and X3J11's needs.
Many times, DPCE members have said they are fully aware that X3J11 won't
approve the DPCE proposal. Ican't, in good conscience, continue with a
subcommittee that continues not to respond to X3J11. As I part, I'd like to
leave with some constructive advice to help X3J11 and DPCE: (1) X3J11 and
DPCE must keep track of action items. DPCE should fulfill them to the best
possible. (2) Separate the secretary and technical editor's positions. In X3J11
with Plauger and Rosler, they provided a system of checks and balances.
Right now, DPCE has no control (as in correlation) of transactions in the
meeting as they correspond to document changes. (3) DPCE should realize
that once the public review starts, the document will be out of their hands.
They should establish procedures so that disasters, like Hansberry, don't
happen. Finally, I wish Dave Keaton good luck and I will help in whatever
way to assist Dave as chair."

Keaton responded that he believes DPCE is 'fully aware that X3J11 won't approve
the DPCE proposal' as an amendment to the C language, but the technical report is
a different matter. He believes the discrepancy between this and Farance's
statement is just a matter of remembering things differently.

Keaton reported on the overall status of the DPCE subgroup:
+ State of DPCE proposal.
Document has doubled in size since December.
Specification is more complete.
A fair amount of edits remain, marked in the document as <<notes>>.
« Summary of changes since last meeting
A list of promised changes appeared in the X3J11.1 minutes. They were
completed.
+ Review of X3J11 action items
More detail will be given in the technical editor's report.
Farance will report on the F90 VLA/Data Parallel action item separately.
Meissner had an action item to find the source for definitions of terms not
found in the C standard, but he is not attending this meeting.
Actionable questions have been discussed.
Separating layout & context from shape (March & e-mail).
Left indexing (e-mail).
Votes at March DPCE meeting.
Separate layout from shape.
1 yes, 3 no, 1 not voting.
Separate context from shape.
1 yes, 4 no, 0 not voting.
» Procedures for public review
E-mail, ftp, and X3J11 discussion.
+ Schedule/time-line for completion of DPCE proposal.
Goal is to complete the document by the September DPCE meeting, for
inclusion in the following X3J11 mailing and the NCEG technical
Teport.
Aggressive schedule including about 62 items to be edited.
About 1/3 to be finished by July 1, the rest before the DPCE meeting in
September.
Almost 1 edit item per working day.

35

July 7, 1994 36 'WG14/N352

X3J11/94-037

September meeting to provide final reviews and corrections before second
mailing.

Keaton announced there will be evening meetings for DPCE, Monday and
Wednesday, 7-9PM.

Stanberry gave the technical editor's summary of changes to the document.

* Major changes in the document include:
» shape type, shape variable, "same shape" specifications
* nodal functions
* parallel pointers
* library functions

+ Other major writing/refining occurred in the following areas:
* array subscripting (3.3.2.1)
+ address and indirection operators (3.3.3.2)
» parallel indexing (3.3.3.5)
+ additive operators (3.3.6)
« elemental functions (3.3.2.2, 3.5.3, 3.7.1)
» layout specification (3.5.2.4)
« parallel object declarators (3.5.4.4)
* contextualization (3.6.7)

* Miscellaneous editorial changes occurred everywhere, adding <<notes>> where
inconsistencies or incomplete specifications were identified, adding meta-words,
adding examples, adding outline for Appendix A, adding an index, and inserting
numerous typos.

* Major revisions were made to the indicated sections of the document for these
changes:

* shapes
* 3.1.2.6 - made "compatible shape" and "composite shape" specification
consistent with the 3 kinds of shape types (fully specified, partially
specified, fully unspecified)
¢ 3.2.3 - revised description of operations on parallel operands to require
"same shape" determined as structural, rather than name, equivalence.
* 3.3.16.1 - assignment of shape variables revised to use copy rather than
aliasing semantics

» nodal functions
¢ 3.3.2.2 - added constraints and semantics of function calls for nodal
functions '
* 3.5.3 - added nodal type qualifier
* 3.6.6.4 - added semantics for return statement for nodal functions
¢ 3.7.1 - added constraints and semantics for function definitions for nodal
functions

» parallel pointers
¢ 3.3.3.2 - added constraints and semantics for & operator applied to
produce a parallel pointer, and corresponding semantics of * operator
applied to a parallel pointer
*3.5.4.1 - revised constraints and semantics of pointer declarations for
parallel pointers

* library functions

26

July 7, 1994 37 ‘WG14/N352
| X3711/94-037

*4.1.2 - added <dpce.h>
* 4.14 - added descriptions of dpce library functions, most of which are
elemental, allowing them to be used on parallel or non-parallel arguments.

* Nodal functions
* An invocation of a nodal function occurs as if the function is invoked once
on each node of the execution environment in SPMD style; that is, as if a
separate thread is spawned on each node to execute the function body. Nodal
functions therefore provide an escape to a multi-threaded programming
model. These threads, one per node, are only required by the execution model
to synchronize on return from the nodal function.
+ On each node the body of the nodal function executes in a temporarily
established single-node environment. That is, during the execution of a nodal
function, a call to positionsof(physical) will return 1. The execution
environment of the caller is re-established upon return from the nodal
function.
» Example

shape [10] physical; /* predefined shape */

nodal int fun(int:void a)

{

int sum = 0;

sum += a;
return sum;

}

shape [100 block (10)] S;
int:S x;
int:physical result;

result = fun(x):;

Executes function body "as if":

shape [1] physical;
shape [10 block(10)] S;

Returns sum of elements on each node; each function invocation
contributes one element of parallel result, which has physical shape.

MacDonald asked several questions. Where is layout specification? It is now in
the document (see §3.5.2.4). Note that the rankof(physical) == # of processors.
What are the restrictions on nodal functions? A nodal function may call only
nodal and elemental functions. I/O forbidden? Yes. What about debugging?
Unresolved issue. Do nodal functions support private, global variables? Cannot
reference any identifier with file scope. (See §3.7.1)

There was discussion (Tydeman, Kwan, Thomas) about whether or not sum needs
to be initialized to 0 in the example, and the semantics of the += binary operator

7

July 7, 1994 38 WG14/N352
X3J11/94-037

as opposed to the semantics of the += unary operator. Stanberry replied
(erroneously) that no initialization was required; Alpern pointed out this error
afterwards, and the example was corrected in these minutes to reflect this. The
concern was that the semantics of binary += was misleading if no initialization
was required, and inconsistent with ordinary C use. The semantics of binary +=is
intended to be exactly as for C non-parallel operands; the technical editor
apologizes for this error in both example and discussion.

* Parallel pointers - & and * operators

+ Constraints
If the operand of the unary & operator is a parallel-indexed expression, at
least one of the index expressions shall be parallel. If the operand of the
unary & operator is a parallel-indexed expression, the shape of the parallel
index expression(s) shall be the same as the shape of the expression being
indexed.

Note: you cannot take the address of an element of a parallel operand.

* Semantics
The application of & to a parallel-indexed lvalue produces a parallel
pointer whose shape is the shape of the parallel index to that parallel
lvalue. If the operand has type "parallel T of shape S parallel-indexed by
expressions of shape S," the result has type "parallel pointer of shape S to
parallel T of shape S."

The application of & to a parallel lvalue produces a pointer to that lvalue.
If the operand has type "parallel T of shape S" the result has type "pointer
to parallel T of shape S."

The result of the * operator applied to a pointer to parallel pointer of shape
S to parallel type T also of shape S is a parallel lvalue of parallel type T
and shape S.

The result of the * operator applied to a pointer to parallel type T of shape
S is a parallel lvalue of parallel type T and of shape S.
* Examples

float a, b;
shape [10]S;

int+8 x; /* parallel int */

double:S vy, z; /* parallel double */

int:S *p; /* pointer to parallel int */

float *pp2f:S; /* parallel pointer to float */

P = &x; /* Assigns p to point to parallel
int - x */

pp2f = &a; /* Assigns each element of pp2f to

point to float a */

[3]pp2f = &b; /* Assigns 3rd element of pp2f to
point to float b */

pp2pd = &y; /* Assigns each element of pp2pd to
point to parallel double y */

[2]pp2pd = &z; /* Assigns 2nd element of pp2pd to
point to parallel double z */

g8

July 7, 1994 © 39 WG14/N352
X3J11/94-037

[71pp2f = &b; /* Assigns 7th element of pp2f to
point to float b */

p: / Denotes the parallel int x */

pp2f; / Denotes a parallel float of shape
S; in this case equal to a in all
positions except equal to b in
positions 3 and 7 */

Farance asked about whether parallel pointers are global pointers? Can you access
any area, any cpu, with a parallel pointer? Depending on the definition of global
pointer, could be yes or no. Whether, for example, a parallel pointer is wider than
void *isan open issue in DPCE. Also, parallel pointer is for entire object, not
for individual elements. Farance outlined example of where one needs global
pointers, as in sorting large data—too much to write to file, so use global pointer, but
you need to be able to access any cpu. MacDonald noted that you could always
write indices to file. Alpern suggested you could do this with a nodal function.

MacDonald asked about contextualization—is this new? No. Does this mean that
every operation is performed under context? Yes. MacDonald did not like this as it
adds overhead to all operations.

What is the definition of axis? DPCE wants to rely on standard definitions for such
terms, rather than define them in their document. Meissner was going to investigate
what the official dictionary is for such terms, but this is still an open issue.

Gwyn asked if the model assumes peer nodes; should also consider hierarchical or
cluster architectures.

Thomas asked if Plum had been consulted on C++ liaison issues. Stanberry and
Keaton affirmed that he had attended the Monday evening session to provide such
information. :

Keaton reported on the March DPCE meeting.

» Separation of layout from shape

* Pro's
Conceptually cleaner, elegance of expressiblity
Allows operations on objects of different layouts

& No significant performance cost on non-distributed memory

» Con's ‘

Disallows optimizations knowing objects are the same layout-significant
performance hit

Transparency of performance lost
Must be coupled conceptually on distributed memory architectures anyway

Farance stated that making visible to the programmer was a quality of
implementation issue. He also reports that no dynamic layout supported as in HPF.

« Separation of context from shape
* Pro's
Conceptually separate: storage vs execution time concepts
+ Con's
Artificially separates concepts always used together

&1

July 7, 1994 40 WG14/N352

SV

X3J11/94-037
Complicates explanation of what is affected by context

Farance argued that should look at uses without shape. Should not be tied to
shape since feature of execution not data.

Alpern commented that it it possible to lexically determine context as opposed to
dynamically storing context with shape. MacDonald added that HPF uses lexical
determination of context.

Keaton then reported on discussion on the DPCE email reflector on parallel (left)
indexing alternatives. Farance suggested that something should indicate in data
declaration which indices are parallel; not necessary to use syntax to distinguish
parallel from non-parallel indices. Keaton reiterated the DPCE position has been
to use syntax to indicate potential communication.

Farance objected that this discussion of alternatives bundles 3 concepts: ALO's,
parallelism, and C++ compatible alternatives.

MacDonald asked for clarification of parallel indices alternatives—are they still
restricted to be the outer/left ones? Currently, yes, but would want to leave open
for future extensions.

Alpern expressed concern about so-called C++ compatible alternatives. It is
hazardous to make it look like C++ if semantics are quite different.

There was some discussion of the motivations for the different alternatives, and
then Keaton conducted a preference poll (can vote for more than one).

Preferred alternative:

(1) [i1[31A[k][1]
(2) A[:4)[:3)(k][1]
(3) A(i) (J) [k][1]
(4) A(i,3) [k][1]
(5) A[i][3)(k][1]

MacDonald presented N336, adding shape to iterators.

gOoRrrFPrWw

* Brief review of iterators:
* Philosophy: DPCE is single-threaded (except for nodal functions). Iterators
allow multi-threading.
* Ordered and unordered iterators

MacDonald noted that Analog Devices has added iterators to the GNU C
compiler. He also admitted that iterators would not be amenable to a C++ class
implementation.

* Shapes + Iterators—Goals: to be able to describe data layout
* Useful programming model for distributed memory machines
* Small extension to the language
+ Easy to implement syntax
* Easy to learn
* Attractive even on shared memory machines

* Shape

70

July 7, 1994 41 WG14/N352
X3J11/94-037

« New type specifier 'shape' is used to declare objects that record extent and
(optional) layout information.

shape S[100][200];
shape S1[100 block(10)][200 block(20)];
shape S2[100 scale(l)][100 scale(2)];

* Uses of shapes
* In a new form of array derivation.

shape S[100][2001];
double a[S], blS]:;

* In declarations of iterators.
unordoeizss 58 183 ¢3¢
+ In function calls.
£(S,a,b)

+ Shaped iterators
» Shaped iterators are used for operations:
(1) with a common shape for all shaped operands, and
(2) that do not require communication.

shape S[100][100];
double a[S], blS];
unord i =S, j = 100, k = 100;

/* no communication */
/* communication */

= b ’
+1)%100]; /* communication */

ali] [
aljl (k] =
aljllk] =

» Function calls
» Shaped function parameters are passed by reference.

void f(shape S, double a[S]) {
unord int i = S;
afi] += 1.0;

}

« An alternative form uses explicit pointers, and requires all references to a to
use shaped iterators.

void f(shape S, double *a) {
unord int i = S;
al[i] += 1.0;

}

* Slices
 Another new keyword:

shape S[100][200];

Tl

July 7, 1994 42 WG14/N352

X3J11/94-037
slice S[0;50;2][0;100;2]81;
* Reference a portion of a shaped object.

double al[S];
unord int i = S1; /* both coords even */

afi] = 0.0;
~+ Align a smaller object with a portion of a larger object.
double b[S1];
b[i] = al[i];
+ Like shapes, slices and sliced objects can be passed as function parameters.

shape S[100][200];
slice S[0;2;99][;]1S1;
slice S[;11[0;2;199]52;
double m[S];

void f(slice SL, double a[SL]) {
VNOFA d (L t=LSTY,
alfil] = 0.0;

}

/* Set boundary of m to zero */
£(S1,m);
£(52,m);

* Summary
* Shapes, slices, and iterators could give a model with:
» explicit expression of layout and parallel operations
* minimal new syntax
* no implied temporaries for intermediate aggregate results

Gwyn asked for clarification of whether a type specifier was needed for iter and
unord; examples use both with and without int.

Alpern asked what kind of things can be done with A[S] with respect to pointer
arithmetic. Can access individual elements (A[2]) but can't take address of an
element (&A[2]). So does this mean that A[2] no longer means *A + 2 *
sizeof (element_type)? Mapping takes place to right element on that
Processor.

Gwyn asked if dynamic slices were allowed. Yes, desirable.

Farance presented his array slicing proposal, prepared as an extension for DPCE,
N340.

» DPCE Array Slicing — Rationale
* Problem to solve:

o

July 7, 1994 43 WG14/N352
X3711/94-037

» Supplying Fortran-like triplet notation

* scatter-gather
« Overall problem: DPCE notation of shape doesn't allow interaction of
anonymous shapes

shape [10]S;
shape [10]T;

int:
int:
int:
int:
int:

’
.
4

—— 380N

C

D

E;

10] F;

10] G;

D+E <- OK

C+D <- ERROR-incompatible because derived
from different shapes

F+G <- ERROR-incompatible because derived

from different shapes

+ Proposal:

shape [10]S;
int:S A;
int I;

I = += [0:2]A * [3:5]A;

« Even if we relax shape derivation, still have problem

shape [3]0U;
shape [3]1V;
int:U A;
int:V B;
int I;

[1)A = 0;
where (A != 0)
{

}

« Rule #1 shape compatibility is dependent upon the "name" of the shape it
is derived from, not the "value" of the shape (i.e., its rank + dimensions).

« Rule #2 shapes must be explicitly declared (i.e., a name created) to
facilitate shape compatibility.

« Rule #3 context is tied to shape and, therefore, associated with the
storage of the shape and all derived objects.

I = += B/A;

« Layout is unrelated to shape but tied to shape in DPCE. In F90 and HPF,
shape derivation and layout compatibility are not required.

e Summary:
» DPCE slicing can only apply to left indexes, not right indexes.

7%

July 7, 1994 44 WG14/N352

X3J11/94-037

* Shape/type compatibility requires more than rank+dimensions.
* Shape must be declared, i.e., create a name for derivation.

* Context is tied to shape, cannot be separated.

* Layout is unrelated to slicing semantics.

Stanberry pointed out that this is an erronenous characterization of DPCE
proposal: these arguments are flawed by wrong assumptions.

* DPCE slicing

* C-style triplet
[[first; length; stride]]
[[first; length]]

* Fortran triplet
[[first
[[first

* scatter/gather

1[[index]]

last
last]]

stride]]

(el

* VLA extensions
+ C-style triplet
[first; length; stride]
[first; length])
+ Fortran triplet

[first last stride]
[first last]

» scatter/gather
[index]

L]

(]

* Can't get a smaller ALO than what you started with because of gather/scatter
capability with respect to shape.

.shape [10][20] T;
int:T B;

[.][1]B<- still is shape T

Stanberry pointed out that, while this example is correct, the general statement is
another erroneous characterization of the DPCE proposal.

Farance presented a summary of parallel mechanisms, which he will also post to
the email reflector:

Type Same Different Scope
scalar/array promotion Elements None Expression
data parallel Statement Context Mask Statement
iterator Expression unord Statement
for Statements if-else, switch Block
X3HS5 pfor Block None Block
context Statements, where Subroutine

Subroutine

94

July 7, 1994 45 WG14/N352
X3J11/94-037

elemental function Subroutine None Subroutine
nodal function None Subroutine Subroutine
POSIX threads Subroutine, Thread ID Process
Process
fork/exec Process exec Multiprocess
System

He would like feedback on this summary.
Farance gave a summary of APL/VLA, DPCE Slicing, and Parallelism:

» Concepts may be separately defined
« shape — varying size arrays
« alo/carrays — default stand alone behavior
+ layout — distributed memory
» near, far, huge ptrs
« ptr/value, shape, layout matrix of arg passing combo
« selectors: index, slice, scatter-gather
+ parallel mechanisms:
« scalar/array promotion
* iterators
« where statement — not slice
* X3HS5 - not sure
« shapeis(?) — similar to elemental

« Can get same (or better) functionality and performance as DPCE

10. Defect Reports [N347/94-032]

The committee divided into 5 working groups to review the current defect reports,
led by Jones, Gwyn, Zeeb, Ziebel, and Kwan.

The following guidelines were suggested by the officers for procedures at this
meeting:

« Many already have responses adopted at the Kona meeting. If anyone has
- objection to one of these, take it to the leader of that group. We don't want to
reconsider DR's to which no one has objection to the suggested response.

« "The standard doesn't clearly answer this question" is a legitimate response if
after one meeting's consideration, can't decide among ourselves. Meanwhile,
there is no portable solution. Best addressed as part of the revision of the
standard. Can always reconsider at subsequent meeting if new insight is
discovered. .

Gwyn asked for clarification on this: if it is not specified in the standard, don't we
have to supply a fix to the standard? Also, we don't want to respond, "this takes
too long to determine.” Plum agreed, this is a guideline only. He reiterated that
we don't want to drop such items from the standard revision.

Gwyn asked that typos also be flagged by the subgroups and reported directly to
him. Also, all wording for responses (new or changes to suggested ones) should

75

July 7, 1994 46 WG14/N352
: X3J11/94-037

be submitted to him by email by the group leaders. Gwyn will also provide minor
editing of responses for conformance to format of the RR and TC as appropriate.

Note: any defect report NOT explicitly listed here was not discussed in full
committee, with the understanding that the suggested response, if any, in
N347/94-032 will be used. The presenter for each DR is indicated in () s. For
brevity, the questions are not repeated here.

#60 - (Jones) Agreed with the suggested response.

#61 - (Gwyn) Agreed with the suggested response.

#62 - (Zeeb) Agreed with the suggested response.

#63 - (Ziebell) Use Plauger's response as "discussion” and as response say:

The standard imposes no requirement on the accuracy of floating point
arithmetic.

#64 - (MacDonald) Agreed with the suggested response.

#65 - (Jones) Basically agreed with the suggested correction, but add Feather's
rationale:

The committee affirmed that the intent of this wording is that a program
(such as that above) whose output varies only according to the locale
selected, and does not rely on the presence of a specific locale other than
the C locale or that selected by "", was always intended to be strictly-
conforming. Nevertheless, it is agrecd that a strict reading of the cited
extract from subclause 7.4.1.1 could be read as making such programs
depend on implementation-defined behavior.

The committee reaffirms that programs that depend on the identity of the
available locales, as opposed to their contents, are not strictly conforming.

The committee believes that the term "implementation-defined" in the first
sentence of the extract from 7.4.1.1 was intended in the sense of
“implementation documented”. However, they were loath to introduce a
new term with possibly new conformance requirements, in a Technical
Corrigendum. The committee noted that the term "locale-specific”, while
making the sentence read somewhat awkwardly, carries the necessary
requirements (the implementation must document the relevant details).

The committee also decided that, though the question only addresses one
issue to do with locales, that the above discussion applied to all instances
where the behaviour of an implementation depends on the locale. For this
reason they decided to address all such issues at this time.

#66 - (Gwyn) Agreed with the suggested response rather than the suggested
correction. Believe it is unambiguously stated in the standard.

#67 - (Zeeb) Agreed partially with the suggested response, but edit to split
answers to (c) and (d); last paragraph of suggested response really answers (d) and

(e).
76

July 7, 1994 47 WG14/N352

X3J11/94-037

Plum asked, with respect to question (b), what is a version of a type? Suggested
just to use reference to 6.1.2.5. Further suggested that (d) was beyond the scope
of the standard.

There was discussion of when new types could not be used-how could a standard
conforming program recognize them? Everyone agreed the answer to (€) was no.

Mooney asked if we want to extend answers for enumeration types. No, don't go
beyond what was asked.

Final suggested response:

(a) <same as suggested response>

(b) Yes, see 6.1.2.5.

(c) <same as suggested response before for ¢ and d>
(d) Beyond the scope of the standard.

(e) No.

#68 - (Ziebell) Suggested that the committee's original response be selected,
except to change (a) to just say "Yes."

#69 - (MacDonald) This multi-part question from Feather makes one ponder what
exactly does he have in mind when asking these questions? BCD?

Plum gave a brief history of this part of the C standard specification. The intent
was to disallow BCD and certain other architectures. Really a conscious decision
to endorse only one's and two's complement and signed magnitude architectures.
C was not designed axiomatically but with experience on specific architectures.

There was considerable discussion (Gwyn, Fafance, MacDonald, Kwan, Keaton):

» State underlying principles of intent as preamble. Never our intent to
completely characterize the behavior of the underlying binary systems.

» We understood some architectures would have bits not used in int
representations.

+ Unsigned arithmetic intended to be portable and to be able to have all bits in
value examinable.

Where the standard is not specific, may not be able to give answers to his
questions.

After a couple of iterations, decided on the following responses:

(a) Footnotes are not normative and the legality of a footnote is beyond the
scope of WG14/X3J11.

(b) Yes, the footnote is correct.

(c) No, no such requirement is known.

(d) No.

(e) If by the term "bit pattern” you mean values, the answer is Yes. If by
"bit pattern” you mean representations, the answer is No.

(f) No.

(g) Not applicable since it is unclear what is meant by "bit pattern" and
"value" in the question.

July 7, 1994 48 WG14/N352

X3J11/94-037

(h) Yes, provided there is no other violation of the standard.

(i) Yes, provided there is no other violation of the standard.

() No, it's not a pure binary system.

(k) Yes, provided there is no other violation of the standard.

(1) Yes, provided there is no other violation of the standard.

(m) Yes, because subclause 6.1.2.5 states that the representations of
positive signed integers have the same representations as the
corresponding unsigned integers, and because signed integers use a pure
binary numeration system. The committee intended to permit one's
complement, two's complement, and signed magnitude implementations.
(n) No.

(p) Yes, because subclause 6.1.2.5 requires unsigned integers to behave as
if a result "is reduced modulo the number that is one greater than the
largest value that can be represented,” and unsigned integers use a pure
binary numeration system.

(9) No, the memory occupied by a value of an integer type is allowed to
exceed the number of binary digits used to represent the actual value.

(r) Yes, same reason as question m.

(s) No, same reason as question q.

(t) Not applicable.

(u) Yes, the expressions must evaluate to 0 or -1.

#70 - (Jones) May a strictly conforming program take advantage of "same
representation” requirements? Agreed with Plauger, can't take advantage of same
representation requirements. Suggested response:

The program is not strictly conforming since many pre-existing programs
assume that objects with the same representation are interchangeable in
these contexts, the standard encourages implementors to allow such code
to work, but does not require it.

Gwyn recalls that the committee did intend for int argument punning for old style
functions to be strictly conforming—stronger than just "allowed." Others agreed.

Plum stated that unless we can prove the words actually state the requirement, the
bottom line is the same. Noted that the same rules are in C++, but even with its
stricter checking, can still produce code with undefined behavior.

MacDonald and Gwyn believe that function call semantics imply that
incompatible types after promotion of arguments results in undefined behavior.

Plum asked about examination under union: not all representation-dependent uses
are undefined, some are implementation defined.

#11 - (Plum) Accept the suggested response from Feather, striking the editorial
insert from Plauger and following sentence ("[not true, just int - pjp]" and "A TC
is required.").

Plum noted that C++ is going to allow long and even unsigned enumerations.
Jones and Guilmette argued that an explicit change to 6.5.2.2 is required. Accept

the suggested correction to 6.5.2.2, but reword the last sentence to read "..., but
shall be capable of representing all the members of the enumeration."

78

July 7, 1994 49 WG14/N352

SV

X3J11/94-037
#72 - (Zeeb) Agreed with the suggested response.

#73 - (Ziebell) Suggested that we accept the Kona response, but there was
discussion .

Guilmette thought we needed to clarify what is meant by "The dot selection
operator is at liberty to require the complete struct denoted by its left hand side to
be accessed." Gwyn noted that "." doesn't imply there is or isn't an access.
Keaton suggested that this sentence be removed. Gwyn suggested it be prefixed
with "In these cases, ..." Jones stated that in 6.3.2.3 the semantics requires a
member of a struct or union object and there is no such object, so the behavior is
undefined. Plum suggested we go with the wording as is.

In favor of response as written to A, B, C of DR#73?
10 Yes. 2 No. 3 Don't know/don't care.

Guilmette also questioned whether responses F, G, and H are really the same
since they involve &. Others believe they require the same analysis.

#74 - (Kwan) Agree with all but part (d) of the suggested response. The
alignment of a struct need not be the least common multiple of the alignment of
its members. So the answer to (d) is Yes.

Gwyn noted that the answer to (c) should restate the answer with which they are
agreeing!

#75 - (Jones) Must malloc result be aligned for any type or just types that fit?
Edit the suggested response as follows:

Subclause 7.10.3 requires allocated memory to be suitably aligned for any
type, so they must compare equal.

#76 - (Plum) Endorse the suggested response, changing a (10) toa[10].

#77 - (Zeeb) Discussion of whether suggested response actually answers the
questions. Believe the answers are "yes" but the response doesn't say that. There
was more discussion, furiously agreeing. Rewording suggested was:

The standard does not explicitly state that the address of an object remains
constant throughout the life of the object. That this is the intent of the
committee can be inferred from the fact that an address constant is
considered to be a constant expression. The framers of the standard
considered that it was so obvious that addresses should remain constant
that they neglected to craft words to that effect.

#78 - (Ziebell) Recommend rewording of part ¢ of suggested response to "Yes, h
can return 0."

Plum as C++ liaison made an appeal not to rely heavily on "different address"

meaning "different function" because of inlined functions since the linkage of

inlined functions has been changed to extern. Taking the address of an inlined
function implies generated code for a thunk.

77

July 7, 1994 50 WG14/N352

SV

SV

X3J11/94-037
#79 - (Guilmette) Revised suggested response as follows:

(a) agree with response except delete 2nd sentence.

(b) The standard library functions must have external linkage (see
subclause 7.1.2.1, bullet 3).

(c) agree with suggested response.

#80 - (Jones) String literal merging. Need to clarify or qualify the meanings of
"string literal" which means different things in different phases of translation.

MacDonald and Gwyn believe we want to allow the sharing of identical string
literals since they can't be changed. Gwyn stated that it follows that we also
intended to allow sharing of tails of string literals. Jones asked if we want to
explicitly say that we allow tail merging.

In favor of allowing tail merging.
14 Yes. 1 No. 2 Don't know/don't care.

Believe intent was to allow tail merging.
3 Yes. 0 No. Lots don't know.

Suggested response:

When the last paragraph of 6.1.4 refers to "string literals" it is referring to
the static arrays created in translation phase 7 as specified in the previous
paragraph. Although the existing wording of the standard may imply that
only completely identical arrays need not be distinct, this was not the
committee's intent.

Suggested correction to last paragraph of 6.1.4:

These arrays need not be distinct provided their elements have the correct
values; if the program attempts to modify such an array, the behavior is
undefined.

#81 - (Plum) Accept the suggested response.
#82 - (Zeeb) Agreed with the general thrust of the suggested response.

Gwyn and Jones discussed need to make correction to the standard to enforce
intended pairing of calls to va_start and va_end macros. Need to revise (a) and
add suggested correction.

Edited suggested response:

(a) All functions listed except for £3 contain strictly conforming code.
The function £3 violates the intended requirement for va_start and
va_end to be invoked in matching pairs, as reflected in the following
correction.

(b) There is nothing described in this section that would make such an
implementation non-conforming.

(c) No.

/00

July 7, 1994 51 WG14/N352
X3]11/94-037

Suggested correction to 7.8. 1, end of paragraph:

The va_start and va_end macros shall be invoked in corresponding pairs
in the function accepting a varying number of arguments, if access to the
varying arguments is desired.

Suggested correction to 7.8.1.1, end of second paragraph:

va_start shall not be invoked again for the same ap without an
intervening invocation of va_end for the same ap.

#83 - (Keaton) Use suggested correction by Feather and Plauger.

#84 - (MacDonald) Need to decide if parameters in prototypes are objects. If so,
can't be incomplete types by 6.1.2.2 and 6.5. See also DR#104.

Plum believes underlying intuition is that there is an object but that it isn't needed
until function call. MacDonald suggested then our response should be "This is
undefined behavior so not strictly conforming" but not a constraint violation.
Gwyn says this is ok for DR#84 but not for DR#104. Guilmette believes lots of
code think this is standard conforming since this is obscure. Plum suggested we
consider improving this area for the next revision of the standard. Keaton pointed
out that this would make DR#103 undefined. Jones agress that we need to
consider all these together.

So this is an open issue: DR#103 and DR#104 responses depend on our response
to this DR.

#85 - (Jones) Agreed with the suggested correction from the Kona meeting, rather
than the Plauger response.

#87 - (Zeeb) This DR was related to DR #117, and Plauger had attempted to use
the same response for both, but it was generally agreed that each needed its own
answer.

Plum reported that the C++ proposal for sequence points will be C with some
exceptions, and is also more detailed than C. For example, (1) C doesn't say
function calls can be interleaved; (2) the "undefined behavior if same object is
modified twice" not intended to disallow modifying more than one struct member;
(3) more precise: if any ordering of all possible orderings of operations would
violate the "modified twice" rule, then the program is not strictly conforming.

MacDonald doesn't want to preclude parallel execution; remove thread references
from the response.

Plum noted that for A and B, the behavior is not undefined, but it is unspecified
whether g will be 1 or 2; however, since those are the only choices, it is not
indeterminate.

SV For A and B in the examples of DR#87, believe the behavior is unspecified but

not undefined.
3 Yes. O No. 14 Not sure.

(0}

July 7, 1994 52 WG14/N352

SV

X3J11/94-037
After more word crafting, replaced Plauger's suggested response with:

In lines A and B, the expressions do not exhibit undefined behavior, but
because the order of evaluation of the operands of the addition operator are
unspecified, it is unspecified whether g will attain the value 1 or 2. Line C
violates the quoted restriction from subclause 6.3, so the behavior is
undefined.

#88 - (Ziebell) In this DR, 35 separate puzzles are given. Suggests the committee
response should be to ask the submitter (Feather) to be more explicit in what
defect is being reported. Suggested response:

We request that you state the defect more directly.

#89 - (Guilmette) Agree with Feather's suggested correction, but add "that" to end
of text to be replaced.

MacDonald pointed out that this change makes a diagnostic requirement where
none existed before. Jones stated then it shouldn't have been in the constraints
section anyway.

#90 - (Jones) Insert clarifying preface wording to the suggested response:

The first call contains no locale specific characters and must produce the
obvious output. The remainder of this response addresses the subsequent
calls.

#92 - (Zeeb) Replace the suggested response with reference to DR#60.
#93 - (Keaton) Use suggested correction and add Feather's E-mail as discussion:

The committee observed that conforming freestanding implementations
tend to vary widely in the library facilities provided, and that the simple
“binary choice implied by the above text is really a continuum. It was also
noted that it is difficult to provide a C implementation with no reserved
names (not even those beginning with two underscores). It was therefore
felt unreasonable to restrict the names available to implementers of
freestanding implementations compared with hosted implementations.

The committee notes that certain freestanding programs (such as Unix
kernels) have tended to use names such as "exit", but it was agreed that
existing practice means that the authors of such programs must already be
prepared to change such names when using certain compilers.

Gwyn asked to clarify if this would allow a user to access library functions. Yes!

#94 - (MacDonald) The subgroup looking at this disagreed with the suggested
response, and preferred Guilmette's suggested correction.

In favor of adding new constraint to require the type of an expression in a return

statement to be compatible with the function return type.
8 Yes. 8 No. 0 Don't know/don't care.

/02

July 7, 1994 53 WG14/N352
X3J11/94-037

Jones noted that we would have to revise all the other DR's that we answered with
"as if by assignment." MacDonald disagreed since this just makes return
statements symmetric with constraints on argument types in function calls.

Since the committee was evenly split on this, the suggested response (status quo)
was accepted.

#95 - (Jones) Accept the suggested response, but remove initial sentence fragment
from second paragraph.

#97 - (Zeeb) Replace both suggested responses with:
This was answered in DR#40, question 6. This code is not strictly
conforming.

#98 - (Keaton) Use the suggested response.

#100 - (Jones) Accept suggested response.

#102 - (Zeeb) Agreed with the suggested response, but at Guilmette's suggestion,
also add "See response to DR#17 question 3."

#103 - (Keaton) Suggested edited form of Plauger's response:

The types of the parameters are rewritten, as in subclause 6.7.1. No
incomplete object types are involved.

Guilmette still questions whether a TC is required to correct 6.5. Gwyn and
Keaton argued that it is sufficiently explained in 6.7.1 and the standard must be
read as a whole. MacDonald noted that 6.7.1 refers to function definitions and
this is a function declaration. Need to look at DR#47. Left as an open issue—see
DR#84 and DR#104.
#104 - MacDonald) Open issue—see DR#84 and DR#103.
#105 - (Jones) Change response to:

This error was corrected in response to DR#017, question 3.
#106 — (Jones) Jones will collect comments on this to try to formulate a response.
#107 - (Zeeb) Accept the suggested response, but add to (b):

Furthermore, if NDEBUG is a macro, assert is defined as

#define assert (ingore) ((void)0)

With this definition, there is no way an implementation could determine if

the type of the parameter was a type not directly convertible to int. The

necessity of a diagnostic should not be determined by the presence of a

macro, so a diagnostic is not required in the general case.

#108 - (Keaton) Accept suggested response with Plauger's suggested amendment.

/03

July 7, 1994 54 WG14/N352
X3J11/94-037

#109 - (Guilmette) The issue is undefined behavior at run time vs. compile time.

Guilmette requested the following example be used instead of the one given in the
original DR:

int arrayl[5];
int array2(5];

int *pl = garrayl[0];
int *p2 = garray2[0];
int foo()

{
i = (pl > p2); /* Must this be "successfully
translated”? */
1/0; /* Must this be "successfully
translated"? */
return 0;

I

MacDonald recalled that at the New Hampshire meeting the committee had
decided that the compiler can't refuse to translate because that would require the
compiler to know all execution paths to deduce run time undefined behavior.

Guilmette still wants to know if undefined behavior can occur at compile time.
The consensus was that yes, but only if the compiler can determine that the given
path would be executed.

Agreed to the intent, suggested response wording:

The presence in a translation unit of an expression which would trigger
undefined behavior if evaluated may not be used as an excuse for an
implementation to fail to "successfully translate” the give translation unit
unless the expression in question appears in a context where a constant
expression is required. (See subclause 6.4; Semantics, and the associated
footnote.)

For an expression which is defined to yield undefined behavior (e.g. 1/0),
if the expression appears in some context where a constant expression is
not required, the undefined behavior acutally arises only if the expression
in question would be evaluated (at run-time) according to the abstract
machine semantics. (See subclause 5.1.2.3.)

#110 - (Jones) Replace suggested response with:
No diagnostics are required for any of the above declarations. Each of the
function definitions or declarations render the translation unit not strictly
conforming. See also DR#047. :

#112 - (Zeeb) Agree with the suggested response, but append "Subclause 6.3.8
makes it clear that the behavior here is undefined."

#113 - (Keaton) Accept the suggested response.

Jones noted, however, that 6.6.4 is misquoted. Will be fixed.

) 04

July 7, 1994

55 WG14/N352
X3J11/94-037

#115 - (Jones) Modify suggested response as follows:

Remove explicit answers.

Insert after 1st sentence: "Hence a diagnostic is not required, but a
program that uses such a form has undefined behavior."

Remove last sentence.

#117 - (Zeeb) After resolving DR#87, agreed to suggested response:

The standard does not forbid an implementation from interleaving the
subexpressions in the given examples as specified above. Similarly, there
is no requirement that an implemenation use this particular interleaving.

The fact that one particular interleaving yields code that properly delimits
multiple modificatons of the same object with sequence points is
irrelevant. Any program that depends on this particular interleaving is
depending on unspecified behavior, and is therefore not strictly
conforming.

#118 - (Keaton) Suggested response:

No, diagnostics are not required. Corrected in response to DR#13,
question 5.

#119 - (MacDonald) Suggested response:

(A) No.
(B) No, this is undefined behavior because "array" is not an array since its
element type is not an object type, therefore, 6.5.7 does not apply.

#120 - (Jones) Suggested response (edited from Feather):

Subclause 6.5.2.1 states "A bit-field is interpreted as an integral type
consisting of the specified number of bits". Thus the type of
objectl.bit and object2.bit can be described as tinsigned
int:1". When a larger integer is converted to this type, it is done
according to the rules in 6.2.1.2. Thus the value 3 is converted to the
value 1.

#121 - (Gwyn) Conversion of pointer values to integral types.

Jones pointed out that by DR#57, no type may be long enough. Plum and
Mooney argued why make useless behavior more precise—always implementation
defined. Guilmette believes it is still better to be more precise. Jones suggested
using part of Feather's response.

Suggested response, edited from Feather's reply:

The "size required" is that required by the implementation. The words "If
the space provided is not long enough" make it clear that it is the size of

]og”

July 7, 1994 56 WG14/N352
X3J11/94-037

the type that is relevant, and means that any type which is at least as long
as the type of the "size required" is also acceptable.

The size required need not be related to the results of "sizeof" applied to
the expression.

#122 - (Zeeb) Suggested response:

See DR#15. " The original type" applies to both width and signedness.
object.bit promotes to int, and the program prints 1.

Plum notes that we should revisit type with respect to bit fields during our
standards revision process, though.

#123 - (Benito) Basically agreed with Feather's suggested response, edited as
follows:

A: Yes
B: Yes

As stated in 6.5.3, "The properties associated with qualified types are
meaningful only for expressions that are lvalues."

The definition of "type category" is given in subclause 6.1.2.5, p.24.
#124 - (Zeeb) Suggested correction to 6.3.4—insert: "a":
Unless the type name specifies a void type, ...
#125 - (Jones) Use suggested response from Feather:
Applying & to an identifer of type "const void" is undefined behaviour, as
explained in the response to DR012Q1. Thus an implementation can
define any semantics it wishes. A strictly conforming program cannot
contain such a construct.

#126 - (Gwyn) Agree with Feather's email response, with some edits:

A typedef introduces a name for a type. This is not a macro, and the type
must indeed by "magically parenthesised”. In:

typedef int * ip;
ip x;
const ip y;

the type of x is "pointer to int", and the type of y is "const pointer to int".
This is exactly analogous to the fact that:

ip x1, x2;

declares both x1 and x2 as having the type "pointer to int" and is not to be
read as "int *x1, x2". .

] 06

July 7, 1994 57 WG14/N352

X3J11/94-037
Guilmette asked if we needed to clarify wording in the standard. Most felt thata
careful reading of the standard was sufficient. Plum pointed out that it was an
unending task to clarify clarifications.
#127 - (Zeeb) Suggested response:

See DR#13, question 3. There is no requirement that the composite type
be unique, and either type can be the composite type.

#128 - (Plum) Suggested response:
Yes, line 7 violates the semantic rule cited.
Yes, struct TAG represents an incomplete type.

The application of rules such as scope rules need not be re-stated at each
relevant point in the standard.

Guilmette objected to not adding clarification of "later" to "later in same scope”.

Note: correct reference from 6.5.3.2 to 6.5.2.3 in the DR.

#129 - (MacDonald) Suggested response:
Q1. No.
Q2. No change necessary because 2nd bullet of 6.1.2.3 states name spaces
of tags are shared, and therefore inner "enum TAG" hides outer "struct
TAG", and therefore the case "(struct TAG *)" attempts to declare a new
"struct TAG" and thus constraint in 6.5 is violated.

#130 - (Jones) Accept suggested response.

#131 - (Gwyn) Standard does not have words that state that const-qualified array
member of a struct forces the struct to be const-qualified, so need to add.

MacDonald stated that 6.5.3 as is makes cited behavior undefined, even though a
diagnostic would not be issued (no constraint violation). Gwyn stated that he
wants a diagnostic.

Plum clarified that const percolates down to array element type. J16 added
explictly that an "array of const" is a const type. The C standard doesn't say that,
but if it did, wouldn't need the suggested change. MacDonald asked if you take
the address of a const member (&s . a) you get a pointer to a const; can you assign
that to a pointer to a non-const? No, incompatible types.

Guilmette noted a second problem, which could be fixed at the same time: going
from struct to element type, €.g.,

struct { int .al[5]);} constisl;

After more discussion, Gwyn's suggested correction was accepted with edit to
apply to "all contained aggregates or unions."

| 077

Tuly 7, 1994 58 WG14/N352
X3711/94-037

#132 (Mooney) Accept the suggested response, but add:
The translation unit must be successfully translated.
#133 - (Zeeb) Suggested response:

The C standard is sufficiently clear that the described behaviors are
undefined.

Note: Feather reported that he is not the source of this DR, and does not wish to
be associated with it.

#134 - (Mooney) Suggested response:

From subclause 7.1.4, an error number is a positive int value that may be
assigned to errno by library functions. Since strerror maps an error
number into an error message string, it need only do so for the possible
values of an error number. The behavior is undefined if the argument is
not an error number.

Jones suggested that the issue was undefined vs. unspecified behavior; if not a
valid error number, it is a domain error. So add to the above:

If errnum is not an error number, it's a domain error for strerror, and the
behavior is undefined. For "zero", behavior is undefined; for "EDOM"
and "ERANGE", behavior is defined; for "any value that a library routine
might set errno to", behavior is defined.

#135 (Jones) Use edited suggested response from Feather:

There are no zero length objects in C. Therefore, if the size argument to
fwrite is O, this is outside the domain of the function and (by 7.1.7) the
result is undefined. The C standard is not in conflict with the cited
behavior of SVR4,

#136 (Farance) What are mktime options when tm_isdst member is -1
(unknown). In the spring, there is a hole; in the fall, overlap. There are 3 choices:

(1) return -1; no one wants to return -1 becaue value is representable.
(2) return either standard or daylight time - ambiguous time - as long as
implementation gets either one right.

(3) return "normalized" result, similar to handling of "holes" in month
days. "holes" mean "take last valid value and add N units."

General normalization rules:
if x < normal range => subtract N units from first valid value
if x > normal range => add N units to last valid value
if x in hole => add N units to last valid value
if x in overlap => use first value

To application programmers: only reliable way to get "previous local hour" is to:

|08

July 7, 1994 59 WG14/N352
X3J11/94-037

tm mday--;
tm_hour += 23;

Gwyn doesn't agree that the intent of the committee was to tell application
programmers to use this prescribed formula. Believes mktime is supposed to do
the best it can. Also, ambiguity doesn't exist in specification, only in question
posed in the DR. Want to avoid a recursive solution. Ambiguity exists if can't
determine whether DT or ST in mktime when tm_isdst is -1.

Plum believes the standard isn't precise enough to answer the question, and while
the suggested formula is interesting for the next standard, we can't object to
returning -1 since "the" calendar time must be unique. Gwyn believes that if -1 is
returned, should also leave -1 in tm_isdst. Plum agrees that tm_isdst should be
coerced to -1 when mktime returns -1.

Jaeschke observed that this is then a case of "Yes, the standard does not say."
Suggested response:

The standard does not specify the behavior precisely enough to preclude
mktime from return a value of (time_t) -1 and leaving the tm_isdst
member set to -1 in such situations.

When tm_isdst is left as -1, this implies that mktime could not determine the
correct representation rather than no correct representation exists. Could argue
this is deliberate ambiguity, or make unambiguous in the next revision.

#137 - (Zeeb) Suggested response:

As specified in subclause 7.9.6.1 for the + flag, a negative value is being
converted, so a minus sign is required. The intent is that the sign is
determined prior to conversion.

11. Fortran 90 VLA/Data Parallel Report [N353/94-038]

Farance presented a brief overview of his report on comparison of features from
Fortran 90 and NCEG VLA and Data parallel proposals. He identified 3 issues
and subissues being addressed by NCEG proposals:

* shape
» rank and dimensions
* reshape
* argument passing
« function prototypes
» stand alone arrays: ALO's - values, C arrays - ptr
« shapeof, shapeis, rankof, alo, carray
* layout
» distributed memory
* near, far, huge ptrs:
wodd. Xx
void layoutis(...) *x;
void volatile layoutis(...) *x;
« layoutof, layoutis

] 09

July 7, 1994 60 WG14/N352
X3J11/94-037

* argument passing
* selectors

* array slice

* scatter/gather

A fourth issue is parallelism, to be discussed under separate agenda time. His
report compares what happens at function call boundaries (see the table in N353).

Farance identified two types of fatness in fat pointers. (1) Wider than void *. (2)
Additional information such as shape => dope vector.

Farance noted that this was just responding to the action item taken at the Kona
meeting.

Gwyn noted that in the comparison tables, the Farance proposal appears to
provide the most functionality!

12. Future Revision of ANSI/ISO 9899 [N328/94-012, N346/94-031]
Jaeschke led the discussion on his proposed charter for revising the C standard.
He noted that he will rule out of order any specific technical proposals for this
discussion. What we need to do at this time is establish rules, streamline the
process. Also need to identify roles for work to be done.

With this as preface, we reviewed §3 of his proposed charter, question by
question.

« User community response
Jervis noted that the Sun C users are very supportive.
Gwyn stated that the Unix community has two camps: (1) NIH, give us K&R,
and (2) those that accept the standard. Jaeschke asked if supported by

vendors. Yes.

Zeeb stated that he sees the same users as Gwyn plus those that want
backward compatibility with VAX C.

Benito sees lots of interest in NIST standardization.
So the community response is taken as very positive.

» What to fix? Anything broken? Always broken or have circumstances
changed?

Plum believes all the DR's were pretty tangential, so don't think anything is
really broken.

Gywn added that the TC has fixed those, and are already part of the standard.

Tydeman reminded us that we are also seeing influence from LIA and other
standards bodies now.

|10

July 7, 1994 61 WG14/N352
X3111/94-037

Farance believes we need to fix incomplete I/O specification (e.g., file
systems).

Jervis made an appeal to keep perspective; we've made minor fixes.
Guilmette cautioned on paranoia about changing the standard in response to
DR's; urged us to reword or clarify now. Also, tighten up (remove) as much
undefined behavior as possible in this revision to enhance portability.

Gwyn stated that we shouldn't rely strictly on DR's as directives for what
needs to be enhanced.

Farance: fix ungetc()! Gwyn: fix errno!
Thomas sees need for support for numerical programming.
Jaeschke will summarize these points in revision.

¢ Original charter - how has it held up over time?

Gwyn suggested that we should add to it so that we don't introduce gratuitous
differences with C++.

Plum said we shouldn't change the charter—that would open it to ISO scrutiny.

Guilmette suggested that the "spirit of C" (2.6) in §2 should have included
"keep the language close to the machine". C++ has too much hidden stuff.
There was discussion on this point. MacDonald finally suggested that we no
longer know what "close to the machine" means; it would be better to say
"keep it small and simple."

+ C as a general-pupose language; C vs. C++

Gwyn asked if we really want to encourage C++ use—e.g., add C++ I/O
features?

- Jervis wants to avoid C++ extremes like "fascist enums"; tighten up the
language and make it safer to use, but keep it efficient.

» What have we learned from DR process?

Gwyn thinks we should take a philosophical scan over the DR's to get sense of
need of community. Also go back over the public comments from the last
standard; we rejected many requests that didn't seem worthwhile at the time.

Plum believes we should use existing implementations as criteria. Gwyn
added that they should not be only criteria; should consider exceptions when
clearly needed. Plum reiterated that we should still express preference for
prior art. Jaeschke noted that we should also consider the type of
implementation—e.g., whether academic or commercial.

* Relationship with C++?

L]

July 7, 1994 62 WG14/N352
X3711/94-037

Gwyn asked what is the common subset of C and C++. Plum answered that it
is as described in Appendix C of the C++ working paper. Gwyn wanted to
know how you could guarantee a common subset without a common base
document?

Jaeschke suggested there should be a formal committee to coordinate this.
Plum believes we should avoid creating committees, and he doesn't think there
1s sentiment for such a committee in X3.

Jaeschke suggested that, alternatively, the two committees could merge and
have two subgroups. Jervis thinks this would be an enormous burden on J16;
it's clear that for this revision of C, that such a move would derail their process
to produce the C++ standard. Jaeschke agrees it would not be feasible now,
but we need a long term goal to drive our revision process.

Gwyn then shared that Stroustrup says it was an accident that he happened to
start with C, really wanted a new language.

Thomas wanted to know how big is the document that describes the common
subset of C and C++7? It is the joint responsibility of the two committees to
keep this updated.

Jaeschke asked how do we deal with adding to C features that don't exist in
C++? Plum expects C++ will need an amendment immediately to address
requests for features from C++ users. Make sure new C features could be
something C++ could evolve to. The most they can ask is have we considered
liaison implications.

Guilmette noted there are two aspects: technical and political. Gwyn believes
that as long as no technical incompatibilities (e.g., different semantics for C++
syntax), political issues are benign.

Jaeschke summarized: (1) we are not constrained by where the C++ standard
is now, and (2) we ought to consider impact of our changes.

+ Other influences? Looked at §4 of the proposed charter as well

+ add "public review comments" to item 2

+ add XOPEN to item 5

« item 6 should talk about "Inter-Language" work, not just C++

+ reword item 7 as "Other papers and proposals from the member delegations
suchas ...". :

Plum said we should ISO-ize the way we phrase our charter document with
respect to WG14 and TR's: numerical work of a national body is not proper
subject of standard review in SC22's point of view.

» Reviewed rest of Jaeschke's proposed charter.
Thomas questioned if "running rampant” (§5) was politic.
In §6 and §7, (1) need standard form or template for submitting proposals, and

(2) need submission guidelines and someone to enforce screening and
supplying guidelines to submitters.

[

July 7, 1994 63 WG14/N352

13.

MSP

MSP

MSP

X3J11/94-037

Walls suggested that we use the word "guidelines" instead of "rules" (§6).

Jervis would like to not introduce formalisms if not necessary. Requiring
champions to attend meetings cuts down on a lot of noise.

Jaeschke will coordinate submissions, etc.

Benito volunteered to coordinate the rationale. Expects to produce new
document rather than making diffs to old one.

We should provide input on the subject of a redactor to Benito to take to
WG14.

Zeeb, Plum, Gwyn, Keaton, Thomas, and Walls will review Jaeschke's revision
of this draft charter.

US TAG Meeting [N325/94-009, N359/94-044]
Benito will serve as head of delegation for the Tokyo meeting.

Move we approve Farance, Walls, Plum, Benito, and Jaeschke as the US
delegation to Tokyo. (Plum, Benito)
16/0/0/3/19

We also need a delegation for the Dallas meeting. Plum noted that it is impolite
to have a large national delegation (i.e., don't make delegation all attending!).
Gwyn asked for clarification: don't have to be in the delegation to vote in US
Tag? Yes. The US has just one vote to the ISO committee.

Move we approve the same US delegation to Dallas. (Plum, Benito)
16/0/0/3/19

Plum advised that for certain votes there is a circuitous route because of the
ISO/ANSI I-project. (Secretary's note: I'm sure there was more context for this
statement, but it didn't get into my notes! Apologies!)

We need to form a position on DAM [N325/94-009]. Plum expressed concern
about the cover letter since the review period and the date of the Tag meeting are
different—i.e., the tag meeting precedes closing of the review period. He asked if
anyone had received any formal comments? No. Informal comments? No.

Move the US supports ISO 9899:1990/DAM1. (Benito, Farance)
14/1/0/4/19

MacDonald asked when this becomes normative. Benito will find out; believes it
is the end of the year.

Benito will post the effective date of the DAM to J11 email reflector when
known.

Gwyn asked if any technical changes, must they be part of this vote? Yes.

[1%

July 7, 1994 64 WG14/N352

MSP

14.
14.1

14.2

14.3

X3J11/94-037
Jaeschke asked the DPCE committee to report on resolution of request from OMC
to take on the C Binding for X3H5. Keaton reported that this had been discussed
in the DPCE evening meeting. There had been a prior agreement between X3H5
and DPCE that no overlap existed between the groups. DPCE has no resources to
assign to such work. Hence DPCE recommends that we decline to accept this
responsibility, unless someone in J11 wants to champion it.
Move that X3J11 decline to take on project 965-D- (C Binding for X3HS5).
(MacDonald, Stanberry)
15/0/1/3/19

Jaeschke will respond to OMC on declining to take on the X3H5 C Binding.

Administration
Summary of Decisions Reached
Stanberry reviewed the votes taken at the meeting.

There was discussion of the vote taken on VLA's. Was this officially freezing this
document for the TR? Consensus was that it was.

Keaton asked for confirmation that the following subgroup proposals are frozen:
FP/IEEE, VLA, Designated Initializers, Compound Literals, and Aliasing. Yes.

Actions Items Committed To

Stanberry reviewed the action items from the meeting, and we added a few new
ones.

Mooney, Gwyn, Farance, and Zeeb will serve as review committee for the
<inttypes.h> proposal.

Jones, Zeeb, Ziebell, Kwan, and Gwyn will email the responses for DR's for their
respective subgroups to Gwyn.

Gwyn will integrate the DR responses and send them to Plauger.
Future Meeting Schedule

N358 provides the host information for the December meeting in the Dallas area,
provided by Convex.

The schedule for WG14 and X3J11 is:

7/27-29/94 Tokyo Japan Standards wWG14

12/5-9/94 Dallas Convex co-located
6/19-23/95 Copenhagen Danish Standards co-located
10/16-20/95 Boston Thinking Machines co-located
2/5-9/96 Irvine Unisys co-located

Mooney will check with IBM on hosting a meeting in Toronto in '96, which will
count as a non-US meeting.

|14

July 7, 1994 65 WG14/N352

14.4

14.5

X3J11/94-037

DPCE will meet 9/26-28/94 in Boulder, CO, hosted by Keaton Consulting.
VLA will meet 8/22-23/94 in New York, hosted by Farance, Inc.

Mailings and Submission Procedures

All document numbers must be obtained from Plauger:

P. J. Plauger
398 Main Street
Concord, MA 01742

pjp@plauger.com
phone: 508-369-8489
fax: 508-371-9014

Items for mailings should have the document number on the cover of the
document, and then should be sent to Plauger. He prefers hard copy, then fax,
then email.

Deadlines for mailings are:

Post-San Jose 7/8/94
Post-Tokyo 8/26/94
Pre-Dallas 10/28/94

Reminder: make sure any papers to be presented formally at the December
meeting get into the mailing.

Thomas asked if we could be notified of other proposals to be included in the TR
that are expected to be voted on at the next meeting so we can be prepared.
Jaeschke stated, by definition, since December is the deadline for the TR, expect
to vote on the proposals in the mailing. ,

Thomas suggested that the document numbers for the proposals be sent to
Jaeschke so that they could be reflected on the agenda, which must also be in the
mailing.

MacDonald asked if any format requirements exist for the proposals.. Jaeschke
said they all should use ISO reference numbers, with ANSI reference numbers in
parentheses.

Next Meeting Agenda

Jaeschke will schedule agenda time for remaining NCEG subgroups and regular
business as usual.

Plum's term is expiring as vice chairman. He is willing to serve again. Jaeschke
will circulate the formal notice for this position.

Jervis asked if there would be agenda time in Dallas for proposed revisions to the
standard. That would be up to Plauger, and is probably premature at the next

15

July 7, 1994 66 WG14/N352

14.6

MSP

14.7
MS

X3J11/94-037

meeting. Plum stated that we have permission to begin discussing revisions so we
should plan on it.

Other Business

There was further discussion of remaining DR''s.

Comments on DR#106 should be sent to Jones.

Noted that DR#84, DR#103, and DR#104 are still open.

Move that we accept the committee's responses to the DR's as the X3J11 position.
(Benito, Farance)

12/0/0/7/19

Adjournment

Move to adjourn. (Gwyn, Jones)

Without objection, the chair so orders.

The meeting was adjourned at 12:18 PM, 10 June.

b

