
Pitch for #dialect directive
Jakub Łukasiewicz

N3507
2025-02-27

Longer version: N3407

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3407.pdf

All examples, semantics, syntax, etc.
used through the slides are to convey
the rough idea behind the suggested
mechanism, and will be subject to
substantial changes in the actual
design meant for real world usage.

PROBLEM

One’s bug is another’s feature

https://xkcd.com/1172/

https://xkcd.com/1172/

● Removal of old style functions:
● The upcoming gnu23 C standard is overdoing it with type-safety. (...) we historically

have method tables for generic calls, which keeps the code small and easy to
understand.

● https://github.com/rsyslog/rsyslog/pull/5514/commits/08501b9
● Recently I tried to build some of the old curses tetris games from the AUR but

observed that gcc gives error messages that were formerly not there.
● https://bbs.archlinux.org/viewtopic.php?id=295780

● Removing implicit int after a quarter of a century allowing it:
● Build failure with gcc-14: error: type defaults to ‘int’ in declaration of ‘FILE_LICENCE’

[-Wimplicit-int] #1289 (…) everything, works when I just switch to gcc-13.
● https://github.com/ipxe/ipxe/issues/1289

● General stance on busywork:
● Fixing style violations while working on a real change as a preparatory clean-up step

is good, but otherwise avoid useless code churn for the sake of conforming to style.
● https://web.git.kernel.org/pub/scm/git/git.git/tree/Documentation/CodingGuidelines

● Compatibility issues with other dialects and forks:
● Got a bunch of C code that uses operator as a variable name. Since this is a C++

keyword, it will be tough to import this into C++ code.
● https://www.reddit.com/r/C_Programming/comments/1hy63n2/

https://github.com/rsyslog/rsyslog/pull/5514/commits/08501b9
https://bbs.archlinux.org/viewtopic.php?id=295780
https://github.com/ipxe/ipxe/issues/1289
https://web.git.kernel.org/pub/scm/git/git.git/tree/Documentation/CodingGuidelines
https://www.reddit.com/r/C_Programming/comments/1hy63n2/

Everybody wants talk with C, many without translator!

Objective-C
Fil-C

ANSI CISO C99

ISO

C11
ISO C23

C
Checked C

C+-

TrapC

CompCert

C*

https://www.checkedc.org/
https://www.warmzero.com/software/articles/c-plus-minus

Folks like their old C standards

https://daniel.haxx.se/blog/2022/11/17/considering-c99-for-curl/

https://daniel.haxx.se/blog/2022/11/17/considering-c99-for-curl/

SOLUTION

An in-code marker providing the compiler
with the metadata about what dialect was

assumed by the original author

Its primary goal would be to enable more targeted diagnostics,
thus let users silence or lower severity of messages only for code
marked as conforming to older standard, instead of whole project.

Syntax candidates:
● #dialect GNU23
● #dialect C ver-min:99 ver-max:17
● #bind dialect C 89
● #pragma STDC dialect TrapC
● #version …
● #lang …
● #std …
● #features …
● #quirks …
● dialect "C>=99" { ... }

et cetera

This one will be confusing, as it is kind of contradictiory. In this example, TrapC is not a dialect conforming to Standard C.

In the slides, for simplicity, this one is used

Rough idea for rules
For the sake of simplicity the examples across this document use
rather loose set of rules for the directive. The final feature will be
surely defined more robust*, something akin to:

● Unless specified in other way, if preceded only by comments, #if
and #define directives, the first #dialect directive sets base
dialect for the translation unit.

● If no dialect is set explicitly before the first non comment, #if
or #define, then value of dialect is implementation defined.

● No dialect based on higher version of C standard than the one set
as the base dialect shall be used within the TU.

● #dialect directive shall appear only on file scope.
● Dialect value shall be carried into included files.
● After finishing processing of included file, dialect value from

before inclusion shall be restored.

* Although guidelines how to act for dialects of standard C shall be provided

The mental model for the directive’s effect

#dialect

provides the translator with metadata

on which it might choose to act

not directly controls it

PRIOR ART
C

● feature test macros
● #pragma

● #pragma STDC FENV* [Annex F]
● #pragma STDC SAFETY [N3395]
● #pragma * diagnostics / #pragma warn / …

● -std/--standard/--cNN/... compiler flags
● #version [N3176]
● #bind [N3190]

● Ada pragma Ada_N
● CMake cmake_minimum_required
● D version
● GLSL #version
● HTML/XML <DOCTYPE>
● Perl use vN
● Python via name of executable
● Racket #lang
● Shell script via name of executable
● UserCSS @preprocessor
● VimL vim9script

BENEFITS
● What problems does it solve?
● What improvements and fixes it enables?

Disclaimer:
Examples on the following slides aren’t meant
to be perfectly accurate, but to convey the idea.

(tiny) step towards simpler build systems

Especially for techniques like:
● unitary builds,
● X-Files,
● subtree dependencies,
● etc.

Correct diagnostics for single files

int bar();

void foo()
{
 bool b1 = {};
 _Bool b2 = false;
 int *p = nullptr;

 bar(1);

JUMP:
 int x = {};
 goto LABEL;

 {
LABEL:
 }

 int a = 11'11;
 if (a+x && b1 && b2 && p)
 goto JUMP;
}

(default linting by clangd 19.1.6)

#dialect C23

int bar();

void foo()
{
 bool b1 = {};
 _Bool b2 = false;
 int *p = nullptr;

 bar(1);

JUMP:
 int x = {};
 goto LABEL;

 {
LABEL:
 }

 int a = 11'11;
 if (a+x && b1 && b2 && p)
 goto JUMP;
}

No need for _UglyKeywords

#dialect C23
#include <lib.h>
const auto my_lib_countof = countof;

#dialect C2y
void func()
{

auto n = countof (int[12]);
auto l = my_lib_countof(/* args */);

}

Diagnostics when assigning null to pointers-to-non-optional

/* old_lib.c */
void foo(int *p)
{

if (p) {
*p = 12;

}
}

#define NULL ((optional void *)0)

#dialect C23
#include <old_lib.h>

#dialect C2y
#include <new_lib.h>

void func()
{

foo(NULL); // warning
bar(NULL); // error

}

/* new_lib.c */
void bar(int *p)
{

*p = 12;
}

IDE could on hover add e.g. a comment:
 void foo(/* maybe_optional */ int *p);

Removal of 0 as null (N3426 alt.1)

/* old_lib.h */

#dialect C99

struct Foo {
char *name;
int number;

};

static inline void func()
{

struct Foo x = { 0 };
int *p = 0;

}

#dialect C2y
#include <old_lib.h> // fine

int main()
{

func();
struct Foo y = {};
struct Foo z = {0}; // err
int *ptr = 0; // err

}

Avoids repeat of mess like with implicit int;
benefits available immediately for new, and refactored code.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3426.pdf

Fixing/improving decay to pointer?
#dialect C99
void foo99(int *arr, int n);
void bar99(int arr[], int n);

#dialect C2y
void foo2y(int *ptr, int n);
void bar2y(int arr[], int n);

void foo()
{

int a[] = { 1, 2, 3 };
int *p = nullptr;

foo99(a, countof a); // no error, maybe warning
bar99(a, countof a);
foo99(p, 0);
bar99(p, 0); // no error, maybe warning

foo2y(a, countof a); // error, or at least a warning
bar2y(a, countof a);
foo2y(p, 0);
bar2y(p, 0); // error, or at least a warning

}

Make #dialect work like people think extern "C" works?

Possibility of an extension in C++:

#dialect GNU++3a
#include <foo.h> // actually compiles as C

auto example::func() -> void
{

foo();
}

/* foo.h */

#dialect C2y

// not needed: #if __cplusplus \ extern "C"

static void foo(size_t n, int arr[n]) // VM type!
{

char *operator = malloc(89); // no cast
printf("%zu\n", lengthof arr);

}

Standardizing popular extensions with different syntax

GNU C ISO C Microsoft style
(in Intel’s "classic" compiler?)

asm (
 "idivl %[divsrc]"
 : "=a" (quotient), "=d" (rem)
 : "d" (hi), "a" (lo),
 [divsrc] "rm" (divisor)
 :
);

asm ??

asm {
 mov edx, hi;
 mov eax, lo;
 idiv divisor
 mov quotient, eax
 mov tmp, edx;
}

Code examples from:
https://stackoverflow.com/a/35959859

https://stackoverflow.com/a/35959859

Avoiding conflicts with extensions

What if C adds trap mechanism but not like e.g. from TrapC (N3423) dialect?

#dialect C3a

int func(size_t n)
{
 trap VLA_OVERFLOW { return 1; }
 int arr[n];
 // work on arr...
 return 0;
}

(similar to trap from POSIX shell)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3423.pdf
https://pubs.opengroup.org/onlinepubs/9799919799/utilities/V3_chap02.html#trap

Avoiding conflicts when defining ambiguous behaviours
differently from what implementations did

For example N3203 standardizes order of expression evaluation.
While unlikely, what if some niche implementation had already defined it, but in reverse?

int G = 0;
int f() { return ++G; }
int g() { return (G *= 3); }

#dialect C2y

int s(int a, int b)
{
 return a + b;
}

int main()
{
 return s(f(), g()); // weird-cc notices these can have side effects
 /* warning:
 * order of evaluation is left to right in C2y;
 * weird-cc for previous standard used right to left
 */
}

This concern isn’t completely out of the blue!

While it was for different language, we had such situation happen to us!
(Its vendor also has a major C implementation).

Older implementation of that language had evaluation right-to-left, but for much fresher release vendor aligned it with the rest of environment to left-to-right.

And of course, since Hyrum's Law is absolutely true, somebody years ago did rely on this behaviour, putting a side effect into a “last” function that affected the outcome of function passed as earlier argument.

We called this bug “Mark 731” from the not too helpful comment next to these unfortunate function calls.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3203.htm

and more

POLLS
● Does WG14 want any mechanism mitigating breaking changes?

● Would WG14 consider a proposal for something along the
lines of #dialect directive?

[2025-02-27, past 16:00 CEST]
Results:
 9 in favour,
 12 against,
 7 abstain.

Thank you!
Acknowledgments:

● Eskil Steenberg (N3176), Ori Bernstein
● Bartosz Zielonka, and MTP team
● Joshua Cranmer for phrase "C89-spelled C2y"
● All WG14 participants in discussion on mailing list
● SWC audience

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3176.pdf

