
Proposal for C2y N3503 Integer and arithmetic constant expressions 2025/02/20

N3503 - Integer and arithmetic constant expressions

Author: Javier A. Múgica

The problem and other issues

The standard uses the sentence the result is an integer constant expression, applied to sizeof
and alignof expressions. This is not right, since what is an integer constant expression is the
expression itself, as the term conveys; the result in those cases is an integer constant; it is a property
of the value of the expression, or of the evaluation of the expression, and exists only if the expression
is evaluated. constant expression is something which, among other requirements, has the form of a
conditional expression, so it cannot be referred to as the result of an evaluation.

"Integer constant" was the term used until recently in those places, which was changed by the
adoption of the proposal N3239 Some constants are literally literals. As that proposal argues, the
use of "integer constant" there was incorrect because this term is defined as a certain category
of tokens. That paper changed the term to "integer literal" and changed the sentence the result
is an integer constant to append expression after it. In other places, the proposal changed this to
"constants of integer type".

We like the choice of N3239 of talking about sizeof and alignof expressions as integer constant
expressions, but has to be expressed in some other form. For this, a wording is proposed in "First
change".

The second change proposes a simplification of the wording for arithmetic constant expressions.
The third change proposes a reelaboration of the wording for those two kinds of consant expressions,
which are defined by recursion.

The recursion of the third change needs the definition of candidate integer constant expression
(CICE) and candidate arithmetic constant expression. The paper "Resolved & discarded" also
proposes changes to the wording of these two kinds of expressions. The wordings in that paper
are in substance: they enlarge the kind of expressions allowed by permitting any expressions with
an adequate type in subexpressions of the integer / arithmetic constant expression that are not
evaluated. The changes in this paper are in form. The combination of both papers would result in a
form like this one with the enlargement of the other proposal. This makes the wording in the form
in this paper simpler. The reason is that currently the kind of expressions allowed in not evaluated
subexpressions of an integer constant expressions are very limited; precisely the CICE. With the
changes in "Resolved & discarded", the need for this term disappear. Analogously for arithmetic
constant expressions.

Wording

First change
In 6.5.4.5 The sizeof, _Lengthof and alignof operators, pp. 2, 3 and 5, change

the result is an integer constant expression to the expression is an integer constant expression

In 6.6 Constant expressions, 6.6.1 General, pp. 8 and 10 and in appendix J.2, items 50 and 52,
change

whose results are integer constant expressions to which are integer constant expressions

In 6.9 External definitions, in the constraints,

— part of the operand of a sizeof operator whose result is an integer constant expression;

1



Proposal for C2y N3503 Integer and arithmetic constant expressions 2025/02/20

— part of the operand of a _Lengthof operator whose result is an integer constant expression;

— part of the operand of an alignof operator whose result is an integer constant expression;

change those items to

— part of the operand of a sizeof expression which is an integer constant expression;

— part of the operand of a _Lengthof expression which is an integer constant expression;

— part of the operand of an alignof operator;

Second change
In the paragraph on arithmetic constant expressions, the operands "integer literals", "character literals"
sizeof, _Lengthof and alignof expressions can be included in "integer constant expressions":

10 An arithmetic constant expression shall have arithmetic type and shall only have operands that are
floating literals, named or compound literal constants of arithmetic type and integer constant
expressions. Cast operators in an arithmetic constant expression shall only convert arithmetic
types to arithmetic types, except as part of an operand to the typeof operators, sizeof operator,
_Lengthof operator or alignof operator.

Third change
Finally, we understand that the current wording does not allow an expression like 3 or ’a’ to be an
ICE by itself, for example in int a[3]; or case ’a’:, since there 3 and ’a’ are not operands of
anything. The opposite interpretation; namely, that becuase they are not operands none of those
shall’s apply to them, would make an ICE of any identifier with integer type, which is obviously not.
Even if it is understood that it does allow those expressions, we believe it is clearer to state that
literals of the appropriate type are integer/arithmetic constant expressions.

Furthermore, it is not clear that _Generic selections may include other kinds of expressions in
the generic associations which are not taken. Also, if the generic association which is taken is a
literal, it should be allowed where the literal is.

We propose the following wording in accordance to this:

8 An outermost operand of an expression or typeof specifier is an operand of the same for which there
does not exist another expression or type name lying strictly between the operand and the expression
or typeof specifier.

9 candiate integer constant expressions and integer constant expressions are defined recursively as follows:

10 Every integer constant expressions is a candiate integer constant expression. A candiate integer
constant expression that satisfies the constraints for constant expressions is an integer constant
expression.

11 The following are integer constant expressions:

— Integer literals, named and compound literal constants of integer type and character literals.

— alignof expressions and some sizeof and _Lengthof expressions, as specified in 6.5.4.5.

12 For the purposes of these definitions, a castable float is defined recursively as any of:

— A floating literal.

— A named or compound literal constant of floating type.

— A parenthesized castable float.

2



Proposal for C2y N3503 Integer and arithmetic constant expressions 2025/02/20

— A generic selection where the result expression is a castable float.

13 The following are candiate integer constant expressions (CICE):

— A cast expressions where the type of the cast is an integer type and the operand is a castable
float.

— A parethesized CICE

— An expression of integer type other than a compound literal or generic selection whose
outermost operands are CICE.

— A generic selection where the result expression is a CICE.

15 The following are candidate arithmetic constant expressions: candiate integer constant expressions,
floating literals and named or compound literal constants of arithmetic type. Other candiate
arithmetic constant expressions (CACE) are defined recursively:

— a parethesized CACE.

— An expression of arithmetic type other than a compound literal or generic selection whose
outermost operands are CACE.

— A generic selection where the result expression is a CACE.

16 An arithmetic constant expression is a candiate arithmetic constant expressions that satisfies the
constraints for contant expressions.

Notes on the third change

1. "castable float" has been restricted to proper floats (not integers) to avoid some expressions
being CICE through two different productions, as (int)true.

2. The definition of certain sizeof and _Lengthof expressions as integer constant expressions
at the place these operands are defined are part of, and at the same time need, the recursive
definition, for if the operand to any of those operators is the type name of an array type, the
expression is or is not an i.c.e. according to whether the size of the array is given by an i.c.e. or not
(and that of the element’s type, if it is itself an array, etc.). The same is true for named and compound
literal constants, where the initializer must be an integer constant expression.

3. The definition of outermost operand has been introduced in the section on constant expressions.
We believe it would be better to define that concept in the first subsection of 6.5 Expressions, based
on the concept, also to be defined there, of proper kind expression. This one would be so that, for
example, both

a * b a + b

are additive expressions but only the second one is a proper additive expression.
We think the definition of this concept is not difficult. The specification should note that the syntax

defines a grading of the diferent kinds of expressions, so that

Eprimary ⊂ Epostfix ⊂ Eunary ⊂ etc.

where all inclusions are proper. Then, a certain expression is a proper expression of the first kind in
this list in which it is included.

We prefer to introduce this concept in a separate paper.

3


	The problem and other issues
	Wording
	First change
	Second change
	Third change

	Notes on the third change

