
Proposal for C2Y
WG14 N3452

Title: Complex literals warning

Author, affiliation: C FP group
Date: 2024-12-04
Proposal category: Editorial
Reference: N3215, N3301, N3390

Previous email and documents, e.g. N3215, have pointed out problems involving signed
zeros and infinities when imaginary types are not available. The optional imaginary types in
C99 through C23 are generally not implemented and have been removed from draft C2Y.
Complex literals (6.4.5.3) add an implicit 0 real part to pair with the explicit imaginary part
to compose the complex value, and it is this 0 that confounds signed zeros and infinities.
The macro I (which N3390 proposes to remove) when defined to be _Complex_I has the

same problems. The suggested change below adds a note to warn users about the problems
and shows a means to avoid them.

Suggested change:

To 6.4.5.3 #12, append a second note (and number the first note):

NOTE 2 Since complex literals are of complex type and have a (positive) zero
real part, their use is problematic where signed zeros and infinities matter. For
example, with ISO/IEC 60559 arithmetic and its default rounding,

-0.0 + 1.0i yields −0 + (+0 + i) = +0 + i
-1.0i yields − (+0 + i) = −0 − i
INFINITY * 1.0i yields ∞ × (+0 + i) = NaN + ∞i, and raises the invalid

floating-point exception when evaluated at
execution time

The CMPLX macros in <complex.h> can be used to straightforwardly obtain
particular values involving signed zeros and infinities. Corresponding to the cases
above,

CMPLX(-0.0, 1.0) yields −0 + i

CMPLX(0.0, -1.0) yields +0 − i

CMPLX(0.0, INFINITY) yields +0 + ∞i

	WG14 N3452
	Proposal category: Editorial

