
Unspecified Sizes in Definitions of Arrays, v2
Author: Martin Uecker
Number: N3427
Date: 2025-01-04

Changes for version 2 (N3295)

- various wording improvements
- address comments from SC22WG14.26614.
- rationale for using the composite type
- rationale for using `*’ as wildcard size
- additional example

Introduction:

Array types generally know their size and since C99 there are also arrays of dynamic size. The size
can be used for bounds checking or recovered using sizeof or _Lengthof.

char a[10];

// C89
char (*x)[10] = &a;
size_t N1 = sizeof(*x);

// C99
int N2 = 10;
char (*y)[N2] = &a;

In C23 (or with preceding language extensions such as __auto_type) it is possible to assign such a
type to a variable declared with auto, which retains the static or dynamic size information as part of
the type.

// C23
char b[N2] = { };
auto z = &b;
size_t N3 = sizeof(*z);

In principle, this is very useful, because it helps to avoid mistakes related to inconsistent sizes
(which compilers are still bad at detecting in many contexts – despite some progress). One
downside of auto is that it removes the type information from the view of the programmer and the
type checker

Proposal

It is proposed to allow declarations for arrays with unspecified sizes where the size is then
transferred from the initializer, while the other parts of the type have to match according to the
usual type compatibility rules.

// C2Y
char (*w)[*] = &b;
size_t N4 = sizeof(*w);

The size is transferred during initialization making the object a regular C object with known sizes,
possibly with a variably modified type. Semantically, for a variably modified type this then
corresponds to

char (*w)[_Lengthof(b)] = &b;
size_t N4 = sizeof(*w);

This is the same as for auto, except that it would be a constraint violation when the type of the
initializer and the type of the declaration are not compatible. In terms of specification, the usual
rules for composite types already provide the machinery for inserting the sizes at the right place.

Rationale

Why use the composite type?

The composite type is the most specific type that is formed from two compatible types and merges
all information from both types. The standard already has a mechanism that replaces unspecified
sizes with specified or known-constant sizes. In a C compiler this mechanism can be directly used.
The composite type is used in a similar situation, i.e. for merging information of multiple
declarations for external definitions (6.9.3). (It is also used for the conditional operator, but there
the use of a most specific type is dubious as the conditional operator should arguably not produce
the most specific type, e.g. combining attributes.)

Why use `*’ as wildcard type?

The mechanisms for replacing unspecified sizes with more specified ones already exists and works
when forming composite types with function arguments that make use of unspecified sizes. The
syntax is intuitive as `*’ is widely used as a wildcard symbol. The use of empty brackets as in arrays
of unknown size seems problematic, as it would mix it up with the notion of incomplete types.

Proposed Wording (rel. to N3301)

6.7 Declarations
6.7.1 General

Constraints

7 An underspecified declaration shall have an initializer.X)

X) This is further specified for declarations that contain unspecified sizes in 6.7.11§5 and is
implied for type inference as described in 6.7.10§2.

Semantics

12 A declaration such that the declaration specifiers contain no type specifier or that is declared with
constexpr, or that contain an array declarator with unspecified sizes in its nested sequence of
declarators, is said to be underspecified. If such a declaration is not a definition, if it declares no or
more than one ordinary identifier, if the declared identifier already has a declaration in the same
scope, if the declared entity is not an object, or if anywhere within the sequence of tokens making
up the declaration identifiers that are not ordinary are declared, the behavior is implementation-
defined.122)

6.7.7.3 Array declarators

4 If the size is not present, the array type is an incomplete type. If the size is * instead of being an
expression, the array type is a variable length array type of unspecified size, which can only be used
for a parameter declaration or for an underspecified definition of an object as part of the
nested sequence of declarators or abstract declarators for a parameter declaration, not including
anything inside an array size expression in one of those declarators;159) such arrays are nonetheless
complete types. If the size is an integer constant expression and the element type has a known
constant size, the array type is not a variable length array type; otherwise, the array type is a
variable length array type. (Variable length arrays with automatic storage duration are a conditional
feature that implementations may support; see 6.10.10.4.)

159) They can not be used only in function declarations that are not also function definitions (see
6.7.7.4 and 6.9.2).

6.7.11 Initialization

Constraints

5 The initializer for an object with an underspecified definition that contains array
declarators with unspecified size in its nested sequence of declarators shall be a single
expression, optionally enclosed in braces. The unqualified type of the expression shall be
compatible with the unqualified type of the object to be initialized, and no unspecified sizes
shall remain when forming a composite type of the declaration and the type of the expression,
except possibly as part of nested declarations of function parameters. The object after
initialization has the appropriately qualified version of a composite type. The same type
constraints and conversions as for simple assignment apply, taking the type of the scalar to be
the unqualified version of the composite type.

Example 15 After initialization, the pointer p has type pointer to array of char of length 10.

char b[] = “something”;
char (*p)[*] = &b;

Example 16 After initialization, the pointer p has type pointer to variable length array with the
same length as the array ‘b’.

void f(int n)
{

char b[n] = { };
char (*p)[*] = &b;

}

Acknowledgment: Joseph Myers for comments on a previous version of the paper and Jens
Gustedt for suggestions to improve the proposed wording.

