
 1

WG14 N3314
Author: Stephen Heumann (stephenheumann@gmail.com)
Date: 2024-08-15

Ini$aliza$on of anonymous structures and unions

Summary:

The C standard contains wording that appears to prohibit an anonymous structure or union
from parLcipaLng in iniLalizaLon as a structure or union when the containing structure or union
is iniLalized with a brace-enclosed iniLalizer list. However, many implementaLons (including
widely-used ones) actually allow this, suggesLng that their implementors may have understood
this standard wording differently, or that they chose not to follow it. Since at least one
implementaLon does behave largely as the standard appears to specify, there is disagreement
between the behavior of actual implementaLons regarding the iniLalizaLon of anonymous
structures and unions.

This document proposes changes to clarify and standardize the behavior in this area. It
proposes to specify that anonymous structures and unions do parLcipate in iniLalizaLon,
consistent with the behavior of those implementaLons that already allow this.

Behavior specified by exis6ng standard wording:

As described below, the C standard contains wording that appears to prohibit an anonymous
structure or union from parLcipaLng in iniLalizaLon as a structure or union when the containing
structure or union is iniLalized with a brace-enclosed iniLalizer list. References below are to the
latest available draS, but C11 through C23 contain similar wording, and the same conclusions
apply to them.

N3301 6.7.11 p10 says “Except where explicitly stated otherwise, for the purposes of this
subclause unnamed members of objects of structure and union type do not parLcipate in
iniLalizaLon.” This applies to anonymous structures and unions, since they are defined as being
(certain kinds of) unnamed members in 6.7.3.2 p15.

The descripLon of iniLalizaLon with a brace-enclosed iniLalizer list in 6.7.11 p17 says “the
iniLalizer for an object that has aggregate or union type shall be a brace-enclosed list of
iniLalizers for the elements or named members.” So there is no explicit excepLon from the
above rule for anonymous structures or unions, and in fact the iniLalizaLon of structures or
unions with a brace-enclosed iniLalizer list is explicitly limited to named members.

This wording seems to prohibit there from being a brace-enclosed iniLalizer list for an
anonymous structure or union. For example, it means the following is invalid:

union {struct {int a,b;}; long c;} u = {{1,2}}; // Example 1

 2

Members of an anonymous structure or union can be iniLalized, since they “are members of the
containing structure or union” (6.7.3.2 p15). However, this leads to potenLally surprising
behavior when there is an anonymous structure in a union, because the rules for union
iniLalizaLon will apply (only the first named member can be explicitly iniLalized when not using
designators). Similarly, when there is an anonymous union in a structure, the rules for structure
iniLalizaLon will apply (iniLalizers can be provided for all named members without using
designators).

Accordingly, the following should be allowed, and should iniLalize s.b to 2 and s.c to 3:

struct {union {int a; float b;}; int c;} s = {1,2,3}; // Example 2

Similarly, this should iniLalize s.b to 2 and (implicitly) s.c to 0:

struct {union {int a; float b;}; int c;} s = {1,2}; // Example 3

This should produce a diagnosLc, because a union iniLalizer without designators can only
iniLalize the first named member of the union (in this case u.a):

union {struct {int a,b;}; long c;} u = {1,2}; // Example 4

In this document, the behavior described above will be referred to as “Behavior A.”

Exis6ng implementa6ons that allow anonymous structure/union ini6aliza6on:

Many implementaLons (including GCC, Clang, MSVC, and others listed below) do not actually
behave as described above. For purposes of iniLalizaLon, these implementaLons treat
anonymous structures or unions the same as named structure or union members, except that
they cannot be described by a designator. They treat the members of an anonymous structure
as members of a structure, even if it is contained in a union, and treat the members of an
anonymous union as members of a union, even if it is contained in a structure.

These implementaLons handle the above examples as follows:

1. They will accept Examples 1 and 4, treaLng them as iniLalizing u.a to 1 and u.b to 2.
2. They give a diagnosLc for Example 2 (reporLng “too many iniLalizers” or similar).
3. In Example 3, they iniLalize s.a to 1 and s.c to 2.

In this document, the behavior described above will be referred to as “Behavior B.”

Since numerous implementaLons do not behave in accordance with the interpretaLon of the
standard wording described previously, it seems that their implementors may have interpreted
that wording differently, or that it may have been unclear to them. AlternaLvely, those
implementors may have chosen to deviate from the standard with regard to the iniLalizaLon of

 3

anonymous structures and unions, perhaps to maintain compaLbility with exisLng
implementaLons of anonymous structures and unions that predate their standardizaLon in C11.

Behavior of exis6ng implementa6ons:

Here is a list of the implementaLons I have tested and their behavior with regard to iniLalizaLon
of anonymous structures and unions:

Follows Behavior A, except that it accepts Example 1 with no diagnosLc:
SDCC 4.4.0

Follows Behavior B:
zig cc 0.13.0
CompCert 3.12
icx 2024.0.0
icc 2021.10.0
gcc 14.1
clang 18.1.0
msvc v19.40
cproc
TCC 0.9.27
Apple clang 15.0.0

Calypsi C 5.4
ORCA/C 2.2.0
Open Watcom 2.0
Oracle Developer Studio 12.6
TI cl430 v21.6.1.LTS
TI cl2000 v22.6.1.LTS
TI cl6x v8.3.13
TI armcl v20.2.7.LTS
TI clpru v2.3.3

Follows Behavior B, except that it accepts Example 2 with no diagnosLc:
Chibicc 2020-12-07

SDCC is the only implementaLon I am aware of that largely follows Behavior A. SDCC differs
from Behavior A in that it accepts Example 1 with no diagnosLc, but that seems to be because it
generally ignores extra braces and extra elements in iniLalizers; it generates the same code as if
the iniLalizer was just {1}.

In light of the above results, Behavior A is not standardized among C implementaLons in
pracLce, in spite of the wording in the standard that appears to specify it. If anything, it appears
that Behavior B is likely more prevalent among C implementaLons, although I acknowledge that
there may be other implementaLons I have not tested that follow Behavior A.

Historical background:

Anonymous structures and unions were added to Standard C in C11, based on the proposal in
WG14 N1406 (with some wording changes). That proposal does not menLon anything
specifically about iniLalizaLon of anonymous structures and unions, but it does cite both
anonymous unions in C++ and the support for anonymous structures and unions provided as an
extension in pre-C11 versions of GCC and MicrosoS C compilers. All of these prior
implementaLons followed Behavior B.

 4

In light of the references to those prior implementaLons and the lack of any statement that the
iniLalizaLon behavior in Standard C was intended to be different from them, it is possible that
the difference caused by the current C standard wording may have been an oversight, rather
than the deliberate intenLon of WG14. The wording menLoned above concerning iniLalizaLon
of unnamed members dates back to the C99 or earlier standards, in which unnamed bit-fields
were the only possible unnamed members. When anonymous structures and unions were
added in C11, the impact of that wording on them may not have been fully considered.

Ra6onale for standardizing Behavior B:

As described above, there is currently divergent behavior between different implementaLons
with regard to the iniLalizaLon of anonymous structures and unions, and numerous widely-used
implementaLons behave in a way that does not seem to follow the wording in the standard. I
believe it would be in the interest of C users to clarify and standardize the behavior in this area
so that it is consistent across C implementaLons, enabling portable and standard-conforming
code to rely on it.

Clearly standardizing either Behavior A or Behavior B would be preferable to the status quo, but
I believe it is preferable to standardize Behavior B, i.e. to allow anonymous structures and
unions to parLcipate in iniLalizaLon. This will bring the standard in line with the exisLng
behavior of many implementaLons, including widely used ones. There may well be exisLng code
wrihen for those implementaLons that relies on Behavior B, and changing them to follow
Behavior A could break such code. In some cases (e.g. Example 3), the code would remain valid,
but its semanLcs would change, potenLally leading to silent breakage.

I believe Behavior B is also likely to be less confusing and less error-prone for C programmers in
general. It is more consistent with the iniLalizaLon behavior for structures or unions with
named members, it permits the use of fully-braced iniLalizers for anonymous structures and
unions, and it avoids the potenLally surprising situaLons discussed above with regard to the
iniLalizaLon of anonymous unions within structures or anonymous structures within unions. It
is also more consistent with the iniLalizaLon behavior of anonymous unions in C++.

Standardizing Behavior B will require changes to SDCC and any other implementaLons that may
follow Behavior A. The maintainer of SDCC has expressed willingness to make such changes if
Behavior B is standardized. There may be exisLng code for SDCC or other implementaLons that
relies on Behavior A, which would also have to be changed. However, given that many widely-
used implementaLons already follow Behavior B, the portability of any code relying on Behavior
A is already limited in pracLce. In light of the behavior of exisLng implementaLons, I suspect
there is likely to be significantly less exisLng code relying on Behavior A than on Behavior B.

Ques6on for WG14:

Does WG14 want to standardize Behavior B, allowing anonymous structures and unions to
par=cipate in ini=aliza=on?

 5

If the answer is yes, proposed wording to do so is provided below.

If the answer is no, I believe the standard wording should be revised to more clearly indicate
that Behavior A is intended. I have not proposed wording for this, but I would be willing to work
with the commihee to do so if this is its preferred direcLon.

Explana6on of proposed wording:

The wording proposed below is intended to standardize Behavior B. It is meant to be consistent
with the exisLng behavior of those implementaLons listed above as following Behavior B, and as
such should not require any changes to those implementaLons.

Wording is adjusted in several places to only restrict unnamed bit-fields from parLcipaLng in
iniLalizaLon, rather than all unnamed members of structures and unions. The wording in
quesLon all dates back to C99 or earlier, when unnamed bit-fields were the only possible
unnamed members. Thus, the changes restore the meaning that this wording had in C99, while
making clear that it does not apply to anonymous structures and unions.

A paragraph is also added to explicitly describe how anonymous structures and unions
parLcipate in iniLalizaLon. In parLcular, this makes clear that members of anonymous
structures and unions parLcipate in iniLalizaLon as members of the anonymous structure or
union, not as members of the structure or union that contains it. This is necessary to ensure
that anonymous structures within a union are iniLalized according to the rules for iniLalizaLon
of structures (not unions), and vice versa.

Proposed wording:

This shows proposed additions and removals relaLve to WG14 N3301.

Change 6.7.11 paragraph 10 as follows:

Except	where	explicitly	stated	otherwise,	for	the	purposes	of	this	subclause	unnamed	members	of	objects	of	
structure	and	union	type	bit-*ields	do	not	participate	in	initialization.	Unnamed	bit-*ield	members	of	
structure	objects	have	indeterminate	representation	even	after	initialization.	

Change the last item in 6.7.11 paragraph 11 as follows:

—	if	it	is	a	union,	the	first	named	member	that	is	not	an	unnamed	bit-field	is	initialized	(recursively)	
according	to	these	rules,	and	any	padding	is	initialized	to	zero	bits.	

Change 6.7.11 paragraph 14 as follows:

The	initializer	for	a	structure	or	union	object	shall	be	either	an	initializer	list	as	described	subsequently	in	this	
subclause,	or	a	single	expression	that	has	compatible	structure	or	union	type.	In	the	latter	case,	the	initial	
value	of	the	object,	including	unnamed	membersbit-fields,	is	that	of	the	expression.165)	

 6

Change 6.7.11 paragraph 17 as follows:

Otherwise,	the	initializer	for	an	object	that	has	aggregate	or	union	type	shall	be	a	brace-enclosed	list	of	
initializers	for	the	elements	or	named	members	other	than	unnamed	bit-fields.	

Add a new paragraph aSer 6.7.11 paragraph 17:

When	a	structure	or	union	object	is	initialized	using	a	brace-enclosed	initializer	list,	any	anonymous	
structure	or	union	members	of	the	object	participate	in	initialization	in	the	same	way	as	named	
members,	except	that	they	cannot	be	described	by	designators.	For	the	purposes	of	initialization,	the	
members	of	an	anonymous	structure	or	union	are	treated	as	being	members	of	the	anonymous	
structure	or	union	object	rather	than	of	the	structure	or	union	that	contains	it,	but	they	may	be	
described	by	designators	as	if	they	are	members	of	the	containing	structure	or	union.	

Change 6.7.11 paragraph 18 (now paragraph 19) as follows:

Each	brace-enclosed	initializer	list	has	an	associated	current	object.	When	no	designations	are	present,	
subobjects	of	the	current	object	are	initialized	in	order	according	to	the	type	of	the	current	object:	array	
elements	in	increasing	subscript	order,	structure	members	in	declaration	order,	and	the	first	named	member	
of	a	union	that	is	not	an	unnamed	bit-field.166)	In	contrast,	a	designation	causes	the	following	initializer	to	
begin	initialization	of	the	subobject	described	by	the	designator.	Initialization	then	continues	forward	in	
order,	beginning	with	the	next	subobject	after	that	described	by	the	designator.167)	

References

GCC Manual. Unnamed Structure and Union Fields.
hhps://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html

ISO/IEC 14882, Programming Languages—C++ (all ediLons).

Keaton, David. Anonymous Member-Structures and -Unions. WG14 N1406.
hhps://www.open-std.org/JTC1/SC22/WG14/www/docs/n1406.pdf

MicrosoS. C language reference. Union DeclaraLons.
hhps://learn.microsoS.com/en-us/cpp/c-language/union-declaraLons

https://gcc.gnu.org/onlinedocs/gcc/Unnamed-Fields.html
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1406.pdf
https://learn.microsoft.com/en-us/cpp/c-language/union-declarations

