Data Parallel C Extensions

Numerical C Extensions Group of X3.J11
DPCE Subcommittee

Draft Technical Report

X3J11/94-015

WGI14/N329 /.

April 28, 1994

=

b=

Draft Version 1.4 X3J11/94-015
WG14/N329

Foreword

This technical report is the result of discussions that began within the Array
Syntax subgroup of the Numerical C Extensions Group (NCEG) in May 1989.
The parent group became officially affiliated with the ANSI C process and
obtained the ANSI designation X3J11.1. The subgroup, to emphasize its
primary focus, became known as the Data Parallel C Extensions (DPCE)
subcommittee. _

This report addresses only a subset of the issues that were discussed by the
subcommittee. There were many areas of contention in defining these
extensions. The subcommittee chose to consider only those areas where
consensus could be reached. Hence, not every proposed extension or
viewpoint is represented in this report: this should not be construed as
denying their utility or merit.

For example, there was great interest in including some form of parallel
control flow, but it was agreed that since no consefisus could be reached after
considerable debate on this topic, that the su mittee would leave it for a
future extension. There was also intereg cluding overloading, to
simplify the extension of library functions,o’h lata parallel objects, but
its inclusion at this time was rejected, sinee
goals of the language extensions.

Appendix A describes proposed exten
a summary of why those extensi :

I

y limited to detailing only the most
ent data parallel model. The extensions
seri designed to allow further extensions to be

The subcommittee believes that further
fillel paradigm will eventually allow consensus to
y defined C extension.

The scope of this report is

experience with the da
be obtained for a more br:

The subcommitee began by adopting a general model that included the basic
concept of parallel data aggregates that have structure (rank and dimension),
memory layout (possibly noncontiguous), and context (active or participating
elements). The subcommittee then began deliberations on how parallel
aggregates should be accessed and used in expressions and statements.

As these concepts were already embodied in the C* language developed at
Thinking Machines Corporation, the subcommittee adopted the C* reference
manual [4] as its base document. It proceeded with removing features of the
C* language that were not considered essential to the model, and adding
more extensions, notably in the area of elemental and nodal functions and
parallel pointer handles.

The process has been a lengthy one, and the culmination of the subcommitte's
work is described here in a thorough examination of the needed extensions to

&3

1 X3J11/94-015
Draft Version 1.4 oo m
each section of the C standard. This exercise itself has identified and
addressed inconsistencies in the model, and has improved and focused the

report.

The DPCE subcommittee wishes to thank the following persons for their
valuable contributions to its deliberation process:

Analog Devices, Marc Hoffman

Analog Devices, Kevin Leary

Analog Devices, Alex Zatsman

Control Data Corporation, Azar Hashemi
Convex Corporation, Austin Curley

Convex Corporation, Bill Torkelson

Cray Research, Incorporated, Tom MacDonald
Cray Research, Incorporated, Dave Becker
Digital Equipment Corporation, Randy Meyers
Digital Equipment Corporation, Jeffrey Zeeb
Farance Inc, Frank Farance (Chair)
Hewlett Packard, John Kwan
HyperParallel Technologies, Christi
HyperParallel Technologies, Nicol
IBM, Pawel Molenda
IBM, Bill O'Farrell

IBM, Fred Tydeman
'Keaton Consulting, David K
Lawrence Livermore Natiez
MasPar, David Alpe
Mimosa Systems, Inco
Open Software Fouiit
SunPro, Bob Jet
SunPro, Marino
Supercomputing % ch Center, Maya Gokhale
Supercomputing Regearch Center, Howard Gordon

Syracuse University, Pankaj Kumar

Syracuse University, Nancy McCracken

Thinking Machines Corporation, Gary Sabot

Thinking Machines Corporation, James L. Frankel (Vice Chair)
University of New Hampshire, Phil Hatcher

Unix System Laboratories, David Prosser

atory, Linda Stanberry

Hugh Redelmeier
Mike Meissner

ii

¢

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

10
1.1

1.2

1.3

WG14/N329

Data Parallel C Extensions

Linda Stanberry, Technical Editor
Lawrence Livermore National Laboratory
PO Box 808, L-300
Livermore, CA 94551
linda@ocfmail.ocf.1lnl.gov

INTRODUCTION (IS0 §1, ANSI §1]

PURPOSE [ISO §1, ANSI §1.1]

of data parallel applications. The intent is to provide a set of machine-independent
extensions that permit an efficient mapping to high-performance architectures,

This document describes a set of extensions to Standard C that support programming |
especially massively parallel architectures.

SCOPE [ISO §1, ANSI §1.2]

This document descibes only the data pare
presents those extensions in the context g
modified, and introduces new subsection

$ections of the Standard to be
tantard where appropriate. It does

sions to the C Standard. It
ing, nor on Standard C.

2. International Si amming Languages-C (ISO/IEC 9899:1990(E)).

3. “C* Programming G Thinking Machines Corporation (X3J11.1/90-032). |
4. “A Reference Describt.ion of the C* Language,” James L. Frankel (X3J11.1/91-023).
5. “ASX Evaluation Method - Revision 2,” Frank Farance (X3J11.1/92-004).

6. “Massively Parallel C: Architectures and Data Distribution,” Tom MacDonald
(X3J11.1/92-007).

7. “C* Language Model,” James L. Frankel (X3J11.1/92-010).
8. “C* answers to evaluation criteria,” James L. Frankel (X3J11.1/92-011).

9. “Expressing Communication Costs in an Array Syntax,” Dave Becker (X3J11.1/92-
025).

10. “Focusing the ASX Base Document,” Bob Jervis (X3J11.1/92-026).

11. “Issues concerning the use of C* as a base document,” Frank Farance
(X3J11.1/92-028).

o

10

15

20

25

30

35

40

45

50

Draft Version 1.4

14

X3J11/94-015
WG14/N329

12. “Distributing Data Using the ‘block’ Qualifier in C (revision 2),” Dave Becker,
Kent Zoya, Bill Homer (X3J11. 1/92-033).

13. “Elemental Execution,” Phil Hatcher (X3J1 1.1/92-041).
14. “Left Indexing versus Right Indexing,” Frank Farance (X3J11.1/92-044).
15. “ASX Ten Commandments,” Frank Farance (X3J11.1/92-045).

16. “A Critique of the Programming Language C*~ Walter F. Tichy, Michael
Phillipsen, and Phil Hatcher (X3J11.1/92-050). '

17. “Commentary on 'A Critique of the Programming Language C*',” Phil Hatcher
(X3J11.1/92-051).

18. “A Detailed Response to the C* Critique by Tichy, Phillipsen, and Hatcher,”
James Frankel (X3J11.1/92-053).

19. “The Pros and Cons of Current Shape in C"‘,"__' ymes L. Frankel (X3J11.1/92-054).

20. “A Proposed Worklist of Extensions s

.to C*,” James L. Frankel
(X3J11.1/92-055).

21. “Parallel Processing Model for Hig

1 Pr.oéramming Languages (3/92),”
Cherri Pancake (X3J11.1/92-056). : :

22. “MasPar's C Directions and d Alpern (X3J11.1/92-062).

23. “Parallel Control Flow AMavid Alpern (X3J11.1/92-073).
24. “Elemental Exe# fatcher (X3J11.1/92-076).

25. “HyperC, A C :ge. for Data Parallelism,” HyperParallel Technologies

(X3J11.1/92-081).
26. “FORALL Proposal for Base Document,” Gary Sabot (X3J11.1/93-008).
27. “A Parallel Extension to ANSI C,” Rob E. H. Kurver (X3J11.1/93-009).
28. “Nodal Functions: A Strawman,” Phil Hatcher (X3J11.1/93-011).

29. “Parallel Pointer Handles,” James L. Frankel (X3J11.1/93-013).

30. “Using Iterators to Express Parallel Operations in C (revision 4),” Dave Becker,
Kent Zoya, Bill Homer (X3J11.1/93-050).

ORGANIZATION OF THE DOCUMENT [ANSI §1.4]

This document is organized into sections that correspond to the relevant sections to
be modified within the Standard C document. Included with each extension is a brief
rationale or example for the extension.

o

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

1.5

1.6

WG14/N329

If rationale for an extension is included, it is distinguished by indentation and a
change of font such as this. _

The major sections of the document are:
1. Introduction

2. Environment

3. Language

4. Library

Each subsection of these major sections follows the structure of ANSI C (1] and ISO C
[2], and indicates which subsections are modified. Cross references are noted at the
beginning of each subsection, enclosed in square brackets—e.g., [ISO §7.1, ANSI §4.1].
The numbering of all subsections directly corresponds to the numbering within the
cited ANSI/ZISO standard. Subsections for which there is no corresponding ANSI or
ISO subsection are new [NEW]. Subsections of the standard which are not affected
are skipped, so the numbering of subsections withiz this proposal will not necessarily
be consecutive.

In each subsection of this document, the
existing text of that subsetion of the S
parts of specific definitions in existing su
modification is introduced by an itakigized
as: ;

Modify:

These headings are useg
the entire change i

s of the standard are modified, the
nderlined heading to that effect, such

g ks needed, and omitted where it is obvious that
the text (e.g., in Syntax definitions).

<<Editor's notes
editor has identified:
within an editorial no

ted by double angle brackets. This indicates where the
jfications or revisions that need to be completed. "TBS"
ndicates "to be supplied.">>

Change bars (1) are affixed in the right margin on each paragraph that has changed
since the previous version of this document.

BASE DOCUMENTS [ISO §2, ANSI §1.5]

This set of extensions represents the composition of multiple proposals from
participating representatives, as reflected in the list of references in §1.3. Early in
the deliberations, the committee elected to adopt the C* language reference manual
[4] as its base document, and with this as its foundation, derived the current set of
extensions by deleting some features of C* and adding new features.

DEFINITION OF TERMS [ISO §3, ANSI §1.6]

The following new terms are used throughout this document. Although it would be
more natural to define each term in the subsection where it is first introduced, it is
also convenient to have the new terms dealing specifically with the data parallel

m—— | Se————r— | S cmen——

&7

10

15

20

25

30 .

35

40

45

50

Draft Version 1.4 X3J11/94-015

WG14/N329

extensions collected in one place. Hence, the most widely used new terms are defined
here.

* active position — a position whose values participate in elemental execution.

o context — the active positions of a shape.

e element — the value or object at a position within a parallel operand, respectively;
or a member of an array.

e elemental execution — execution of a function or operation on elements within
corresponding active positions of parallel operands. '

An operation performed under a context is executed elementally. That is, it is
executed on each value or object at the positions designated as active for a given
context.

e layout — information specifying a distribution of a parallel object or parallel value
onto memory. .

Memory refers to the total composite memory ' mputing system.
e parallel indexing — selecting elements of
multiple elements may be selected.

¢ parallel object — a structured
where the structure is defined by a

dwary C object in that although it is composed

A parallel object is disti ray
i - guaranteed to be contiguously allocated.

of C objects, the colle

* parallel operand parallel object.

¢ parallel value =
where the structur

cturéd collection of one or more identically-typed values
ided by a shape.

* physical - a predefified variable of type shape which is of rank 1 and dimension
equal to the number of nodes in the execution environment.

¢ position — a point within the index space defined by the Cartesian product of the
dimensions of a shape.

A position of a shape denotes a point in all variables of a given shape.

¢ reduction — an operation that when applied to a parallel operand produces a single,
nonparallel value, such as the sum of all the elements of a parallel object.

* shape — a type whose values consist of the following components: rank, dimensions,
context, and layout. Shapes describe true multi-dimensional objects.

Objects and values of type shape are descriptors or templates for parallel objects or
parallel values. Variables may be declared to denote objects of type shape. See
§3.1.2.5 and §3.5.2.

St

10

15

20

25

30

35

40

45

50

Draft Version 1.4

1.7

1.8

2.
2.1

X3J11/94-015
WG14/N329

COMPLIANCE [ISO §4, ANSI §1.7]

In order to comply with this set of extensions, an implementation must provide for all
the extensions detailed in this document.

FUTURE DIRECTIONS [ANSI §1.8]

The set of extensions here is intended as the minimal set of extensions needed to
support data parallel programming. As this is a relatively new area of expertise, the
DPCE subcommittee chose not to propose extensions in those directions where more
experience is needed to evaluate alternate proposals.. As such experience is gained,
further data parallel extensions will be desirable to codify developing practice and
promote portablity of data parallel applications.

ENVIRONMENT (IS0 §5, ANSI §2]

CONCEPTUAL MODELS [ISO §5.1, ANSI §%]

f programming. This model

These extensions are based on a data paralleiim
he manipulation of parallel

pplying)
& programmer's model presents the
the program design, implementation,
debugging, and maintenance ta
independent, unsynchronized th
model, DPCE also offers tyw
utilize a multithreaded m

which allow the programmer to directly
nction and elemental function invocations.

s a large class of parallel computations while being
“ease of use is derived from its emphasis on a single
in serial programming. That is, this model is easier for
program design, debugging, and maintenance. The wide
Jart to the demonstrated ability of compilers to translate data
r efficient execution on a variety of both serial and parallel

The data parall
easy to learn ¢
thread of cont
users with respe
applicability is du
parallel programs :
hardware platforms.

Example

The following illustrates a comparison of programming style that one would use to
perform the same operations on a parallel object using DPCE as one would use in C
with arrays. Although the two code segments are not equivalent for the reasons
noted, both demonstrate the same effect.

<<Add further clarification that you can't express in C what you can express in DPCE
and why. Two column presentation might enhance the examples.>>

/* DPCE */
shape [100]Shape;
int:Shape x, y, z:

X =y + 2
X +=17;

57

10

15

20

25

30 -

35

40

45

50

Draft Version 1.4

X3J11/94-015
WG14/N329

/* ISO C */
typedef int Shape([100]:;
Shape x, y, z;

/* NOTE: The following is not truly equivalent to the DPCE
example above since the DPCE operations are not ordered as
the operations are ordered in the following loops. Further,
in DPCE, operations are performed under 'context' and the
granularity is at the operation level rather than at the
statement level. */

for (i = 0; i < 100; i++)
x[i] = y[i] + z[i);

for (1 = 0; i < 100; i++)
x[i]) += 17;

2.1.1 Translation environments [ISO §5.1.1, ANSI §2.1.1]

2.2

3.
3.1

lation environment, linking of
of translation for DPCE. >>

<<TBS: discuss impact of data parallel model on t;
DPCE compiled code with other C codes, new ph:

At program startup, the DPCE ex
denote a predefined variable of type
number of nodes <<need .
environment. The layout’
this assumes gang sch

, CONSIDERATIONS [ISO §5.2, ANSI §2.2]

<<TBS: discuss any extensions for <limits.h>.>>

LANGUAGE (150 §6, ANSI §3]
LEXICAL ELEMENTS [ISO §6.1, ANSI §3.1]

3.1.1 Keywords [ISO §6.1.1, ANSI §3.1.1]

The following keywords are added to the language only if the <dpce.h> header file is
included. In addition to these keywords, <dpce.h> defines the physical shape
identifier, and the functions described in §4 of this document.

Add the following new keywords:

30

10

15

20

25

30

35

40

45

50

Draft Version 1.4

X3J11/94-015
WG14/N329

block
elemental
everywhere
nodal

scale

shape
where

8.1.2.5 Types [ISO §6.1.2.5, ANSI §3.1.2.5]

Add shape type:
There is one shape type, designated as shape.

shape is an object type whose values consist of the following components: rank,
dimensions, context, and layout. We refer to a value of type shape simply as “a
shape.”

A shape type of unknown size, whose rank and dimensions are not known, is fully
unspecified. A shape type whose rank is kno ‘whose dimensions are not, is
partially specified. A shape type whose ran] ‘dimensions are known is fully
specified. These three categories of shape A > distinct subsets of the shape
type. Note: in a declaration of a shape, eij 1 of the dimensions must be
specified.

A void shape designator can be
return value types of a function p

Examples
shape #011y unspecified shape */
shape ‘partially specified shape */
shape i fully specified shape */
shape /* invalid */

:void arg); /* function that takes a parallel
int and returns a parallel int
of generic shape */

Modify deriged nclude paralle] tupes:

Any number of derived types can be constructed from the object, function, and
incomplete types, as follows:

int:void £ (3

e A parallel type describes a nonempty, structured collection of objects or values with
a particular member type, called the element type. The structure of the collection is
defined by an associated shape. Parallel types are characterized by their element
type and their shape. A parallel type is said to be derived from its element type and
its shape, and if its element type is T and its shape is S, the parallel type is
sometimes called a “a parallel T of shape S.” The construction of a parallel type from
an element type and a shape is called “parallel type derivation.”

10

15

20

25

30

35

40

45

50

X3J11/94-015

Draft Version 1.4 WG14/N329

_ e e

These methods of constructing derived types can be applied recursively, except:

o the element type of a parallel type shall not be a parallel type;
e a struct or union type shall not contain a member that has parallel type or a

member that is a shape;) ' _
e a parallel struct or union shall not contain a member that is a pointer.

Hence, you can have arrays of parallel types, functions returning parallel types or
having parallel typed arguments, pointers to parallel types, parallel types whose
elements are arrays or structs or unions or functions or pointers. But you can't have
parallel types whose elements are parallel types or contain parallel types.

Array, structure, and parallel types are collectively called aggregate types.

Modify pointer stor .

representation as a pointer to
) say something about whether
inter? The current standard
sfitation as a char*, and if we
this can be so. See §3.2.2.3.>>

A pointer to a parallel type need not have th
the corresponding nonparallel type. << Do w;,
or not a pointer to parallel can be cast to/fre
says that a void pointer shall have the
want to allow casts to/from void*, I wond

Forward references: shape specif

e A partially specified shape type is compatible with a fully specified shape type
if the partially shecified shape type has the same rank as the fully specified
shape type

* Two fully specified shape types are compatilbe only if they are the same type

Two shape types are the same type if they specify the same rank, dimension, and
layout. See §3.2.3 and §3.3.16.1.

<< We need to determine if the following definition of compatible parallel types is
useful. Currently, it is not used anywhere else in the document explicitly. We had
originally intended this to be used in determining when parallel operands were valid
for binary and ternary operations (see §3.2.3), but the connection between those two
has been lost in version 1.4 of this document.>>

Two parallel types are compatible if they are derived from compatible element types
unless they are derived from distinct shape variables.

10

15

20

25

30

35

40

45

50

55

Draft Version 1.4 X3J11/94-015

WG14/N329

Parallel types are determined to be compatible if they have compatible element types
and their shapes are denoted by the same shape identifier, or if one or both are
denoted by shape-valued expressions other than simple shape identifiers.

Examples

/* Compatible and incompatible shapes */
shape [10]S:

shape [10]T; /* Compatible with § */

shape []U; /* Compatible with S and T */

shape [][]V: /* Incompatible with S, T, and U */

shape [2][S]W; /* Incompatible with S, T, and U */

shape [][]1[)X; /* Incompatible with s, T, U, V, and W x/
shape Y; /* Compatible with §, T, U, V, W, and X */
/* Compatible types */

int:S

signed int:S /* Compatible with int:§ */

long:physical
long int:physical /* Compatjifife with long:physical */

/* Incompatible types */

int:S
float:S /* Inco int:S */
short:S e le with int:S */

two types that are compatible; it is a type
ypes and satisifies the following conditions:

fied shape and the other is fully specified, the
ve fully specified shape.

¢ If one type is
composite type is’

gpecified shape and the other is a partially specified shape,

e If one type is a fu ,
ntical to the partially specified shape.

the composite type is idé

e If one type is a partially specified shape and the other is fully specifed, the
composite type is identical to the fully specified shape.

<<I had a note to add layout to composite type. Only fully specified shapes can
specify layout, and we said that two fully specified shapes were compatible only if
they had the same layout. Do we want to amend that, and add a bullet for forming a
composite from two fully specified types where only one specifies layout? We need
some examples for this section.>>

To form a composite shape type, the shapes have to be compatible, and the
composite will aiways be the more completely specified shape.

<<I think we should add wording to form composite types from elemental functions
and non-elemental functions such that we can have <dpce.h> declare the functions to
become elemental under DPCE for <math.h>, <stdlib.h>, and <stringh>. The
wording should make the composite type be elemental regardless of the ordering of

43

10

15

20

25

30

35

40

45

50

_ X3J11/94-015
Draft Version 1.4 WG14/N329

header file inclusion. I think this will work better than trying to require modification
of each of these other standard header files for implementations supporting DPCE.>>

8.1.5 Operators [ISO §6.1.5, ANSI §3.1.5]
Add new operagtors:
<? <= >? >?= %%
3.2 CONVERSIONS [ISO §6.2, ANSI §3.2]
8.2.1.1 Characters and integers [ISO §6.2.1.1, ANSI §3.2.1.1]
\dd to the i ; b

A parallel char, a parallel short int, or a parallel int bit field, or their signed or
unsigned varieties, or a parallel enumeration type, may be used in an expression
wherever a parallel int or parallel unsigned int may be used. If a parallel int can
represent all values of the original type, the valugiis converted to a parallel int;
otherwise, it is converted to a parallel unsigne ; the promoted parallel value
will be of the same shape as the original expre

Add for parallel opergnds:

In general, arithmetic cgf
parallel value of the same
the result of perfornuifij
corresponding posi

formed on a parallel operand result in a
operand and whose value at each position is
arithmetic conversions on the value at the

The usual arith

: Aversions are applied elementally to parallel operands, and
the resultis an h

nous parallel operand.

Exceptions are noted for specific operators in the following sections.
3.2.3 Parallel Operands and Contextualization [NEW]

In general, in binary or ternary operations involving operands of parallel types, the
operands must all be of the same shape, and the behavior is undefined if the shapes
are not the same.

Two fully specified shapes are the same if they are compatible and if they have the
same context.

Two shapes are the same if they are structurally equivalent at run time. Since
shapes may be dynamically specified and/or modified, it may not be possible to
determine at compile time if two shapes will be the same at run time; the compiler
must check, however, that the two shapes are compatible.

10

49

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

3.3

WG14/N329

If one operand is parallel and one is nonparallel, the nonparallel operand is promoted
to a parallel value of the other operand's shape by replicating the nonparallel

operand's value.

If the operator is an assignment operator, this replication only agplies when the left
operand or destination is parallel and the right operand or source 1s nonparallel.

Other exceptions to these rules are noted for each operator in the sections that follow.

The context component of a shape is a specification of which positions of a parallel
operand of the shape are active for a given operation. The context component of a
shape is conceptually a parallel integral value of the shape <<maybe this should be
described as a multi-dimensional bit mask instead since a parallel int of this shape
also has context, which is what I'm trying to define!>>, where a position is indicated
as active by a non-zero in the corresponding context element, and as inactive by a
zero in the corresponding context element. The elements of the context of a given
shape are all non-zero when the shape is initialized, indicating that all positions are
active.

operation, including function
icipate in the operation. Active
‘do not.

The context of the shape associated with a p
calls, determines which positions of the oper.
positions participate in the operation, and

context-modifying statements and
ext. The where and everywhere
£ a shape (see §3.6.7). Expressions

The context of a given shape is alte
expressions which assign elements of th
statements modify the context céfipone
involving the &&, | |, and : ? operatd

Constraints

One of the following shall hold:

* One of the expressions shall have type “pointer to object type,” the other expression
sha]l have integral type, and the result has type “type”

e One of the expressions shall have type “pointer to parallel object of type type,” the
other expression shall have integral type, and the result has type “type”

e One of the expressions shall have type “pointer to T,” where T is of parallel type,
the other shall have parallel integral type of the same shape as T, and the result has
type parallel pointer to T.

Semantics

11

~
7B

10

15

20

25

30

35

40

45

50

55

Draft Version 1.4

3.3.2.2 Function calls [ISO §6.3.2.2, ANSI §3.3.

X3J11/94-015
WG14/N329

A postfix expression E1 followed by an expression E2 in square brackets [] is: (1) if
E2 is an integral expression, a subscripted designation of a memb.er of an array
object; or (2) if E1 is an array of parallel type T and E2 is of parallel integral type, a

parallel pointer.

<<Do we need to add more words about pointers to (arrays of) parallel objects here
(or in $3.3.2.4) about how these operators get the next member of an array of
parallel? Ithink we want to say that these operators work with arrays of parallgl
the same way they work with arrays of nonparallel, but I'm not sure where to put in
those words. Suggestions?>> j

Examples

shape [20] Shape:;
int:Shape x;
int:Shape y[50]:
int:Shape *z;

int i;

E;*/

ember of y, which is a
Shape */

mber of z */

22 */

z = &y[39); /* z is a subarray of
yli): /* Designates the i=t

parallel int o
z[i); /* Designates
yx]; /* Designates ,

Constraints

lepiental function shall have a type such that an

Each parallel argu a
-an object with the unqualified version of the type of

element value may

Each parallel argumént to a nodal function shall have a corresponding parameter
such that one of the following holds:

¢ the parameter type is a parallel type of the void shape, such that an element
value of the argument may be assigned to an object with the unqualified version
of the type of an element of the parameter; or

¢ the parameter type is a pointer of nonparallel type, such that an element value
of the argument may be assigned to an object with the unqualified version of the
type of the object pointed to by the parameter; or

¢ the parameter type is a nonparallel type, such that an element value of the
argument may be assigned to an object with the unqualified version of the type of
the parameter.

A nonparallel argument to a nodal function shall have a type such that it can be
promoted to the corresponding parallel type of shape physical.

12

56

10

15

20

25

30

35

40

45

50

55

Draft Version 1.4 X3J11/94-015

WG14/N329
An argument to a nodal function shall not be a pointer to a nonparallel type.

Semantics

Both shapes and parallel operands may be passed to and returned from functions.
Shape and parallel operand arguments are passed by value; creating the local copy of
these arguments to a function can be inefficient. The usual rules for function calls
with and without prototypes applies. ;

Parallel arguments and return values are evaluated under the context of the
expression in which the function call occurs. Parallel operands passed as arguments
behave as if assigned to the local copy, following the semantics of assignment under
context (see §3.3.16). Only active positions are assigned.

To allow access to all positions of a parallel object, use an everywhere statement
around the call, or pass a pointer to the object. ;

Exampies

shape [100]Shape:;
int:Shape a, b:

int active_positionsof , int: (*x) mask)

int : Shape x)
printf ("Sum of parallel argument is %d\n", +=x);
int:Shape increment (int:Shape x)
{
return x++;

}

/* examples of use */
print_sum(a);

b = increment (a):

printf ("Number of positive elements in a is %d\n",
active_positionsof (Shape, a>0)):

Add for elemental functions:

13

97

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

WG14/N329

A function whose return type is qualified with the elemental qualifier is called an
elemental function. The return type of the function must be so-qualified at both the
function definition and the function call; if not, the behavior is undefined. See also
§3.5.3,3.6.6.4, and 3.7.1.

<<It really isn't the return type that is qualified, it is the function behavior; hence we
need to consistently craft words for this for nodal and elemental functions in this
section and in §3.5.3.>>

An elemental function can be executed either elementally or non-elementally. If none
of the arguments are parallel operands, the function is executed non-elementally (i.e.,
as a normal C function). If one or more of the arguments are parallel operands, it is
executed elementally. All the parallel arguments must be: of the same shape; if not,
the behavior is undefined. Nonparallel arguments to a function being executed
elementally are promoted to parallel in the usual manner.

When an elemental function is executing elementally, a shape is established at run
time for the function. This shape is the shape of the parallel arguments. An instance
of the code contained in an elemental fucntion is executed for each active position of
the established shape. An elemental function,s indivisible with respect to
synchronization. That is, an elemental functiofi ¥#° treated as if it was a basic
operator (like addition). All instances of the fufictich execute as if in parallel, there
are no assumptions about the synchronizati termediate steps, and there is

executing elementally, the inner i -also executes as if it were a non-
elemental function.

When an elemental fun
executing elementally, t
execute the body of the:

tiat execute the inner function call continue to
m elementally.

An elemental fu ting elementally, which returns a non-void type, returns
\blished shape. When not executing elementally, an
eturns a non-void type returns a non-parallel value.

elemental function w
Examples

shape [10] Shape;
int:Shape x, y;

elemental int f£(int a, int b)
{

return (a+b) ;
}

elemental int g(int a)

{
return(f(a,a));
}

f(x,y); /* Returns parallel int of shape Shape with sum
of active positions of x and y. Inactive
positons are unspecified. */

14

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

WG14/N329

£(x,1); /* Returns parallel int of shape Shape with sum
of 1 and active positions of x; inactive
positions are unspecified. */

£(1,2); /* Returns int with sum of 1 and 2. */

g(x); /* Returns parallel int of shape Shape with
values equal to two times the values of x in
the active positions. Inactive positions are
unspecified. */

g(l); /* Returns two times 1. */

Add for nodal functions:

A function whose return type is qualified with the nodal qualifier is called a nodal
function. The return type of the function must be so-qualified at both the function
definition and the function call; if not, the behavior is undefined. See also §3.5.3,
3.6.6.4, and 3.7.1.

<<It really isn't the return type that is qualified, it is the function behavior; hence we
need to consistently craft words for this for nodal and elemental functions in this
section and in §3.5.3.>>

An invocation of a nodal function occurs as if t
node of the execution environment in Single
that is, as if a separate thread is spawned
Nodal functions therefore provide an esca
These threads, one per node, are only r:
upon return from the nodal functio

iction is invoked once on each
m, Multiple Data (SPMD) style;

gecution environment. That is, during the
p positionsof(physical) will return 1. The
execution environment 0 % re-established upon return from the nodal

function.

al function is first promoted to a parallel value of the
Then the argument is processed as if it was originally

A nonparallel ar
physical shape by ré
a parallel argument. *

For a parallel argument to a nodal function, a thread of the nodal function will
receive exactly those positions of the argument that are stored on the node executing
the thread.

For a parallel argument to a nodal function, if the corresponding parameter is of
parallel type, then for each thread executing the nodal function, a shape object will be
created whose rank, dimensions, context and layout are derived from the shape of the
argument in the following way:

* The rank of the shape of the parameter is equal to the rank of the shape of the
argument.

* The dimensions of the shape of the parameter are derived from the layout of
the shape of the argument. For each dimension the number of positions is equal
to the number of distinct parallel-index values in that dimension for the set of
elements of the argument mapped to the node executing the thread.

15

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015

WG14/N329

e The context of the shape of the parameter will be initialized from the context of
the shape of the argument: a position will be active in the parameter's shape if
its corresponding position in the argument's shape is active; otherwise the
position will be inactive.

¢ The layout of the shape of the parameter will reflect that the nodal funf:tion
executes in a single-node environment. All positions will be mapped to the single
node.

This shape will be returned when the shapeof function is applied to the parallel
parameter during execution of the nodal function. If there is more than one
argument of the same shape, all being passed to parameters of parallel type, then the
same shape <<object??>> will be returned by application of shapeof to any of these
parameters. The corresponding parameter will receive the values of its argument in
those positions stored on the node executing the thread. The correspondence of
positions in the shape of the argument and positions in the shape of the parameter is
implementation defined, but will be the same for all arguments of the same shape.

unction, an array object will
nent §ri' those positions stored on the
y will be allocated at the time of the
return from the nodal function. The
array object. The correspondence of
and elements in the passed array is
for all arguments of the same shape.

node executing the thread. Memory for th
call to the nodal function and will béfreed
corresponding parameter will recei :
positions in the shape of t}
implementation defined, buf

#function, if the corresponding parameter is of
ointer type, then the argument must be of the
of the nodal function will receive as the parameter
ment stored on the node executing the thread. If the
sical shape, then the behavior is undefined.

For a parallel argu
nonparallel type
physical shape
the single value o
argument is not of t

When the element type of a parallel argument to a nodal function is a pointer type,
the pointer value at each position is converted so that the corresponding elements of
each thread's parameter array receives a pointer to the object stored at the
corresponding position of the parallel object pointed to by the argument's pointer
value. <<Reworded because of other changes for pointer vs array parameters;
recheck for accuracy.>>

If no positions of a parallel argument to a nodal function are stored on the node
executing a thread of the nodal function, then the behavior is undefined.

Examples
nodal void f1l (int:void, int [], int *, int);
shape [100]S:;
int:S px;

int:physical py;
int i;

16

/ UV

10

15

20

25

30 -

35

40

45

50

Draft Version 1.4 X3J11/94-015
WG14/N329

int *ptr;
int:physical * :physical par_ptr_to_par;
int:S * :S par_ptr_to_par2;

nodal void f£2 (int:void * :void, int * [}, int. **);

f1(px, px, PxX, PY)’ .
/* valid <<but need to add annotation of what

parameters receive for the given arguments>> * /

£f1(py, PY, PY: PY):
/* valid <<complete annotation>> *x/

£1¢i, i, i, 1);
/* valid - nonparallel promoted to physical
shape first <<complete annotation>> */

f1(px, pPX, Ptr, PY);
/* invalid? can't promote pointer to nonparallel
to parallel pointer to scalar? If this promotion
is allowed, then we wiXl need to add a
constraint to disal passing pointers to
scalar here, becaug nters to nonparallel do

not make sense wi nodal function. */

f1 (px, px, par_ptr_to_pary)
is as invalid because the
\rameter pointer is nint', and
¥ the argument is "int *", or

8.3.2.3 Structure and union members [ISO §6.3.2.3, ANSI §3.3.2.3]
Semantics
Add: I

If the first operand of the . operator is of parallel type, the result is a parallel value of
the same type as the member designated by the second operand; the value at each
position of the result is the designated member at the corresponding position of the
first operand.

Examples

shape [10]Shape:
struct Struct { int i; float £; }:;
struct Struct:Shape s;

17
10/

10

15

20

25

30

35

40

45

50

55

Draft Version 1.4

X3J11/94-015
WG14/N329

struct Struct:Shape *p:;

s.i /* Denotes a parallel int value whose elements
are the corresponding int members of the
parallel struct s */

p->£f /* Denotes a parallel float value whose elements
are the corresponding float members of the
parallel struct pointed to by p */

8.3.2.4 Postfix increment and decrement operators [ISO §6.3.2.4, ANSI §3.3.2.4]

Constraints

Revi i

The operand of the postfix increment or decrement operator shall have qualified or
unqualified, parallel or nonparallel, scalar type and shall be a modifiable lvalue.

Semantics

4add:

If the operand of the postfix increment A
decrémented, respectively.

to parallel objects here (or back in

§3.3.2.1) about how these operator:
see I've included an exampl
say that these operators
arrays of nonparallel, bu

A here to explain them. Ithink we want to
ays of parallel the same way they work with
vhere to put in those words. Suggestions?>>

Examples

shape [10
int:Shape
int:Shape y 1;

int:Shape *p = y; /* p points to first element of y, y[0] */

x++; /* Increments each element of x */

pt++: /* Increments p to point to the next array
element of y (y[l]), which happens to be a
parallel int. */

3.3.3 Unary Operators [ISO §6.3.3, ANSI §3.3.3)

Revi indi I
Syntax

unary-expression:
Dostfix-expression
++ unary-expression
-— unary-expression
unary-operator cast-expression

18

/0%

10

15

20

25

30

35

40

45

50

Draft Version 1.4 X3J11/94-015
WG14/N329

sizeof unary-expression

sizeof (type-name)

parallel-index postfix-expression |
reduction-operator postfix-expression

parallel-index:
[expression] parallel-index
[expression]

reduction-operator: one of
+= - = /=
&= = |=
<?= >?=
3.8.3.1 Prefix increment and decrement operators [1SO §6.3.3.1, AN SI §3.3.3.1]
Constraints

The operand of the prefix increment or decr
unqualified, parallel or nonparallel, scalar

Semantics
Add:

If the operand of the prefix incremet
position of th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>