
Proposal for C2y

WG14 N3259

Title: Support ++ and -- on complex values

Author, affiliation: Aaron Ballman, Intel

Date: 2024-05-07

Proposal category: New features

Target audience: Developers

Abstract: Proposed relaxing a constraint requiring real types for the ++ and -- operators to instead require

an arithmetic type.

Prior art: Clang, GCC, ICC, IBM XL

Support ++ and -- on complex values
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N3259

Date: 2024-05-07

Summary of Changes
N3259

• Original proposal

Introduction and Rationale
Complex types have been supported in C since C99 and support the full range of expected mathematical

operations, including addition, subtraction, multiplication, et al. However, there is one notable exception

to this support: increment and decrement operators require their operand to be a real or pointer type,

which excludes complex types.

Given that ++E is defined to be equivalent to (E += 1), which is supported for complex types (and

similar for --E), it stands to reason that it is safe to increment or decrement a complex value directly.

This functionality is supported as an extension in every C compiler supporting complex types on

Compiler Explorer: Clang, GCC, ICC, and CL430. The IBM XL compilers all (including for non-IEEE

formats) support increment and decrement as well. Other compilers that were available were tested, but

do not support complex types.

There is one minor difference between postfix operators and the compound assignment operators in that

the previous value needs to be held somewhere for a postfix operator. However, all implementations

supporting this extension get the semantics correct based on empirical testing, so this is not expected to be

a significant impediment for an implementation intending to support complex types.

Proposal
This paper proposes allowing a complex type as the operand to the increment and decrement operators.

C23 C2y
#include <complex.h>

void func() {

 complex float f = 1.0f;

 ++f; // constraint violation

 --f; // constraint violation

 f++; // constraint violation

 f--; // constraint violation

}

#include <complex.h>

void func() {

 complex float f = 1.0f;

 ++f; // Okay

 assert(creal(f) == 2.0f);

 --f; // Okay

 assert(creal(f) == 1.0f);

 f++; // Okay

 assert(creal(f) == 2.0f);

 f--; // Okay

 assert(creal(f) == 1.0f);

}

Proposed Wording
The wording proposed is a diff from WG14 N3220. Green text is new text, while red text is deleted text.

Modify 6.5.3.5p1:

The operand of the postfix increment or decrement operator shall have atomic, qualified, or unqualified

realarithmetic or pointer type, and shall be a modifiable lvalue.

Modify 6.5.4.1p1:

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unqualified

realarithmetic or pointer type, and shall be a modifiable lvalue.

Acknowledgements
I would like to recognize the following people for their help in this work: Rajan Bhakta and Jens Gustedt

