
The C Standard charter
WG14 N3255
2024-05-06

Abstract
Guiding document with overview of the C Committee’s mission and expectations

Authors:
● Robert C. Seacord; Woven by Toyota; United States; rcseacord@gmail.com
● Jakub Łukasiewicz; Motorola Solutions; Poland; me@jorenar.com
● Christopher Bazley; ARM; United Kingdom; chris.bazley@arm.com
● Jens Gustedt; INRIA and ICube; France; jens.gustedt@inria.fr
● Martin Uecker; Graz University of Technology; Austria; uecker@tugraz.at
● Rajan Bhakta; IBM; USA, Canada; rbhakta@us.ibm.com
● Miguel Ojeda; Spain; ojeda@ojeda.dev
● Carlos Andrés Ramírez; Woven by Toyota; Japan; carlos.ramirez@carlos.engineer
● Ori Bernstein; Canada; ori@orib.dev
● Rashmi Jadhav; Woven by Toyota; United States; rjrashmijadhav3@gmail.com

Prior art:
● [N444] C - The C9X Charter
● [N1250] C - The C1X Charter
● [N2611] Programming Language C - C23 Charter
● [N2986] Interpreting the C23 Charter

Changelog
● N3255 (2024-05-06)

○ grammar, punctuation, style, and rewording for clarity
○ principle about “internationalization”

● N3223 (2024-02-23)
○ initial version

1

mailto:rcseacord@gmail.com
mailto:me@jorenar.com
mailto:chris.bazley@arm.com
mailto:jens.gustedt@inria.fr
mailto:uecker@tugraz.at
mailto:rbhakta@us.ibm.com
mailto:ojeda@ojeda.dev
mailto:carlos.ramirez@carlos.engineer
mailto:ori@orib.dev
mailto:rjrashmijadhav3@gmail.com
https://www.open-std.org/jtc1/sc22/wg14/www/docs/historic/n444.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1250.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2611.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2986.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3255.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3223.pdf


Introduction
The working group ISO/IEC JTC1/SC22/WG14, commonly known as the C Committee, is the
steward of the C programming language, first described in 1978 by Kernighan & Ritchie in book
The C Programming Language, and now by revisions of ISO/IEC 9899 standard and other
technical specifications. The Committee is part of a broader community responsible for the
maintenance and evolution of the C language; narrowly, it is responsible for the normative
aspects of the C programming language and its interplay with other standards’ bodies.

C is a general-purpose high-level programming language suitable for low-level programming,
in other words: system programming language. Although its development began on the Unix
operating system for the PDP-11 computer, it has since been implemented for practically all
devices and systems in the world. It is of fundamental importance for many aspects of
computing and data processing. C serves as a lingua franca to translate between various
systems and languages. C is often used as a target language for compilers, as an
implementation language for interpreters, for building operating systems, for embedded
programming, for teaching fundamentals of computing, and for general purpose programming.
It stands out in terms of portability, interoperability, efficiency, and stability.

The work of the Committee is, in large part, a balancing act. The Committee tries to improve
portability while retaining the definition of certain features of C as machine-dependent,
attempts to incorporate valuable new ideas without disrupting the basic structure and nature of
the language and tries to develop a clear and consistent language without invalidating existing
programs. All of the goals are important and each decision weighed in the light of sometimes
contradictory requirements in an attempt to reach a workable compromise. The C Committee is
also in active liaison with C++ committee. While unnecessary incompatibilities between the two
languages are to be avoided and some features of C++ may be embraced, the Committee is
content to let C++ be the big, ambitious language, while maintaining C’s simplicity.

Areas to which the Committee shall look when revising C include:
● Technical Corrigenda and Records of Response;
● Technical Specifications developed by WG14;
● future directions in the current Standard;
● features currently labeled obsolescent or deprecated;
● requirements resulting from JTC1/SC2 (character sets);
● the evolution of safety-critical software development;
● all known software security issues (programming language vulnerabilities);
● the evolution of C++ and other C based programming languages;
● the evolution of other programming languages;
● the evolution of C implementations, including compilers, libraries and operating systems;
● other papers and proposals from members;
● cross-language standards groups' work;
● other comments from the public at large;
● subsetting the Standard;
● other prior art.

2



Principles
In specifying a standard language, the Committee uses several guiding principles. There are
many facets of the traditional spirit of C, but the essence is a community sentiment of these
underlying principles upon which the C language is based. The principles serve also an
important purpose in preventing falling into the design by committee pitfall. That being said,
judgment over technical proposals relies solely on Committee members’ expertise, therefore
submitters are encouraged to keep these principles in mind when making submissions. While
there is a tradeoff between the principles and none of them is absolute, the more a proposal
deviates, the more rationale is needed to explain the deviation.

The following is a list of principles upon which the Committee revises the Standard:

● Uphold the character of the language
● Keep the language small and simple
● Facilitate portability
● Avoid ambiguities
● Pay attention to performance
● Allow programming freedom
● Codify existing practice to address evident deficiencies
● Do not prefer any implementation over others
● Do not leave features in an underdeveloped state
● Ease migration to newer language editions
● Avoid quiet changes
● Enable safe programming
● Enable functional safety
● Ease library independence
● Facilitate interoperability
● Follow international standards

3



Uphold the character of the language
C programmers attribute considerable value to its syntax and semantics. New features should
integrate seamlessly with the existing language. Attention should be paid to the ideas behind
design principles, common idioms and habits, and the effect new features might have on the
language’s economy of expression.

Keep the language small and simple
Features, and the concepts behind them, should be easy to explain in a clear and concise
manner. Language issues should be resolved using minimal new machinery. Ideally, only one
way of doing something should be sufficient. Avoid additions with narrow use-cases that
require specialized expertise from implementers, when such features could be provided
externally. Simplicity enables both programmers and tools to reason about code, allows for
diverse implementations, keeps compilation times short, and helps to achieve other principles.

Facilitate portability
C has been implemented on a wide variety of computers and operating systems, including
cross-compilation of code for embedded systems. The language itself, together with the
standard library, should be as widely implementable as possible, while meeting its core
objectives. The size and complexity of the language and library should not place an undue
burden on constrained hardware.

Avoid ambiguities
Undefined behaviors, unspecified behaviors, implementation-defined behaviors, and other
portability issues enumerated in Annex J of the Standard should be eliminated or reduced.
These issues might lead to application vulnerabilities.

Pay attention to performance
The potential for efficient code generation is one of the most important strengths of C. To help
ensure that no code explosion occurs for what appears to be a very simple operation, many
operations are defined to be how the target implementation does it rather than by a general
abstract rule.

Allow programming freedom
It is essential to let the programmer take control, as not every task can be accomplished within
a sound set of bounds. C should offer flexibility to do what needs to be done. Code can be
non-portable to allow such situations as direct interaction with the hardware, using features
unique to an implementation, or specific optimizations. Bypassing safety checks should be
possible when necessity arises. However, the need for such divergences should be minimized.

4



Codify existing practice to address evident deficiencies
Prior art may come from other languages, although C implementations are naturally more
compelling. Unless a new feature addresses a significant deficiency, no new inventions should
be entertained. Avoid standardizing workarounds instead of long-term solutions.

Do not prefer any implementation over others
C is a language with a wide variety of individual dialects. No single implementation is the
exemplar by which C is defined; it is assumed that all existing implementations must change
somewhat to conform to the Standard. However, it should be possible for existing
implementations to gradually migrate to future conformance.

Do not leave features in an underdeveloped state
Incremental change towards a full solution is a common approach to introducing new features.
However, care should be taken that features are not left in a state which could reduce their
overall usefulness, hindering adoption and further development.

Ease migration to newer language editions
Developers should be able to mix and match code from different language editions. The bulk of
existing codebases should be largely accepted by a translator conforming to a newer language
revisions, and the programmer's burden to change code just to have it accepted by a conforming
translator must be limited.

Avoid quiet changes
Changes that alter the meaning of existing code cause problems. Breaking changes that require
diagnostic messages are easily detected. Avoid silent changes that cause a working program to
behave differently without requiring a diagnostic message. Where this principle is violated,
informative notes should be added to the Standard.

Enable safe programming
The language should take into account that programmers need the ability to check their work.
While not guaranteeing program correctness, properties such as portability, unambiguity,
memory safety, type safety, thread safety, etc. are prerequisite to reasoning about security and
reliability. Software interfaces should be analyzable and verifiable. The language should allow
programmers to write concise, understandable, and readable code.

Enable functional safety
C is frequently used in the development of safety-critical systems. Functional safety is the
systematic process used to analyze that a fault does not prevent a program from performing its
required function. An analyzable subset of the language is used to create a safety argument;
this subset should be enlarged. Unbounded undefined behaviors (that represent a single point
of failure) should be eliminated.

5



Ease library independence
Fundamental language features should be operational without the standard library and library
functionalities should be implementable without relying on compiler extensions. Supplying the
library, or its parts, independently from the compiler vendor, may serve needs such as safety,
efficiency, decreased size, or compatibility with multiple compilers on diverse architectures. The
burden and difficulty of matching implementation details for such use-cases should be minimal.

Facilitate interoperability
C serves an important role as the lingua franca of the programming world. It is a primary target
for foreign function interfaces and other languages often expose bindings for C interactions.
Such communicative design allows C to exist as a part of larger systems, often providing the
means for improving performance, being a gateway to the underlying platform, or translating
between components written in different languages.

Follow international standards
Software written in C is used worldwide. Beside information technology standards, related
international and industry norms for processing natural language, date and time, units,
numerical formats and so forth should be taken into account. C should provide facilities for
handling both human and machine input and output, often given in various scripts and tongues.

6


