
Proposal for C2Y

WG14 N 3254
Title: Accessing byte arrays, v4

Author, affiliation: Robert C. Seacord, Woven by Toyota, United States
rcseacord@gmail.com

Martin Uecker, Graz University of Technology, Austria
uecker@tugraz.at

Jens Gustedt, INRIA and ICube, France
jens.gustedt@inria.fr

Philipp Klaus Krause
philipp@informatik.uni-frankfurt.de

Date: 2024-04-01

Proposal category: Feature

Target audience: Implementers

Abstract: Allowing arrays of non-atomic character type (coined byte arrays) to be
accessed as other object types.

Prior art: C23

mailto:rcseacord@gmail.com
mailto:uecker@tugraz.at
mailto:jens.gustedt@inria.fr
mailto:philipp@informatik.uni-frankfurt.de


Accessing byte arrays, v4
Reply-to: Robert C. Seacord (rcseacord@gmail.com)

Document No: N 3254

Reference Document: N 3220

Date: 2024-04-01

Proposal to allow arrays of non-atomic character type (coined byte arrays) to be accessed as other
object types.

Change Log
2023-12-07:

● Initial version

2024-02-20:

● Removed second, alternative wording
● Rebased wording to the N3220 working draft
● Some wording improvement

2024-04-01:

● Add support for byte arrays contained in struct.
● Do not imply exceptions for atomic character types.

2024-05-06:

● Modified note to only reference normative content

Table of Contents
Proposal for C2Y 1
WG14 N 3230 1

Change Log 2
Table of Contents 2

1 Problem Description 3
2 Identified difficulty 5

3 Proposed Text 5
4 Acknowledgements 7



1 Problem Description
C11 introduced a simple, forward-compatible mechanism for specifying alignments. The following code
snippet uses the alignment specifier to ensure that good_buff is properly aligned.

struct S {

int i; double d; char c;

};

int main(void) {

alignas(struct S) unsigned char good_buff[sizeof(struct S)];

struct S *good_s_ptr = (struct S *)good_buff;

*good_s_ptr = (struct S){ .d = 43.1 };

}

This example has undefined behavior from the underlying object good_buff being declared as an
array of objects of type unsigned char and being accessed through an lvalue of type struct S.
The cast to (struct S *), like any pointer cast, doesn’t change the underlying effective type (6.5,
paragraph 6) of the storage.

The following example builds cleanly at high warning levels and returns the correct answer on all
evaluated implementations (about a dozen):

struct S {

int i; double d; char c;

};

int main(void) {

alignas(struct S) unsigned char good_buff[sizeof(struct S)];

struct S *good_s_ptr = (struct S *)good_buff;

good_s_ptr->i = 100;

good_s_ptr->d = 12.7;

good_s_ptr->c = 'a';

return good_s_ptr->d;

}

Godbolt: https://godbolt.org/z/aGeKc68E3

Byte arrays in structures

https://godbolt.org/z/aGeKc68E3


In the following example, there is also the issue that the object with effective type struct B is
accessed as part of an assignment with effective type struct X.

struct B { float x; float y; };

struct X { int n; char buf[8]; } x, y;

void foo(struct B *b)

{

memcpy(x.buf, b, sizeof (struct B));

y = x;

}

Unfortunately, for byte arrays in a structure, existing aliasing behavior on some compilers does not
allow changing the effective type. In GCC - in contrast to C++ and Clang, we have:

https://godbolt.org/z/TG6r4q8eq

The effective type rules defined in 6.5 Expressions, paragraph 7 allows an object to have its stored
value accessed only by an lvalue expression that has a character type. This proposal effectively allows
the inverse operation of allowing an array of a character type to be accessed by an lvalue expression
of any type. Additionally, the existing text cites “character type” where atomic character types were not
meant to be included; so the new text moves the item up and changes to “byte type”, instead.

It’s established practice to use areas of character type for low-level storage management. This paper
proposes a way to make such code conforming. This makes accessing correctly aligned and sized
arrays declared with a non-atomic character type using lvalues of different types well-defined.
Currently, these accesses have undefined behavior, but we have been unable to identify compilers
which exploit this UB for aliasing analysis. This asymmetric rule does not fit internal models used by
compilers for type-based aliasing analysis, which would decide whether two accesses can alias by
considering the types of the two lvalues used for the access. This behavior is unlikely to change
because doing so would likely break existing code.

This proposal was reviewed by the committee at the Strasbourg meeting in Jan 2024, with strong
consensus to proceed.

https://godbolt.org/z/TG6r4q8eq


2 Identified difficulty
During the Strasbourg meeting, and later in N3324, objections were raised about certain processors
common in small embedded systems that have limited capabilities to implement atomic types. In
particular, the storage is not uniform, and some storage does not have the capacity to hold objects with
lock-free type. Therefore, such storage could not be the target of a simple transfer of the effective type
of atomic_flag via memcpy, for example. This is already a problem today, since the transfer of an
atomic_flag into allocated storage could be impossible, depending on which memory allocated
storage resides in. This paper would add another case where these architectures would have
problems with atomic_flag.

As of today, the Small Device C Compiler (SDCC), supports multiple such architectures, but only
supports atomic_flag on one of them, MCS-51 (the type of memory used for allocated storage can be
configured by the user at link time).

N3324 proposes a possible solution to this problem: making support for changing the type to
atomic_flag optional, while still allowing changes to all other types.

3 Proposed Text
Text in green is added to the N3220 working draft. Text in red that has been struck through is removed
from the N3220 working draft.

Add the following definition after 3.5, paragraph 2:

byte array
object having either no declared type or an array of objects declared with a byte type

byte type
non-atomic character type

Modify 6.5,paragraph 6:

The effective type of an object that is not a byte array, for an access to its stored value, is the
declared type of the object, if any.97) If a value is stored into a byte array an object having no
declared type through an lvalue having a type that is not a non-atomic character byte type, then
the type of the lvalue becomes the effective type of the object for that access and for
subsequent accesses that do not modify the stored value. If a value is copied into an object
having no declared type a byte array using memcpy or memmove, or is copied as an array of
character byte type, then the effective type of the modified object for that access and for
subsequent accesses that do not modify the value is the effective type of the object from which
the value is copied, if it has one. For all other accesses to an object having no declared type or
a byte array, the effective type of the object is simply the type of the lvalue used for the access.
XX)



Note that following a byte-level copy operation, an object of atomic type (7.17.27) has an
indeterminate representation and a copy of a FILE (7.23.3) object is not required to serve in
place of the original.

xx) The object needs to have valid alignment and size for the effective type to be accessed and
the type of the lvalue needs to have at least the qualifications of the declared type of the object,
if any.

Modify 7.17.2.1 p2, The atomic_init generic function

The atomic_init generic function initializes the atomic object pointed to by obj to the value
value, while also initializing any additional state that the implementation might need to carry for
the atomic object. If the object has no declared type is a byte array, after the call the effective
type is the atomic type A.

To properly support byte arrays contained in structures or unions modify 6.5.1 p7 by moving "a
character type" in the list in paragraph 7 one item up so that it is included in the "aforementioned
types" in:

7 An object shall have its stored value accessed only by an lvalue expression that has one of
the following types:85)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

— the signed or unsigned type compatible with the underlying type of the effective type of the
object,

— the signed or unsigned type compatible with a qualified version of the underlying type of the
effective type of the object

— a byte type, or

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.



4 Acknowledgements
We would like to recognize the following people for their help with this work: Aaron Ballman, Hana
Dusíková, Javier Múgica, Carlos Andrés Ramírez Cataño, Joseph Myers, and Owen Davis.


