
Proposal for C2y

WG14 N3250

Title: strb_t: A standard string buffer type

Author, affiliation: Christopher Bazley, Arm. (WG14 member in individual capacity – GPU expert.)

Date: 2024-05-06

Proposal category: Feature

Target audience: General Developers, Library Developers

Abstract: This paper critiques the standard C library functions, assesses prior art from elsewhere,

then proposes a new type and functions to manage strings. Its goal is to eliminate a source of many

common programmer errors. The new interface is designed to be as familiar and ergonomic as

possible.

Prior art: POSIX, GNU/BSD, Linux kernel, GLib, Arm Mali GPU driver, CBUtilLib.

strb_t: A standard string buffer type
Reply-to: Christopher Bazley (chris.bazley@arm.com)

Document No: N3250

Date: 2024-05-06

Summary of Changes
N3250

• Initial proposal

Rationale
Strings are a fundamental part of every modern programming language and ecosystem. A lack of

standardization in this area has harmed the security and interoperability of code written in C. This

must be addressed to ensure the future viability of the language.

The language itself provides no operations to deal directly with strings at run time. For example, all

three references to “string concatenation” in the index of ‘The C Programming Language’ (K&R,

1988) concern string literals. This lack of built-in operations is defensible only if standard functions

fill in the missing functionality adequately.

Conforming hosted implementations of C must provide most of the standard string functions

specified in the headers <string.h> and <stdio.h>.

Unfortunately, those functions are often misused:

• strcpy, strcat and sprintf can overrun the destination array and provide no mechanism

for callers to detect when that is liable to happen.

• strncpy does not guarantee termination of its output string by a null character.

• snprintf is sometimes recommended as an alternative but it relies on the passed-in size

being calculated correctly, and its return value is often ignored or misapplied.

Although C23 adopted strdup and strndup from POSIX, other functions that would be useful for

dealing with strings of unbounded maximum size are absent.

No function is provided to:

• allocate storage for a string generated under control of a format string, as a single operation.

• allocate storage for a copy of one string concatenated with another, as a single operation.

• insert characters into a string, reallocating storage as necessary.

The task of creating safe and powerful string-handling functions has instead been left to users of the

language. In contrast, the standard I/O functions provide a relatively high-level abstraction that is

fully featured and easy to use correctly (e.g., it’s impossible to read or write outside a stream’s

buffer).

Although static analysis tools can find some buffer overflows caused by misuse of standard string

functions, such tools do nothing to repair the reputation or usability of the language.

Incorporating safe string functions into the standard would:

• Standardize existing best practice.

• Reduce the level of experience needed to write correct programs.

• Provide a better precedent to follow when users design their own interfaces.

• Make it easier to write interoperable user-designed libraries.

Incorporating safe string functions into the standard would not:

• Need to satisfy all conceivable use-cases optimally.

• Invalidate existing or future user-designed libraries.

• Replace all usage of naked character arrays and pointers.

• Limit choice concerning string allocation and representation.

• Necessitate deprecation or removal of existing standard functions.

String representation
The C standard defines a string as

a contiguous sequence of characters terminated by and including the first null

character

and this definition is implicit in the language’s treatment of string literals.

Consequently, operations requiring the length of a string have O(n) complexity.

Another drawback is that there is no efficient standard mechanism for representing substrings

(‘slices’ in some other languages): either a substring must be copied into newly allocated storage to

append a null character, or the original string must be modified (as if by strtok) to replace one of its

characters with null. Similarly, one whole string cannot be prepended to another without its

terminator overwriting the first character of the following string.

This paper does not propose any change to that representation, but higher-level abstractions give

scope for implementations to differentiate themselves by choosing different trade-offs (for example

by storing the length of a string as well as its address). The proposed interface will make it easier for

implementers to tailor string handling to specific use-cases or platforms.

Pointer notation
A type qualifier named _Optional has been used throughout this paper to clarify declarations and

example code. This qualifier was proposed by N3089 [31], which was reviewed by the committee at

the Strasbourg meeting in January 2024 with strong consensus to proceed. It can be ignored (for

example by defining it as an empty macro) without substantially changing the meaning of the code.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3089.pdf

Bounds checking is not the solution
A common approach to guarding against buffer overflows is to require callers to pass an extra

parameter specifying the destination array size, when calling a function that writes to an array.

Examples include the snprintf function, as well as the strcpy_s and strcat_s functions specified

in Annex K of the C standard.

Extra parameters add complexity, as do extra checks on return values. Ironically, such additional

complexity may reduce the likelihood of programs being correct. N1969 contains an analysis of flaws

in the design and usage of the Annex K functions [29].

If the address and size of a character array are managed separately, it is too easy for callers to

accidentally pass the wrong size. This is particularly problematic for strings because of widespread

confusion between the size of a string (in bytes, including terminator) and its length (in characters,

excluding terminator).

If simplistic tools are used to enforce adherence to secure coding standards by banning ‘unsafe’

functions in favour of ‘safe’ alternatives, then users may be tempted to subvert such tools by passing

a dummy array size (either the maximum value or an arbitrary value believed to be sufficient):

size = strnlen_s(name, (size_t)-1) + 1;

The temptation to write code like this is greatest where the true array size is not readily available,

hard to compute correctly, or believed to be sufficient because of checks elsewhere.

In the above example, the readability of some code has been damaged by replacing a call to strlen

but robustness has not improved. Implementing such changes has a significant cost for organizations

maintaining large codebases and may be a source of new programmer errors.

In my view, requiring the caller of string-handling functions to pass the available buffer size implicitly

encourages use of character arrays whose length is determined at compile time. In some cases, such

as when converting a number to a string, this may be appropriate. In many others, such as when

concatenating strings of unknown maximum length, it is not.

Modern systems typically handle longer strings than those of the past. In 1983, the maximum

filename length in Acorn’s Disc Filing System was seven characters, optionally nested within a one-

character directory name [1]. By 1985 this had increased to ten characters per file or directory name

[2], with arbitrary nesting. By 1999, each individual file or directory name could be up to 255

characters [3].

An existing macro, FILENAME_MAX,

expands to an integer constant expression that is the size needed for an array of

char large enough to hold the longest file name string that the implementation

guarantees can be opened or, if the implementation imposes no practical limit on

the length of file name strings, the recommended size of an array intended to

hold a file name string;

(7.23.1 of ISO/IEC 9899:2023, Programming languages — C)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
http://chrisacorns.computinghistory.org.uk/docs/Acorn/Manuals/Acorn_DiscSystemUGI2.pdf
https://chrisacorns.computinghistory.org.uk/docs/Acorn/Manuals/Acorn_ADFSUG.pdf
https://www.marutan.net/wikiref/Acorn%20Registered%20Developer%20REFERNC/RO4/API/HTML/FILECORE.HTM

When recompiling old software, it is tempting to increase the length of character arrays to some

larger (but equally arbitrary) size. Storage is then wasted to allow for the presumed worst-case

scenario. If FILENAME_MAX has been used to specify array sizes, such changes occur automatically.

Given that strings are commonly allocated on the stack and C provides no mechanism to predict or

recover from stack overflow, this makes programs fragile.

Passing the size of an array known to be of sufficient size (e.g., because it was dynamically allocated)

also incurs runtime costs. Conscientious programmers may feel obliged (or may be required by rules)

to add checks on the return value even in such cases:

#include <stdio.h>

#include <stdlib.h>

#define PATH_SEP '/'

_Optional char *get_full_path(char const *dir, char const *filename)

{

 int n = snprintf(NULL, 0, "%s%c%s", dir, PATH_SEP, filename);

 if (n < 0) {

 return NULL; // handle error

 }

 _Optional char *path = malloc(n + 1);

 if (path == NULL) {

 return NULL; // handle error

 }

 n = snprintf(path, n + 1, "%s%c%s", dir, PATH_SEP, filename);

 if (n < 0 || (unsigned)n >= n + 1) {

 return NULL; // handle error (impossible?)

 }

 return path;

}

Erroneously using sizeof path instead of n + 1 in either of two places in the above example would

yield sizeof(char *) instead of the intended value. The size of the allocated array would be

misrepresented, the buffer overflow check would be broken, or both. This mistake is particularly

easy to make if adapting code that previously used an array declaration.

It would be less error-prone to use sprintf in place of the second call to snprintf. This illustrates

why lists of ‘banned’ functions are a blunt instrument: correctness usually depends on usage and

context.

Bounds checks and returned error indications are useless unless the calling code is correct.

Inappropriate use of bounds-checked functions can make code worse.

Truncation can be worse than overflow
Many programs seem to be written based on the tacit assumption that string truncation is a safe

alternative to buffer overrun. However, truncating a string and continuing to execute a program may

cause deferred effects at least as bad as, or worse than, allowing immediate illegal writes.

Unintentional truncation results in a loss of data and in some cases leads to

software vulnerabilities.

(SEI CERT C Coding Standard [4])

The strncpy function does not terminate its output with a null character if truncation occurs. This

makes the destination array unsafe for further use as a null-terminated string. Instead, it pads the

destination array with null characters:

If the array pointed to by s2 is a string that is shorter than n characters, null

characters are appended to the copy in the array pointed to by s1, until n

characters in all have been written.

(7.26.2.5 of ISO/IEC 9899:2023, Programming languages — C)

In my experience, this behaviour is rarely what was intended by the programmer. However, strncpy

does have at least one legitimate use: its behaviour precisely matches the format of a RISC OS sprite

[5]. This illustrates again why ‘banned’ lists are a blunt instrument.

The behaviour of snprintf when passed an array of insufficient size differs from strncpy in that it

ensures the result is null terminated:

Otherwise, output characters beyond the n-1st are discarded rather than being

written to the array, and a null character is written at the end of the characters

actually written into the array.

(7.23.6.5 of ISO/IEC 9899:2023, Programming languages — C)

snprintf is more widely supported than sprintf_s and has long been promoted as a ‘safe’

alternative to sprintf. This substitution is typically less harmful than blindly replacing calls to

strcpy with strncpy but can still be problematic.

For example, the following function can unexpectedly delete the wrong file (but only in unusual

circumstances which are unlikely to be covered by testing):

#include <stdio.h>

#define PATH_SEP '/'

void del_file(char const *dir, char const *filename)

{

 char path[100];

 snprintf(path, sizeof path, "%s%c%s", dir, PATH_SEP, filename);

 remove(path);

}

A function such as snprintf can be called to generate a truncated string, determine the buffer size

required for the full result, or both. Programmers may become confused about whether the

returned length is the number of characters generated or written.

https://wiki.sei.cmu.edu/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string
http://www.riscos.com/support/developers/prm/sprites.html#22649

Anecdotally, my experience is that even senior engineers are sometimes mistaken about whether

snprintf guarantees to write a null character at the end of its output (if the passed size is non-zero),

and whether its size argument and return value allow room for a null character (one does; the other

doesn’t).

The following rewrite appears to have solved the truncation issue, but in fact it always truncates the

file path to be deleted:

#include <stdio.h>

#define PATH_SEP '/'

void del_file(char const *dir, char const *filename)

{

 int n = snprintf(NULL, 0, "%s%c%s", dir, PATH_SEP, filename);

 char path[n];

 snprintf(path, n, "%s%c%s", dir, PATH_SEP, filename);

 remove(path);

}

The bounds-checked functions defined in Annex K instead write an empty string to the destination

array when a run time constraint violation is detected (including when the array is too small). This

can still cause loss of data if not handled carefully (most obviously, the string itself).

In summary, different standard string functions exhibit one of three truncation behaviours:

• No null character is written into the array.

• A null character is written into the last element of the array.

• A null character is written into the first element of the array.

We cannot hope to solve the complexities of string handling by education alone. In any case,

truncation is rarely correct even when it is supposedly ‘safe’.

Effect of bad precedents
It is unfortunate that string handling has been ill-served by the standard library because it plays an

important role in establishing norms for user libraries and programs. Consequently, the design of the

standard string functions has had a wider negative impact than merely on programs which call those

functions.

For example, here is an (anonymized) declaration of real-world function which inserts one or more

64-bit instructions into a buffer:

uint32_t foo_insert_bar_op(foo_context *ctx, uint64_t *buf, uint32_t size, uint32_t

operand);

Intended usage of this function resembles usage of snprintf: it is the responsibility of the caller to

update the passed-in values of buf and size using the return value, which gives the number of array

elements consumed.

The free space pointer and record of the amount of remaining space may become separated and

may not be updated correctly by every caller. It’s easy for callers to accidentally swap the size and

operand parameters. The interface is not type-safe either, given that *buf could be any object of

type uint64_t and size could be any integer.

None of these defects are inherent to the language, but most can be observed in its standard library.

Prior art

CBUtilLib
This library [6] has been used by the author since 2012 in many interactive programs that

manipulate file paths, menus, and windows. It emphasizes performance and flexibility over

encapsulation.

It replaced all ad-hoc string buffer management code but was never intended to replace all usage of

character arrays. Its use has helped to eliminate common errors such as buffer overruns and

memory leaks.

The amount of implicit state is excessive for many use-cases, but not to the extent that I have felt it

necessary to split the structure definition. I tend to use long-lived mutable strings sparingly.

Interface
Copyright (C) 2012 Christopher Bazley.

typedef struct

{

 size_t buffer_size, string_len, undo_len;

 _Optional char *buffer;

 char undo_char;

}

StringBuffer;

void stringbuffer_init(StringBuffer *buffer /*out*/);

_Optional char *stringbuffer_prepare_append(

 StringBuffer *buffer /*in,out*/,

 size_t *min_size /*in,out, incl. null*/);

void stringbuffer_finish_append(StringBuffer *buffer /*in,out*/,

 size_t n /*characters, excl. null*/);

bool stringbuffer_append(StringBuffer *buffer /*in,out*/,

 const char *tail /*in*/,

 size_t n /*characters, excl. null */);

bool stringbuffer_append_all(StringBuffer *buffer /*in,out*/,

 const char *tail /*in*/);

bool stringbuffer_append_separated(StringBuffer *buffer /*in,out*/,

 char sep,

 const char *tail /*in*/);

bool stringbuffer_vprintf(StringBuffer *buffer /*in,out*/,

 const char *format /*in*/,

 va_list args);

bool stringbuffer_printf(StringBuffer *buffer /*in,out*/,

 const char *format /*in*/,

 ...);

void stringbuffer_truncate(StringBuffer *buffer /*in,out*/,

 size_t len /*characters*/);

size_t stringbuffer_get_length(const StringBuffer *buffer /*in*/);

char *stringbuffer_get_pointer(const StringBuffer *buffer /*in*/);

void stringbuffer_minimize(StringBuffer *buffer /*in,out*/);

void stringbuffer_undo(StringBuffer *buffer /*in,out*/);

void stringbuffer_destroy(StringBuffer *buffer /*in*/);

http://starfighter.acornarcade.com/mysite/programming.htm#cbutillib

Description
The storage lifetime of the structure is under the client’s control, which harms encapsulation but

minimizes indirection and allows inline function definitions. The stringbuffer_init function

cannot fail and is equivalent to default initialisation using {}. This could be turned into a useful

guarantee.

All write functions (including stringbuffer_printf) append to rather than replace the string in the

buffer. There is no support for inserting characters and moving the tail of the string, which keeps the

interface and implementation simple. No concept of a current insertion point is required. It also

avoids the possibility of partially overwriting multibyte characters.

Wide characters (typically UTF-16) can be converted to multibyte characters and appended to the

string by using the standard l length modifier:

wchar_t wstr[] = L"wide string";

stringbuffer_printf(buffer, "%ls", wstr);

Additional storage is allocated automatically as the string grows. Functions that allocate storage

return a Boolean value to indicate success or failure. This value must be checked immediately

(because no error state is stored or exposed).

The user is responsible for calling stringbuffer_destroy to free any allocated storage. This is more

type-safe than free (which cannot be used here) but impedes interoperability with code that needs

to take ownership of the underlying character array.

Some functions are strictly redundant:

• stringbuffer_append_separated(buffer, sep, tail) is equivalent to

stringbuffer_printf(buffer, "%c%s", sep, tail).

• stringbuffer_append_all(buffer, tail) is equivalent to

stringbuffer_append(buffer, tail, SIZE_MAX) or stringbuffer_printf(buffer,

"%s", tail).

• stringbuffer_append(buffer, tail, n) is equivalent to stringbuffer_printf(buffer,

"%.*s", n, tail).

stringbuffer_get_pointer returns an unqualified pointer to the first character of the string. This

allows interoperability with functions which don’t accept const-qualified strings, or which

temporarily modify a passed-in string. Arguably, this violates encapsulation.

Because the underlying string is accessible, there is no need for many overly specialized functions.

For example, concatenation of two StringBuffer objects can be implemented as follows:

stringbuffer_append_all(dst, stringbuffer_get_pointer(src));

Comparison is similarly straightforward:

if (strcmp(stringbuffer_get_pointer(a), stringbuffer_get_pointer(b))

{

 // strings mismatch

}

So is searching:

if (!strchr(stringbuffer_get_pointer(buffer), '_'))

{

 // no underscore

}

This saves documentation, implementation, and validation effort, but also means that usage of the

interface is more longwinded than it otherwise might be.

stringbuffer_prepare_append and stringbuffer_finish_append allow direct insertion of strings

into the buffer (in cases where the length of a string to be appended is available before the string

itself) but they also violate encapsulation. These functions are used to wrap third-party interfaces

which cannot be modified to output to a StringBuffer.

A crucial detail of stringbuffer_prepare_append is that the input value of *min_size must include

space for a null terminator (like the equivalent parameter of snprintf), otherwise insufficient

storage may be allocated. The output value of *min_size gives the maximum number of characters

that can be written, also including any null terminator.

In contrast, the length passed into stringbuffer_finish_append does not include any null

terminator written by the user (like the return value of snprintf). A null character is then written

after the user-specified length, typically overwriting the last byte of the storage allocated by

stringbuffer_prepare_append. This allows strings generated by functions that always emit a null

terminator to be appended, without requiring one to be present.

Single-step undo is supported by storing the previous length of the string and any character

overwritten by the most recent truncation. However, it also relies on the fact that the user controls

when to call stringbuffer_minimize to free any excess storage. Attempting to undo after calling

stringbuffer_minimize has no effect.

Without explicit undo:

• Undoing an append (e.g., to generate different file paths based on the same root) could

instead be implemented by a combination of stringbuffer_get_length and

stringbuffer_truncate if the previous length were stored externally.

• Undoing truncation (e.g., to create each successive directory of a path) could instead be

implemented by violating encapsulation to overwrite the null character at an address

relative to that returned by stringbuffer_get_pointer.

Usage

Buffer reuse for successive strings

It is often more efficient to initialise a single buffer and reuse it for multiple strings, which also

avoids the need for complex error handling code.

bool append_to_csv(StringBuffer *const csv, char const *const value)

{

 return (stringbuffer_get_length(csv) == 0 ||

 stringbuffer_append_all(csv, ",")) &&

 stringbuffer_append_all(csv, value);

}

bool build_ships_stringset(StringBuffer *const output_string,

 char const *const graphics_set,

 bool const include_player, bool const include_fighters,

 bool const include_bigships, bool const include_satellite)

{

 /* Build string suitable to pass to stringset_set_available() */

 bool success = true;

 stringbuffer_truncate(output_string, 0);

 StringBuffer ship_name;

 stringbuffer_init(&ship_name);

 if (include_player)

 {

 success = get_shipname_from_type(&ship_name, graphics_set, ShipType_Player);

 if (success)

 {

 success = stringbuffer_append_all(

 output_string, stringbuffer_get_pointer(&ship_name));

 }

 }

 if (include_fighters)

 {

 for (ShipType i = ShipType_Fighter1; i <= ShipType_Fighter4 && success; i++)

 {

 stringbuffer_truncate(&ship_name, 0);

 success = get_shipname_from_type(&ship_name, graphics_set, i);

 if (success)

 {

 success = append_to_csv(

 output_string, stringbuffer_get_pointer(&ship_name));

 }

 }

 }

 stringbuffer_destroy(&ship_name);

 return success;

}

Direct append from an external source

Existing functions require the address and size of a buffer to be passed separately. Some functions

can be modified to accept a StringBuffer, but that is not possible with third-party interfaces. In

such cases, it is more efficient to expose the buffer wrapped by a StringBuffer for external writing

than to allocate an intermediate buffer.

In the following example, the messagetrans_lookup function wraps a software interrupt instruction

which calls an operating system routine [23]. The msgsize value output by messagetrans_lookup

and passed into stringbuffer_prepare_append includes space for a null terminator, but the

character count passed into stringbuffer_finish_append does not.

msgsize is recalculated by the second call to messagetrans_lookup, although the value is not

expected to change. If the new value were bigger, it would indicate that messagetrans_lookup

might have written outside the allocated buffer; if smaller, any excess space in the buffer would be

kept for future append operations. The new value is used to update the string length.

messagetrans_lookup null-terminates its output, and stringbuffer_finish_append overwrites

that terminator as if by output_string[msgsize - 1] = '\0'.

if (messagetrans_lookup(&messages, token,

 NULL, 0, &msgsize, 1, id_string) == NULL)

{

 _Optional char *const outtail = stringbuffer_prepare_append(

 output_string, &msgsize);

 if (outtail &&

 messagetrans_lookup(&messages, token,

 outtail, msgsize, &msgsize, 1, id_string) == NULL)

 {

 stringbuffer_finish_append(output_string, msgsize - 1);

 return true;

 }

}

return stringbuffer_append_all(output_string, token);

Undo truncation for error handling

Undo can be used to handle run time errors by rolling back the state of a program. Use of a

dedicated function avoids violating encapsulation or requiring a copy of the original string. The

following code relies on enter_dir not to modify the truncated string.

/* Try to recreate the top-level data structure again. */

old_dir_list = iterator->dir_list;

linkedlist_init(&iterator->dir_list);

stringbuffer_truncate(&iterator->path_name,

 iterator->path_name_len);

e = enter_dir(iterator);

if (e == NULL)

{

 /* Destroy the old data structures on success. */

 free_levels(&old_dir_list, NULL);

}

else

{

 /* Restore the previous state on error */

 iterator->dir_list = old_dir_list;

 stringbuffer_undo(&iterator->path_name);

}

https://www.riscosopen.org/wiki/documentation/show/MessageTrans_Lookup

Undo truncation to reinstate a leaf name

Undo isn’t only useful for error handling, as in the following example where part of a string is used

for a specific purpose before restoring the whole string.

/* Remove the leaf name of the current directory from the path */

stringbuffer_truncate(&iterator->path_name,

 ancestor->path_name_len);

/* Try to refill the buffer with catalogue entries for the ancestor

 directory */

{

 DirIteratorLevel *tmp = ancestor;

 e = refill_buffer(iterator, &tmp);

 assert(tmp != NULL);

 ancestor = tmp;

}

/* Reinstate the leaf name of the current directory */

stringbuffer_undo(&iterator->path_name);

Undo an append to replace a leaf name

Undo is strictly redundant in the following example because the user could instead have stored the

string’s previous length and used stringbuffer_truncate.

/* Second append is a deliberate no-op to reset the undo state for the

 save path string buffer. */

if (!stringbuffer_append(&scan_data->save_path, ".", SIZE_MAX) ||

 !stringbuffer_append(&scan_data->save_path, NULL, 0))

{

 RPT_ERR("NoMem");

 return false;

}

And then later:

/* Remove the previous sub-path (does nothing if already undone) */

stringbuffer_undo(&scan_data->save_path);

e = append_to_string_buffer(&scan_data->save_path,

 scan_data->iterator,

 diriterator_get_object_sub_path_name);

GPU driver snippets
The following functions were developed for the Arm Mali GPU driver. They were implemented as a

wrapper for a generic resizing array (instantiated for type char). The wrapper simply ensured null

termination of the string and recorded the most recent run time error to occur.

Interface
Copyright (C) 2023. Arm Limited or its affiliates. All rights reserved.

typedef struct {

int x;

} mali_error;

#define MALI_ERROR_NONE (mali_error){0};

bool mali_error_is_error(mali_error e)

{

return e.x != 0;

}

typedef struct

{

 cutils_astring_array array;

 mali_error error;

} cutils_astring;

void cutils_astring_init(cutils_astring *astring /*out*/);

mali_error cutils_astring_ncat(cutils_astring *astring /*in,out*/,

 char const *str /*in*/,

 size_t n /*characters*/);

mali_error cutils_astring_cat(cutils_astring *astring /*in,out*/,

 char const *str /*in*/);

mali_error cutils_astring_vprintf(cutils_astring *astring /*in,out*/,

 char const *format /*in*/,

 va_list args /*in*/);

mali_error cutils_astring_printf(cutils_astring *astring /*in,out*/,

 char const *format /*in*/,

 ...);

size_t cutils_astring_len(cutils_astring const *astring /*in*/);

char const *cutils_astring_ptr(cutils_astring const *astring /*in*/);

void cutils_astring_clear(cutils_astring *astring /*in,out*/);

mali_error cutils_astring_error(cutils_astring const *astring /*in*/);

void cutils_astring_term(cutils_astring *astring /*in */);

Description
The storage lifetime of the structure is under the client’s control, which harms encapsulation but

minimizes indirection and allows inline function definitions. The cutils_astring_init function

cannot fail and is equivalent to default initialisation using {}. This could be turned into a useful

guarantee.

All write functions append to the string in the buffer. This keeps the interface simple and prevents

partial overwriting of multibyte characters.

Wide characters can be converted to multibyte characters and appended to the string by using the

standard l length modifier:

wchar_t wstr[] = L"wide string";

cutils_astring_printf(astring, "%ls", wstr);

There is no support for:

• overwriting existing characters in a string.

• inserting characters and moving the tail of the string.

• direct insertion of strings into the buffer.

• truncation (except to length zero by calling cutils_astring_clear).

• undoing the last operation.

Additional storage is allocated automatically as the string grows. Functions that may allocate storage

return an error indication which need not always be checked because cutils_astring_error can

be called at any time to return the current error state. This allows lazy error handling when multiple

strings are appended to the same buffer.

The user is responsible for calling cutils_astring_term to free any allocated storage. This is more

type-safe than free but impedes interoperability with code that needs to take ownership of the

underlying character array.

cutils_astring_clear clears any stored error as well as replacing the current string with the

empty string. One rationale is that the stored string is no longer wrong; another is that ANSI C added

the same behaviour to the standard rewind function [25].

Some functions are strictly redundant:

• cutils_astring_cat(astring, tail) is equivalent to cutils_astring_ncat(astring,

tail, SIZE_MAX) or cutils_astring_printf(astring, "%s", str).

• cutils_astring_ncat(astring, tail, n) is equivalent to

cutils_astring_printf(astring, "%.*s", n, str).

cutils_astring_ptr returns a pointer-to-const to prevent encapsulation violations. This prevents

interoperability with functions that don’t accept const-qualified strings but that hasn’t been a

problem yet.

Because the underlying string is accessible, there is no need for many overly specialized functions.

For example, concatenation of two cutils_astring objects can be implemented as follows:

cutils_astring_cat(dest, cutils_astring_ptr(src));

https://www.lysator.liu.se/c/rat/d9.html#4-9-9-5

POSIX
Two POSIX functions absent from ISO C have relevance to safe string handling:

• fmemopen associates a buffer of fixed size (which may be externally allocated) with an I/O

stream [7].

• open_memstream creates an I/O stream associated with a buffer that it dynamically allocates

internally [8].

The rationale is:

This interface has been introduced to eliminate many of the errors encountered in

the construction of strings, notably overflowing of strings. This interface prevents

overflow.

According to Linux manuals, these functions first appeared in glibc 1.0.x (presumably in the mid-

1990s). They first appeared in OpenBSD 5.4 (1 November 2013). They conform to IEEE Std 1003.1-

2008 ("POSIX.1").

Interface
Copyright © 2001-2018 IEEE and The Open Group.

_Optional FILE *fmemopen(_Optional void *buf /*out*/,

 size_t size,

 const char *mode /*in*/);

_Optional FILE *open_memstream(char **bufp /*out*/, size_t *sizep /*out*/);

_Optional FILE *open_wmemstream(wchar_t **bufp /*out*/, size_t *sizep /*out*/);

Description
FILE need not be a complete type, but it is commonly defined as one. GCC 13.2.0 translates the

following nonsensical code without producing a diagnostic:

FILE f;

fputc('c', &f);

cc65 2.19 defines FILE as an incomplete type, and therefore fails to translate the same program:

<source>:590: Error: Variable 'f' has unknown size

Writable streams opened by the POSIX functions are compatible with any function that accepts the

address of a FILE. That minimizes the need for new functions but makes interfaces that operate on

strings less recognizable. There is also nothing to prevent insertion of garbage using fwrite, so it’s

questionable whether streams are a type-safe interface to the underlying data.

By choosing the appropriate function and arguments, the programmer controls whether automatic

or dynamic storage is used for the buffer, and whether the buffer size is fixed or variable. However,

the names fmemopen and open_memstream are easily confused.

The array pointer and size passed to fmemopen are specified only once, which is safer than passing

them in multiple calls to low-level string functions. However, they could still be wrong (just as for

snprintf).

Usage of fmemopen is complex because it requires a mode argument and supposedly accepts all the

same values as fopen, except when using an internally allocated buffer. This has been a source of

bugs.

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fmemopen.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/open_memstream.html

fmemopen allocates an internal buffer if called with a null pointer. Users cannot obtain a pointer to

such a buffer.

Another feature of fmemopen is that it can append to a string already stored in the designated buf

object. This mode requires the implementation to search for the first null byte in the buffer, which is

used as the initial file position (if found). Consequently, predictable behaviour in “a” mode depends

on the buffer having been pre-initialised.

Usage of open_memstream is simpler because it always allocates storage internally and the resultant

stream is always writeable. However, at least one implementation treats the initial value of *sizep

as a hint of the initial buffer size to allocate [9] (which is non-standard).

Write operations on a stream always overwrite existing characters at the current file position (which

may be changed by calling fsetpos or fseek). A null character is only appended if characters are

written beyond the previous string length. This isn’t immediately obvious so it may be surprising.

A stream opened by open_memstream is byte-oriented whereas open_wmemstream is wide-oriented.

This implies that it is illegal to call functions such as fwputs on a stream opened by open_memstream,

and illegal to call functions such as fputs on a stream opened by open_wmemstream. Such misuse is

difficult to detect at compile time because both functions return the same type of object.

Streams opened by open_wmemstream have additional restrictions described in 7.23.2.5 of the C23

standard:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to

both text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function

that leaves the file position indicator prior to the end-of-file, a wide character

output function can overwrite a partial multibyte character; any file contents

beyond the byte(s) written may henceforth not consist of valid multibyte

characters.

This implies that fseek should only be used to seek the start of a string or a position previously

returned by ftell; it’s impossible to seek the end of a string, to append to it. However, this is no

guarantee that the integrity of multibyte characters will be maintained because a file position that

was previously valid (including one stored by fgetpos) may be invalidated by overwriting at that

location.

There is no support for:

• inserting characters and moving the tail of the string.

• direct insertion of strings into the buffer.

• truncation (except by writing a null character at the current file position).

• splitting the string.

• undoing the last operation.

Write functions (e.g., fputs, fprintf) return an error indication but also set the error indicator of

the stream. This allows lazy error handling when multiple writes occur and only the final result is

significant.

https://github.com/artetxem/mitzuli/blob/master/libraries/tesseract-android-tools/src/main/native/com_googlecode_leptonica_android/stdio/open_memstream.c

Writing more data than can fit in a buffer associated with a stream opened by fmemopen causes an

error which may not be immediately visible because streams are buffered [10]. After this caused a

bug report [11], the documentation was updated to suggest calling setbuf(stream, NULL) to

disable buffering.

Writing more data than can fit in a buffer associated with a stream opened by open_memstream

causes additional storage to be allocated. The user is responsible for calling free to deallocate the

buffer when no longer required. Because no unique type is defined, it might not be obvious which

strings in a program should be freed and which must not. However, this facilitates interoperability

with code that needs to take ownership of the buffer.

A stream created by either function must be closed by calling fclose, which must be called before

freeing the buffer allocated by open_memstream. Closing a stream opened by fmemopen

automatically frees the associated buffer, if internal.

A null character is automatically written at the end of the buffer when a stream opened by either

function is flushed or closed. Moreover, null is only written to a buffer associated with a stream

opened by fmemopen if there is space. This is a potential vulnerability.

Although state associated with the stream is encapsulated, the buffer can still be a source of

programmer errors:

• The buf object designated by a call to fmemopen is fully accessible but may not contain a null

character unless fflush or fclose has just been called.

• The *buf and *sizep objects designated by a call to open_memstream are assigned a value

whenever fflush is called, at which point *buf points to the buffer and *sizep is its length

(or the current file position, if lower).

• Previous values of *buf and *sizep are invalidated by a write operation or a call to fclose

so the user must be careful not to use stale values.

One significant advantage the POSIX functions have is that it is impossible to obtain access to the

underlying buffer from the address of the associated FILE alone. Hence, it is possible to pass FILE *

to an untrusted function but withhold direct access to the buffer.

However, streams have complex behaviour which isn’t always appropriate. Some users may be put

off by the fact that fputs is perceived to be costly whereas strcat is perceived to be lightweight,

even though the latter performs a linear search.

https://man7.org/linux/man-pages/man3/fmemopen.3.html
https://sourceware.org/bugzilla/show_bug.cgi?id=1995

GNU/BSD
Two BSD functions [12] absent from both ISO C and POSIX have relevance to safe string handling:

• asprintf allocates storage for a string generated under control of a format string, as a

single operation.

• vasprintf is equivalent to asprintf except that it accepts a single argument of type

va_list in place of arguments to be substituted for format specifiers.

These functions are declared by <stdio.h> if _GNU_SOURCE is defined.

They first appeared in the GNU C library before February 1995. They were later added to FreeBSD

2.2 (March 1997) and OpenBSD 2.3 (May 1998). They were added to Oracle Solaris 10 8/11 (Update

10) in 2011.

Interface
Copyright 1994-2024 The FreeBSD Project.

int asprintf(_Optional char **strp /*out*/, const char *format /*in*/, ...);

int vasprintf(_Optional char **strp /*out*/,

 const char *format /*in*/,

 va_list ap /*in*/);

Description
These functions prevent buffer overruns since their result is dynamically allocated. However, they

introduce new potential errors: neglecting to check that storage allocation succeeded or neglecting

to free the result string.

The return value indicates failure (-1), or the number of characters generated (excluding the

terminating null). The caller must always check the return value because the Linux manual [13] says

that the designated *strp pointer is undefined on failure, whereas the Free BSD manual says that it

is set to null. This would need to be cleared up as part of any attempt at standardisation.

This interface resembles sprintf rather than strdup. Unfortunately, that makes it awkward and

error-prone to call one of these functions as part of a variable declaration:

_Optional char *s = asprintf(&s, "%d", 99) >= 0 ? s : NULL;

Consequently, s cannot be declared as immutable and is likely to be declared with a wider scope

than required – either as an uninitialised object or initialised to a value that is never used.

Every alternative version (including similarly named Linux kernel functions) seems to instead return a

pointer to the allocated storage, or null on failure. This suggests that the returned string length is

rarely wanted. It might also help to explain why the GNU/BSD functions were never standardized,

even though many programs require equivalent functionality.

Storage is allocated as if by calling malloc and the user is responsible for calling free to deallocate it

when no longer required. Because no unique type is defined, it might not be obvious which strings in

a program should be freed and which must not. However, this facilitates interoperability with code

that needs to take ownership of the string.

Like a string allocated by open_memstream or strdup, the result string is guaranteed to be

terminated by a null character.

https://man.freebsd.org/cgi/man.cgi?query=asprintf
https://man7.org/linux/man-pages/man3/asprintf.3.html

Linux kernel
Several kernel functions [14] have relevance to safe string handling:

• kasprintf allocates storage for a string generated under control of a format string, as a

single operation.

• kvasprintf is equivalent to kasprintf except that it accepts a single argument of type

va_list in place of arguments to be substituted for format specifiers.

These functions are declared in <linux/sprintf.h>.

The kasprintf function was added to the Linux kernel on Jun 25, 2006 [15] and kvasprintf on May

1, 2007.

Interface
Copyright (C) 1991, 1992 Linus Torvalds.

_Optional char *kasprintf(gfp_t gfp /*in*/, const char *fmt /*in*/, ...);

_Optional char *kvasprintf(gfp_t gfp /*in*/,

 const char *fmt /*in*/,

 va_list args /*in*/);

Description
This interface is designed to resemble strdup rather than sprintf. This makes it easy to call one of

these functions as part of a variable declaration:

_Optional char *const s = kasprintf(GFP_KERNEL, "%d", 99);

Consequently, s can be declared as immutable if appropriate and it is less tempting to declare it as

an uninitialised variable.

Apart from this simplification, the Linux kernel functions behave like asprintf and vasprintf with

all the same advantages and drawbacks.

https://elixir.bootlin.com/linux/latest/source/include/linux/sprintf.h
https://github.com/spotify/linux/commit/e905914f96e11862b130dd229f73045dad9a34e8

GLib
This library was originally part of GTK (GIMP Toolkit) [16]. It is now a standalone general-purpose

library which provides data structures and other utilities, including a managed string type: GString

[17].

The rationale is:

Crucially, the “str” member of a GString is guaranteed to have a trailing nul

character, and it is therefore always safe to call functions such as strchr() or

strdup() on it.

The string functions were already present in GLib 1.1.12 (Jan 4, 1999) [18] but were probably

introduced earlier.

Interface
Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald.

typedef struct _GString GString;

struct _GString

{

 gchar *str;

 gsize len;

 gsize allocated_len;

};

GString *g_string_new(_Optional const gchar *init);

GString *g_string_new_len(_Optional const gchar *init,

 gssize len);

GString *g_string_sized_new(gsize dfl_size);

gchar *g_string_free(GString *string, gboolean free_segment);

gchar *g_string_free_and_steal(GString *string);

GBytes *g_string_free_to_bytes(GString *string);

gboolean g_string_equal(const GString *v, const GString *v2);

guint g_string_hash(const GString *str);

GString *g_string_assign(GString *string, const gchar *rval);

GString *g_string_truncate(GString *string, gsize len);

GString *g_string_set_size(GString*string, gsize len);

GString *g_string_insert_len(GString *string,

 gssize pos,

 const gchar *val,

 gssize len);

GString *g_string_append(GString *string,

 const gchar *val);

GString *g_string_append_len(GString *string,

 const gchar *val,

 gssize len);

GString *g_string_append_c(GString *string,

 gchar c);

https://en.wikipedia.org/wiki/GLib
https://docs.gtk.org/glib/struct.String.html
https://download.gnome.org/sources/glib/1.1/

GString *g_string_append_unichar(GString *string,

 gunichar wc);

GString *g_string_prepend(GString *string,

 const gchar *val);

GString *g_string_prepend_c(GString *string,

 gchar c);

GString *g_string_prepend_unichar(GString *string,

 gunichar wc);

GString *g_string_prepend_len(GString *string,

 const gchar *val,

 gssize len);

GString *g_string_insert(GString *string,

 gssize pos,

 const gchar *val);

GString *g_string_insert_c(GString *string,

 gssize pos,

 gchar c);

GString *g_string_insert_unichar(GString *string,

 gssize pos,

 gunichar wc);

GString *g_string_overwrite(GString *string,

 gsize pos,

 const gchar *val);

GString *g_string_overwrite_len(GString *string,

 gsize pos,

 const gchar *val,

 gssize len);

GString *g_string_erase(GString *string,

 gssize pos,

 gssize len);

guint g_string_replace(GString *string,

 const gchar *find,

 const gchar *replace,

 guint limit);

GString *g_string_ascii_down(GString *string);

GString *g_string_ascii_up(GString *string);

void g_string_printf(GString *string,

 const gchar *format,

 ...);

void g_string_append_printf(GString *string,

 const gchar *format,

 ...);

Description
GString is defined as a complete type, which harms encapsulation. It’s possible to declare an object

of that type but unclear what such a declaration would mean. GString objects are always accessed

via a pointer, therefore an extra level of indirection is needed. However, use of a complete type does

allow inline functions such as g_string_append_len and g_string_append_c.

g_string_new allocates storage for a GString object and returns its address. It also allocates

storage for the underlying character array. At one time, memory was allocated from a fast slab

allocator with per-thread free lists; since GLib 2.76, malloc is used instead. Allocating storage

separately for the GString and its character array has overheads that are apparently not considered

significant.

If any attempt at storage allocation fails, then the program is terminated. This would be

unacceptable for an interactive application running on a machine with limited physical memory and

no swap file. A question on Stack Overflow suggests that not all users are satisfied with it [19].

If the init parameter is not null, then it points to a null terminated string to be copied as the initial

value of the underlying character array; otherwise, storage is allocated for an empty string. The

g_string_new_len variant limits the number of characters copied, whereas g_string_sized_new

allows the user to specify the amount of storage to be pre-allocated. These could easily be confused.

Functions are provided to overwrite or insert into the buffer at arbitrary positions, in addition to the

more common operation of appending. This results in a larger interface which is harder to learn, and

a more complex implementation. It also has implications for multibyte characters.

Arguably, the only thing that a function called by a character producer ought to do is consume

characters. Requiring extra parameters risks pushing decisions about whether to insert or overwrite,

and where to do it, further down the call stack into functions that could otherwise be used as

general-purpose producers. This is harmful to composability.

Unicode characters are converted to multibyte characters upon insertion into a GString. These are

written one at a time (as if by fputwc). Unlike a stream, there is no notion of a GString becoming

‘wide-oriented’ or otherwise special because of a call to a function like g_string_insert_unichar.

Wide characters (typically UTF-16) can be converted to multibyte characters and appended to the

string by using the standard l length modifier:

wchar_t wstr[] = L"wide string";

g_string_append_printf(string, "%ls", wstr);

Many functions have a position parameter to allow random access to the array (e.g.,

g_string_insert). This is interpreted as a byte offset rather than a character offset, therefore any

call to those functions has the potential to partially overwrite the end of a multibyte character.

Functions that overwrite or delete characters instead of inserting (e.g., g_string_overwrite or

g_string_erase) can cause similar errors at the end of the affected region.

Additional storage for the underlying character array is allocated automatically as the string grows,

for example because of calls to g_string_append. This can terminate the program on failure.

The user is responsible for calling g_string_free to free a GString object. Optionally, the

underlying character array is also automatically freed; passing false as the value of free_segment or

using an alternative function, g_string_free_and_steal, prevents that. This facilitates

interoperability with code that needs to take ownership of a string.

https://stackoverflow.com/questions/16974254/glib-handle-out-of-memory

Almost every function returns the address of a GString object, which has no use other than to

facilitate nested function calls since it is always the same as the address passed by the caller.

This allows idiomatic use of GString functions resembling use of strcpy and strcat:

GString *dst = g_string_new("foo");

g_string_append(g_string_assign(dst, "bar"), "qux");

Is analogous to:

char dst[12] = "foo";

strcat(strcpy(dst, "bar"), "qux");

However, this feature may be confusing since it is unclear whether a function’s return value can

safely be ignored. Returning redundant values also has a cost, albeit tiny.

Some position and length parameters use a signed type, gssize, instead of the equivalent unsigned

type gsize. This is not entirely consistent (e.g., g_string_erase doesn’t allow pos < 0, despite

appearances) but usually:

• pos < 0 means insert at end of string.

• len < 0 means insert/erase all characters to end of string.

There isn’t a precedent for this in the standard since the size_t and rsize_t types used for

character counts are unsigned, and ssize_t is non-standard.

Use of in-band error indicators is deprecated by many authors [20]. In-band special argument values

can cause similar hazards.

For example, if an argument is negative because of accidentally swapped operands in a pointer

subtraction, it may cause unexpected behaviour:

const char *names = "james;joyce;nancy;wilfred;",

 *start = names;

for (_Optional const char *end = strchr(start, ';');

 end != NULL;

 start = end + 1, end = strchr(start, ';'))

{

 GString *s = g_string_new_len(start, start - end); // whoops!

}

(GLib can be configured to report out-of-range argument values, but the values accidentally passed

above are not out of range.)

https://wiki.sei.cmu.edu/confluence/display/c/ERR02-C.+Avoid+in-band+error+indicators

Many functions are strictly redundant, but the alternatives are often cryptic:

• g_string_new(init) is equivalent to g_string_new_len(init, -1).

• g_string_prepend(string, val) is equivalent to g_string_insert_len(string, 0,

val, -1).

• g_string_prepend_len(string, val, len) is equivalent to

g_string_insert_len(string, 0, val, len).

• g_string_insert(string, pos, val) is equivalent to g_string_insert_len(string,

pos, val, -1).

• g_string_append(string, val) is equivalent to g_string_insert_len(string, -1,

val, -1).

• g_string_append_len(string, val, len) is equivalent to

g_string_insert_len(string, -1, val, len) or g_string_append_printf(string,

"%.*s", len, val).

• g_string_overwrite(string, pos, val) is equivalent to

g_string_overwrite_len(string, pos, val, -1).

• g_string_prepend_c(string, c) is equivalent to g_string_insert_c(string, 0, c).

• g_string_append_c(string, c) is equivalent to g_string_insert_c(string, -1, c) or

g_string_append_printf(string, “%c”, c).

• g_string_prepend_unichar(string, wc) is equivalent to

g_string_insert_unichar(string, 0, wc).

• g_string_append_unichar(string, wc) is equivalent to

g_string_insert_unichar(string, -1, wc).

• g_string_free_and_steal(string) is equivalent to g_string_free(string, FALSE).

• g_string_assign(string, rval) is equivalent to g_string_printf(string, "%s",

rval).

• g_string_append(string, val) is equivalent to g_string_append_printf(string,

"%s", val).

• g_string_truncate(string, len) is equivalent to g_string_erase(string, len, -1).

Function popularity
The following data was collected from GitHub code search results [24]. Larger values were reported

to the nearest hundred. The table is sorted by the number of files each function was reported to

appear in.

Appending and truncation appear to be the most widely used operations. Pre-allocation of a

specified buffer size is surprisingly popular. Replacement of a whole string is moderately common.

Inserting into a string (including prepending) is relatively uncommon, and overwriting is the least

common operation of all.

Function No. of files
g_string_free 64500
g_string_new 61400
g_string_append 41700
g_string_append_printf 37800
g_string_append_c 25500
g_string_sized_new 13900
g_string_truncate 12200
g_string_append_len 11300
g_string_printf 6600
g_string_assign 5800
g_string_erase 4400
g_string_set_size 4300
g_string_new_len 3200
g_string_append_unichar 2400
g_string_prepend 2400
g_string_insert 1800
g_string_prepend_c 1300
g_string_insert_c 936
g_string_equal 764
g_string_insert_len 600
g_string_free_to_bytes 528
g_string_hash 436
g_string_prepend_len 434
g_string_ascii_down 406
g_string_replace 328
g_string_insert_unichar 318
g_string_overwrite_len 290
g_string_ascii_up 280
g_string_prepend_unichar 261
g_string_overwrite 257
g_string_free_and_steal 109

https://github.com/search?q=%2Fg_string_overwrite%5B%5E_%5D%2F+path%3A*.c+language%3AC&type=code&ref=advsearch

ImageMagick
ImageMagick is an open-source software suite for editing digital images, with a particular emphasis

on scripting. It was first released on August 1st, 1990 [21]. Its ‘MagickCore string methods’ are part

of the publicly available source code [22]. They are copyright 1999 ImageMagick Studio LLC. A subset

is reproduced here for illustrative purposes.

Interface
Copyright @ 1999 ImageMagick Studio LLC.

typedef struct _StringInfo

{

 _Optional char *path;

 _Optional unsigned char *datum;

 size_t length, signature;

 _Optional char *name;

} StringInfo;

_Optional char *StringInfoToString(const StringInfo *string_info);

int CompareStringInfo(const StringInfo *target, const StringInfo *source);

size_t GetStringInfoLength(const StringInfo *string_info);

StringInfo

 *AcquireStringInfo(size_t length),

 *CloneStringInfo(const StringInfo *string_info),

 *DestroyStringInfo(StringInfo *string_info),

 *SplitStringInfo(StringInfo *string_info, size_t offset),

 *StringToStringInfo(const char *string);

_Optional StringInfo *BlobToStringInfo(_Optional const void *blob, size_t length);

_Optional unsigned char *GetStringInfoDatum(const StringInfo *string_info);

void

 ConcatenateStringInfo(StringInfo *string_info, const StringInfo *source),

 ResetStringInfo(StringInfo *string_info),

 SetStringInfo(StringInfo *string_info,const StringInfo *source),

 SetStringInfoDatum(StringInfo *string_info, const unsigned char * source),

 SetStringInfoLength(StringInfo *string_info, size_t length);

Description
StringInfo is defined as a complete type, which harms encapsulation. It’s possible to declare an

object of that type but that is unlikely to yield a valid object since every function asserts

string_info->signature == MagickCoreSignature. There’s no need for StringInfo to be a

complete type because not even trivial operations such as GetStringInfoLength have inline

function definitions.

AcquireStringInfo allocates storage for a StringInfo object and returns its address. It also

allocates a character array of the requested length plus 4KB and zero-initialises it. By default, malloc

is used. If storage cannot be allocated, then the program is terminated. Allocating memory

separately for the StringInfo and character array has overheads that are apparently not

considered significant.

BlobToStringInfo is a variant of AcquireStringInfo which allows the caller to pass the address of

a string to be copied. BlobToStringInfo(NULL, length) is equivalent to

AcquireStringInfo(length). It isn’t significant whether the source string contains a null character

or not. This allows a StringInfo object to be constructed from a substring. The first null character

may occur earlier than implied by the stored length.

https://imagemagick.org/script/history.php
https://github.com/ImageMagick/ImageMagick/blob/main/MagickCore/string.c

StringToStringInfo is a variant of AcquireStringInfo that accepts a null terminated string to be

copied as the initial value of the underlying character array. Other, highly specialized, constructors

also exist.

The string initially stored in a StringInfo object is null terminated since the underlying array is over-

allocated and padded with zeros. It’s unclear whether that is intentional, since other functions

ensure there is always 4KB extra space but neglect to initialise any new storage acquired beyond the

string.

Additional storage for the underlying character array is allocated automatically as the string grows,

for example because of calls to ConcatenateStringInfo. This can terminate the program on failure.

Functions are provided to truncate or replace the string in the buffer, append the content of another

string buffer, or split it into separately allocated buffers.

There is no support for:

• inserting characters and moving the tail of the string.

• appending characters generated under control of a format string.

• appending characters from a character array.

• undoing the last operation.

• truncating a string without reducing the size of the underlying array.

GetStringInfoDatum returns an unqualified pointer to the first character of the string. This allows

interoperability with functions which don’t accept const-qualified strings, or which temporarily

modify a passed-in string. Arguably, it violates encapsulation. The exposed string isn’t necessarily

null terminated.

GetStringInfoLength is typically used with GetStringInfoDatum, for example to efficiently access

characters indexed relative to the end of the string:

exif_length=GetStringInfoLength(exif_profile);

exif_datum=GetStringInfoDatum(exif_profile);

if ((exif_length > 2) &&

 ((memcmp(exif_datum,"\xff\xd8",2) == 0) ||

 (memcmp(exif_datum,"\xff\xe1",2) == 0)) &&

 (memcmp(exif_datum+exif_length-2,"\xff\xd9",2) == 0))

 SetStringInfoLength(exif_profile,exif_length-2);

SetStringInfoLength sets the length stored in a StringInfo object and increases or reduces the

amount of storage allocated for its underlying character array accordingly. By default, realloc is

used. However, no null character is written or removed. Consequently, the first null character in the

underlying array (if any) may be earlier or later than implied by the new length.

SetStringInfoDatum copies as many characters into a StringInfo object as its stored length

permits, truncating the source data if necessary to fit. It isn’t significant whether source contains a

null character, and no null is appended to the result. Afterwards, the destination array may not

contain null. SetStringInfo is similar but may be safer because it doesn’t copy more characters

than the source StringInfo provides.

Often, length and datum are set consecutively:

SetStringInfoLength(nonce,sizeof(extent));

SetStringInfoDatum(nonce,(const unsigned char *) &extent);

ConcatenateStringInfo increases the storage allocated for one StringInfo to concatenate the

content of another. It copies all characters from the source object and stores the sum of both

lengths. It isn’t significant whether source contains a null character, and no null is appended to the

result. Afterwards, the destination array may not contain null.

SplitStringInfo constructs a new StringInfo by copying the first offset characters of an existing

StringInfo object. If successful, it moves the remaining characters of the underlying array to the

start, reduces its stored length and shrinks the allocated storage.

CloneStringInfo constructs a new StringInfo by copying one more than the number of

characters indicated by the stored length of an existing StringInfo object. It isn’t significant

whether the array contains a null terminator. The clone has the same stored length as the original.

StringInfoToString allocates storage for a copy of the array underlying a StringInfo object,

copies the number of characters indicated by its stored length, then appends a null terminator (like

strndup). The caller takes ownership of the newly allocated array.

Handling of storage allocation failure is inconsistent:

• StringInfoToString always returns NULL on failure.

• BlobToStringInfo may return NULL or terminate (depending on where it fails).

• AcquireStringInfo, StringToStringInfo, CloneStringInfo, SetStringInfoLength and

ConcatenateStringInfo always terminate on failure.

CompareStringInfo is equivalent to strcmp except that it limits the number of characters compared

to the smaller of the lengths stored in the two StringInfo objects instead of relying on null

termination.

ResetStringInfo sets all characters of the underlying array to null without altering the stored

length. It’s unclear what purpose this was intended to serve, since all extant calls are redundant:

 random_info->nonce=AcquireStringInfo(2*GetSignatureDigestsize(

 random_info->signature_info));

 ResetStringInfo(random_info->nonce);

 random_info->reservoir=AcquireStringInfo(GetSignatureDigestsize(

 random_info->signature_info));

 ResetStringInfo(random_info->reservoir);

The user is responsible for calling DestroyStringInfo to free a StringInfo object and its

underlying character array. This is more type-safe than free but impedes interoperability with code

that needs to take ownership of the array.

DestroyStringInfo always returns NULL. This is typically assigned to the same variable as the input

argument, presumably as an idiomatic way of reducing the likelihood of dangling pointers:

status=SetImageProfile(image,name,profile,exception);

profile=DestroyStringInfo(profile);

Such an assignment may be omitted if the next statement assigns a value to the same variable:

(void) SetImageProfile(image,"EXIF",profile);

DestroyStringInfo(profile);

profile=GetImageProfile(image,"EXIF");

Consequently, the compiler cannot warn about the return value of DestroyStringInfo being

ignored (e.g., using -Wunused-result).

Comparison of usage
A simple program has been implemented using each of the interfaces previously discussed. It

converts an array of integer indices into a comma-separated list of names. To make this a fair

comparison, the program does not exercise features missing from most of interfaces (e.g.,

prepending or insertion).

Standard C functions
When increasing the amount of storage allocated for the array, its size is doubled if that is sufficient

to store the new string. This reduces the number of reallocation operations. Enough space is

allocated for every name in the list to be preceded by a comma even though this is excessive for the

first name.

For simplicity, strcat is used to append strings instead of treating the current length as another

variable and using memcpy (which would be more efficient). The stored string is truncated by writing

a null character at the end of each iteration of the outer loop, which allows same array to be reused

for the next iteration.

It's tempting to refactor this code into two functions: one to contain the business logic and the other

to encapsulate the complexity of appending a string to the array. That would lead to something

resembling several of the other solutions.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 _Optional char *buf = NULL;

 size_t buf_size = 0;

 int err = EXIT_SUCCESS;

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 size_t const len = buf ? strlen(buf) : 0,

 req = len + strlen(names[data[i][j]]) + 2;

 // +2 for ',' and '\0'

 if (buf == NULL || buf_size < req)

 {

 size_t new_size = buf_size * 2;

 if (new_size < req)

 new_size = req;

 _Optional char *new_buf = realloc(buf, new_size);

 if (new_buf == NULL) {

 err = EXIT_FAILURE;

 break;

 }

 if (buf == NULL)

 *new_buf = '\0';

 buf = new_buf;

 buf_size = new_size;

 }

 if (j > 0)

 strcat(buf, ",");

 strcat(buf, names[data[i][j]]);

 }

 if (err) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, buf ? strlen(buf) : 0);

 break;

 }

 puts(buf);

 *buf = '\0';

 }

 free(buf);

 return err;

}

CBUtilLib
It’s worth reusing the same StringBuffer object between iterations of the outer loop because

stringbuffer_truncate truncates the stored string without minimizing its allocated size. Strings

can be appended without first copying them into StringBuffer objects.

If an allocation failure has occurred, then no more strings are appended. However, the program is

responsible for maintaining the error indicator correctly to ensure this.

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 StringBuffer buf;

 stringbuffer_init(&buf);

 bool ok = true;

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0 && ok)

 ok = stringbuffer_append_all(&buf, ",");

 if (ok)

 ok = stringbuffer_append_all(&buf, names[data[i][j]]);

 }

 if (!ok) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, stringbuffer_get_length(&buf));

 break;

 }

 puts(stringbuffer_get_pointer(&buf));

 stringbuffer_truncate(&buf, 0);

 }

 stringbuffer_destroy(&buf);

 return ok ? EXIT_SUCCESS : EXIT_FAILURE;

}

GPU driver snippets
It’s worth reusing the same cutils_astring object between iterations of the outer loop because

cutils_astring_clear truncates the stored string without minimizing its allocated size. Strings can

be appended without first copying them into cutils_astring objects.

Instead of checking for failure of each attempted concatenation, the error indicator is checked once

per iteration of the outer loop. It must be checked before calling cutils_astring_clear, which

resets it.

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 cutils_astring buf;

 cutils_astring_init(&buf);

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0)

 cutils_astring_cat(&buf, ",");

 cutils_astring_cat(&buf, names[data[i][j]]);

 }

 if (mali_error_is_error(cutils_astring_error(&buf))) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, cutils_astring_len(&buf));

 break;

 }

 puts(cutils_astring_ptr(&buf));

 cutils_astring_clear(&buf); // also clears any error

 }

 int err = mali_error_is_error(cutils_astring_error(&buf)) ?

 EXIT_FAILURE : EXIT_SUCCESS;

 cutils_astring_term(&buf);

 return err;

}

POSIX
The buffer allocated by open_memstream is reused by calling rewind between iterations of the outer

loop. This also clears the stream’s error indicator but does not truncate the string or change the

buffer’s allocated size.

Calls to fputs overwrite characters at the current file position without necessarily appending a null

character, therefore a call to fputc is required to ensure that the string is terminated in the correct

place during the second iteration and subsequent iterations of the outer loop.

Neither the buffer’s address and size, nor the stream’s error indicator, are visible until the call to

fflush. Instead of checking for failure of each attempted put, the error indicator is checked once

per iteration of the outer loop.

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 char *buf;

 size_t buf_size;

 _Optional FILE *f = open_memstream(&buf, &buf_size);

 if (f == NULL) {

 fprintf(stderr, "Failed at start\n");

 return EXIT_FAILURE;

 }

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0)

 fputs(",", f);

 fputs(names[data[i][j]], f);

 }

 fputc('\0', f);

 fflush(f);

 if (ferror(f)) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, buf ? strlen(buf) : 0);

 break;

 }

 puts(buf);

 rewind(f); // also clears any error

 }

 int err = ferror(f) ? EXIT_FAILURE : EXIT_SUCCESS;

 fclose(f);

 free(buf);

 return err;

}

GNU/BSD
Each iteration of the inner loop allocates a new character array which contains a concatenation of

the string generated so far with the next name in the list, after which the previous array is freed. This

is inefficient in terms of the number of storage allocation requests and number of bytes copied, but

the actual amount of storage used is minimized.

Errors are handled immediately, and the complexity of doing this correctly is non-trivial.

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 _Optional char *buf = NULL;

 int err = EXIT_SUCCESS;

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 _Optional char *new_buf;

 int n = asprintf(

 &new_buf,

 "%s%s%s",

 buf ? buf : "",

 j > 0 ? "," : "",

 names[data[i][j]]);

 if (n < 0)

 {

 err = EXIT_FAILURE;

 break;

 }

 free(buf);

 buf = new_buf;

 }

 if (err) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, buf ? strlen(buf) : 0);

 break;

 }

 puts(buf);

 strcpy(buf, "");

 }

 free(buf);

 return err;

}

Linux kernel
This is like the GNU/BSD code but uses a simpler function to append each name in the list.

int print_fruit(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 _Optional char *buf = NULL;

 int err = 0;

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 _Optional char *new_buf = kasprintf(

 GFP_KERNEL,

 "%s%s%s",

 buf ? buf : "",

 j > 0 ? "," : "",

 names[data[i][j]]);

 if (new_buf == NULL)

 {

 err = -ENOMEM;

 break;

 }

 kfree(buf);

 buf = new_buf;

 }

 if (err) {

 printk(KERN_ERR "Failed at %zu (length %zu)\n",

 i, buf ? strlen(buf) : 0);

 break;

 }

 printk(KERN_INFO "%s\n", buf);

 strcpy(buf, "");

 }

 kfree(buf);

 return err;

}

GLib
It’s worth reusing the same GString object between iterations of the outer loop because

g_string_truncate truncates the stored string without minimizing its allocated size. Strings can be

appended without first copying them into GString objects.

No errors are handled because execution terminates if storage allocation fails.

int main(void)

{

 gchar const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 GString *buf = g_string_new(NULL);

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0)

 buf = g_string_append(buf, ",");

 buf = g_string_append(buf, names[data[i][j]]);

 }

 puts(buf->str);

 buf = g_string_truncate(buf, 0);

 }

 (void)g_string_free(buf, TRUE);

 return EXIT_SUCCESS;

}

ImageMagick
It’s impossible to append a string without copying it into a StringInfo, so a single copy of the

comma string is created and reused. A StringInfo object is not reused between iterations of the

outer loop because truncating the stored string would also minimize its allocated size. This is the

least efficient code, whether measured in terms of number of storage allocation requests, amount of

storage allocated, or number of bytes copied.

No errors are handled because execution terminates if storage allocation fails.

int main(void)

{

 char const *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 StringInfo *comma = StringToStringInfo(",");

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 StringInfo *buf = AcquireStringInfo(0);

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0)

 ConcatenateStringInfo(buf, comma);

 StringInfo *name = StringToStringInfo(names[data[i][j]]);

 ConcatenateStringInfo(buf, name);

 name = DestroyStringInfo(name);

 }

 printf("%.*s\n", (int)GetStringInfoLength(buf), GetStringInfoDatum(buf));

 buf = DestroyStringInfo(buf);

 }

 comma = DestroyStringInfo(comma);

 return EXIT_SUCCESS;

}

Lessons learned
• A string buffer should be specified using a single parameter.

• Storage allocation for strings should be automatic.

• Recalculation of free space in a buffer should be automatic.

• The effect of ignoring return values should be minimized.

• Where error checks are required, they should be simple.

• Aspects of character consumption should not be delegated to character producers.

• Appending and whole string replacement must be supported. Inserting into a buffer is

uncommon, and overwriting is the least common operation of all.

• Restrictions on function usage should be expressed through types.

• Random access to multibyte characters is universally unsafe but often permitted.

• A surprising number of users want to control pre-allocation of storage.

• Direct insertion is tricky because of null termination.

Why not standardize existing functions?
Existing string-handling functions all have different pros and cons.

The POSIX functions, which most closely resemble my proposed interface have:

• An extra object whose lifetime must be managed correctly with respect to the buffer.

• Surprising behaviour related to unwanted internal buffering.

• No persistent record of string length. (The file position often reflects this, but it is lost when

the stream is closed.)

• No encapsulation of the managed buffer.

• Weak type-safety since a FILE * could be a wide-oriented or byte-oriented stream and

does not necessarily even manage a string.

The GLib functions, which seem to be popular now, have:

• A large, complex interface that relies on in-band special values.

• Highly specialized functions which are bad for composability if misused.

• No encapsulation of the managed buffer.

• No notion of a current character position, which complicates consecutive insertions.

• Unsuitable out-of-memory behaviour for many platforms and applications.

Nevertheless, I believe that standardizing any of the existing interfaces would be preferable to doing

nothing, if the committee believes that is as far as their purview extends.

Proposed new functions

Interface

Core
Functions to be implemented by all conforming implementations.

typedef struct strb_t strb_t;

_Optional strb_t *strb_use(size_t size /*incl. null*/,

 char buf[size] /*in*/);

_Optional strb_t *strb_reuse(size_t size /*incl. null*/,

 char buf[size] /*in*/);

void strb_free(_Optional strb_t *sb /*in*/);

const char *strb_ptr(strb_t const *sb /*in*/);

size_t strb_len(strb_t const *sb /*in*/);

enum {

 strb_insert,

 strb_overwrite

};

int strb_setmode(strb_t *sb /*in,out*/, int mode);

int strb_getmode(const strb_t *sb /*in*/);

size_t strb_seek(strb_t *sb /*in*/, size_t pos);

size_t strb_tell(strb_t const *sb /*in*/);

bool strb_error(strb_t const *sb /*in*/);

void strb_clearerr(strb_t *sb /*in,out*/);

int strb_putc(strb_t *sb /*in,out*/, int c);

int strb_nputc(strb_t *sb /*in,out*/,

 int c,

 size_t n /*characters*/);

int strb_unputc(strb_t *sb /*in,out*/);

int strb_puts(strb_t *sb /*in,out*/, char *str /*in*/);

int strb_nputs(strb_t *sb /*in,out*/,

 const char *str /*in*/,

 size_t n /*characters*/);

_Optional char *strb_write(strb_t *sb /*in,out*/,

 size_t n /*characters*/);

void strb_wrote(strb_t *sb /*in,out*/);

void strb_delto(strb_t *sb /*in,out*/, size_t pos);

int strb_cpy(strb_t *sb /*in,out*/, const char *str /*in*/);

int strb_ncpy(strb_t *sb /*in,out*/,

 const char *str /*in*/,

 size_t n /*characters*/);

Extended
Functions to be implemented by conforming hosted implementations.

_Optional strb_t *strb_alloc(size_t size /*incl. null*/);

_Optional strb_t *strb_dup(const char *str /*in*/);

_Optional strb_t *strb_ndup(const char *str /*in*/, size_t n /*characters*/);

_Optional strb_t *strb_asprintf(const char *format /*in*/, ...);

_Optional strb_t *strb_vasprintf(const char *format /*in*/,

 va_list args /*in*/);

int strb_vputf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 va_list args /*in*/);

int strb_putf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 ...);

int strb_vprintf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 va_list args /*in*/);

int strb_printf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 ...);

Description

Object type
strb_t is an object type capable of recording all the information needed to control a string buffer,

including its position indicator, its size, the length of the string in the buffer, and an error indicator. It

need not be a complete type. Consequently, it may be impossible to wrongly declare an object of

that type and its internal state should only be accessed by the provided functions.

Object lifetime
Many functions are specified to create a strb_t object from different parameters:

• strb_alloc

• strb_use

• strb_reuse

• strb_dup

• strb_ndup

• strb_asprintf

• strb_vasprintf

The above functions allocate storage for a strb_t object, initialise it, and return its address. They do

not necessarily allocate a character array if the initial string is empty, providing that all other

functions operate as if an array had been allocated. If storage allocation fails, a null pointer is

returned.

The size parameter to strb_alloc is a hint about how much storage to allocate for an internal

buffer (where 0 means default size). The initial string length is 0.

The buf parameter to strb_use specifies a character array to be used instead of an internal buffer,

and size specifies its size (which must not be 0). A null character is written as the first character. The

initial string length is 0.

The array passed into strb_reuse should contain at least one null character within the first size

characters, whose position is the initial string length. Any following characters are ignored. If no null

character is found within the first size characters (or the maximum supported length, if less), a null

pointer is returned.

The effects of strb_... functions on an external array are always immediately visible and the string

therein is always null terminated.

The str parameter to strb_dup points to a null terminated string to be copied as the initial value of

the buffer associated with a strb_t object. The strb_ndup variant limits the number of characters

copied.

The format parameter to strb_printf and strb_vprintf specifies how to convert subsequent

arguments to generate a string, which forms the initial value of the buffer associated with a strb_t

object.

The user is responsible for calling strb_free to free a strb_t object. The associated buffer is also

automatically freed, except in the case where its address was passed as a parameter to strb_use or

strb_reuse. This must be enforced because storage allocation is abstracted. To pass an internally

allocated string to code that needs to take ownership of it, it must first be copied (e.g., using

strdup).

Insertion and overwriting
Instead of providing variants of every function to insert or overwrite characters, this behaviour is

controlled by a mode stored in the strb_t object. The initial mode is strb_insert. It can be read

and written by the following functions:

• strb_getmode

• strb_setmode

The return value of strb_setmode is the previous mode, to make it convenient to restore after a

temporary change.

Positioning
Instead of passing a position parameter to functions, an internal position indicator is stored in the

strb_t object. The initial position is the end of the string. It is updated by operations on the string,

but it can also be read and written by the following functions:

• strb_tell

• strb_seek

The return value of strb_seek is the previous value of the position indicator, to make it convenient

to restore. Unlike fseek, this function cannot fail.

Passing strb_seek a position greater than the string length is allowed and does not change the

length. If characters are later written beyond the end of the string, then the length will be updated.

The initial value of any intervening characters will be 0.

Editing
The position indicator is relevant to use of the following functions:

• strb_putc

• strb_unputc

• strb_puts

• strb_nputs

• strb_vputf

• strb_putf

• strb_write

• strb_delto

Use of these functions abstracts decisions about whether characters put into a strb_t object by

general-purpose string producers will be appended to, prepended to, inserted between, or

overwrite other characters.

The strb_putc function copies one character into the buffer at the current position and increments

the position indicator. If the mode is strb_insert, then characters at the current position are first

moved upward to make space; otherwise, no characters are moved. Additional storage is allocated if

necessary. If successful, strb_putc returns the character written, otherwise EOF.

The n parameter to strb_nputc indicates the number of times to copy the specified character into

the buffer. It is equivalent calling strb_putc the specified number of times with the same value of c.

If successful, strb_nputc returns the character written, otherwise EOF.

The strb_unputc function restores one character behind the current position and decrements the

position indicator. If the mode is strb_insert, then any characters in the buffer at the former

position are moved downward to the new position; otherwise, no characters are moved. This

function may substitute a smaller buffer at the implementer's discretion.

A call to a function that deletes characters or sets the position/mode will discard any restorable

characters in the strb_t object. Only one character is guaranteed to be restorable, regardless of

mode. If strb_unputc is called too many times without an intervening write, then it may fail. If

successful, strb_unputc returns the character removed, otherwise EOF.

The strb_puts function copies a null terminated string into the buffer associated with a strb_t

object at the current position as if by calling strb_putc for each character except null, which is not

copied. The strb_nputs variant limits the number of characters copied. If successful, these functions

return a nonnegative value, otherwise EOF.

The strb_putf and strb_vputf functions generate characters under control of a format string,

which are copied into the buffer at the current position as if by calling strb_putc for each character.

If successful, these functions return the number of characters generated, otherwise EOF. (Unlike

fprintf, which only returns 'a negative value' on failure.)

Wide characters (typically UTF-16) can be converted to multibyte characters and copied into the

buffer by using the standard l length modifier:

wchar_t wstr[] = L"wide string";

strb_putf(string, "%ls", wstr);

The strb_write function allows direct insertion of strings into the buffer, particularly by third-party

functions which cannot be modified to operate on a strb_t. It returns a pointer to the position

where the first character should be written. Because it returns an unqualified pointer, this function

also provides a mechanism for avoiding casts when calling functions that do not accept the address

of a const char.

The n parameter to strb_write indicates the number of characters expected to be written into the

buffer (not including any null terminator). If the mode is strb_insert, then strb_write will move

characters at the current position upward to make space; otherwise, no characters are moved.

Additional storage is allocated if necessary to allow n+1 characters to be written. The initial value of

any new characters is 0. The position indicator is advanced by n characters.

After copying up to n+1 characters (including any null terminator) into the buffer at the address

returned by strb_write, the user may call strb_wrote to restore the character that was at offset n

from the current position before the call to strb_write. strb_wrote has no effect after an

intervening call that puts, deletes, or restores characters, or which sets the position.

The strb_delto function deletes characters between the current position and a position specified

by the caller. If the mode is strb_insert, then the character at the higher of the two positions is

moved to the lower position, and any following characters are moved the same distance; otherwise,

no characters are moved. Afterwards, the value of the position indicator is the lower of the two

positions. This function may substitute a smaller buffer at the implementer's discretion.

Passing strb_delto a position greater than the string length is allowed: SIZE_MAX or (size_t)-1

can be used as a shorthand to delete all characters between the current position and the end of the

string.

The position indicator is interpreted as a byte rather than a character offset, therefore a call to any

of the above functions has the potential to partially overwrite a multibyte character. Overwriting or

deleting characters can have the same effect.

Replacement
The position indicator does not affect the following functions because they replace the whole string:

• strb_cpy

• strb_ncpy

• strb_vprintf

• strb_printf

The strb_cpy function replaces the string in a buffer by copying a null terminated string and sets the

position indicator to the number of characters copied. The strb_ncpy variant limits the number of

characters copied. If successful, these functions return a nonnegative value, otherwise EOF.

The strb_printf and strb_vprintf functions replace the string in the buffer by generating

characters under control of a format string. The position indicator is set to the number of characters

generated. If successful, these functions return the number of characters generated, otherwise EOF.

Errors
Additional storage for the underlying character array may be allocated automatically as the string

grows, for example because of calls to strb_puts. When using a character array passed to strb_use

or strb_reuse, or an internal buffer of fixed size, any attempt to allocate more storage fails.

If any attempt at storage allocation fails, the state of the buffer, mode, and position indicator are as

if the failed operation had never been attempted. This allows use in interactive software running on

machines with limited physical memory and no swap file.

An error indicator is stored to allow deferred error handling. Its value can be read at any time by

calling strb_error. An error can only be cleared explicitly (by calling strb_clearerr).

Redundancy
Many functions are strictly redundant, but the alternatives are often cryptic:

• strb_dup(sb, str) is equivalent to strb_asprintf(sb, "%s", str) or

strb_cpy(strb_alloc(0), str).

• strb_ndup(sb, str, n) is equivalent to strb_asprintf(sb, "%.*s", n, str) or

strb_ncpy(strb_alloc(0), str, n).

• strb_vasprintf(sb, format, args) is equivalent to strb_vputf(strb_alloc(0),

format, args).

• strb_puts(sb, str) is equivalent to strb_putf("%s", str) or strcpy(strb_write(sb,

strlen(str)), str), strb_wrote(sb).

• strb_nputs(sb, str, n) is equivalent to strb_putf("%.*s", n, str) or

strncpy(strb_write(sb, strnlen_s(str, n)), str, strnlen_s(str, n)).

• strb_putc(sb, c) is equivalent to strb_putf(sb, "%c", c) or *strb_write(sb, 1) =

c.

• strb_vputf(sb, format, args) is equivalent to vsprintf(strb_write(sb,

vsnprintf(NULL, 0, format, args)), format, args), strb_wrote(sb).

• strb_cpy(sb, str) is equivalent to strb_printf(sb, "%s", str).

• strb_ncpy(sb, str, n) is equivalent to strb_printf(sb, "%.*s", n, str).

• strb_nputc(sb, c, n) is equivalent to memset(strb_write(sb, n), c, n).

Some of the above equivalencies would have undefined behaviour if strb_write or strb_alloc

returned null, therefore they aren’t suitable for general use.

Implementation limits
When strings are simply character arrays, there is no limit on the number of characters in a string

(except the natural limit of SIZE_MAX-1), nor on the maximum number of strings at run time.

A freestanding implementation of C is not required to provide the malloc, strdup, and free

functions. Removing the requirement for dynamic storage allocation from string handling is

desirable since it allows predictable runtime behaviour and performance guarantees.

To allow implementations of the proposed new string type that do not reallocate storage, it may be

useful to expose the maximum number of characters that the library guarantees can be inserted into

a string (analogous to FILENAME_MAX), and the maximum number of strings that can exist

simultaneously (analogous to FOPEN_MAX). This allows implementations to statically allocate a finite

number of objects of fixed size. Different limits might apply to objects managing external arrays.

These limits are not intended to encourage arbitrary restrictions on usage of strings but to allow

implementers targeting resource-constrained platforms to provide the standard functions, albeit in a

suitably restricted form.

There is a danger that macros analogous to FILENAME_MAX and FOPEN_MAX could be abused by

programs, but on balance I consider it better to expose rather than hide implementation limits.

Comparison of usage
The program to convert an array of integer indices into a comma-separated list of names has been

reworked to use the proposed new standard functions. The other examples are rewritten from real

usage of CBUtilLib and are intended to show more unusual use-cases.

List of fruit

int main(void)

{

 const char *const names[] = {"apple", "orange", "banana", "lime"};

 size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

 _Optional strb_t *sb = strb_alloc(0);

 if (sb == NULL) {

 fprintf(stderr, "Failed at start\n");

 return EXIT_FAILURE;

 }

 for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

 for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

 if (j > 0)

 strb_puts(sb, ",");

 strb_puts(sb, names[data[i][j]]);

 }

 if (strb_error(sb)) {

 fprintf(stderr, "Failed at %zu (length %zu)\n",

 i, strb_len(sb));

 break;

 }

 puts(strb_ptr(sb));

 strb_delto(sb, 0);

 }

 int err = strb_error(sb) ? EXIT_FAILURE : EXIT_SUCCESS;

 strb_free(sb);

 return err;

}

Buffer reuse for successive strings

void append_to_csv(strb_t *const csv, char const *const value)

{

 if (strb_tell(csv) != 0)

 strb_putc(csv, ',');

 strb_puts(csv, value);

}

bool build_ships_stringset(strb_t *const output_string,

 char const *const graphics_set,

 bool const include_player, bool const include_fighters,

 bool const include_bigships, bool const include_satellite)

{

 /* Build string suitable to pass to stringset_set_available() */

 strb_delto(output_string, 0);

 _Optional strb_t *ship_name = strb_alloc(0);

 if (!ship_name) return false;

 if (include_player)

 {

 get_shipname_from_type(ship_name, graphics_set, ShipType_Player);

 strb_puts(output_string, strb_ptr(ship_name));

 }

 if (include_fighters)

 {

 for (ShipType i = ShipType_Fighter1; i <= ShipType_Fighter4 && success; i++)

 {

 strb_delto(ship_name, 0);

 get_shipname_from_type(ship_name, graphics_set, i);

 append_to_csv(output_string, strb_ptr(ship_name));

 }

 }

 bool success = !strb_error(ship_name) && !strb_error(output_string);

 strb_free(ship_name);

 return success;

}

Direct append from an external source

if (messagetrans_lookup(&messages, token,

 NULL, 0, &msgsize, 1, id_string) == NULL)

{

 _Optional char *const outtail = strb_write(output_string, msgsize - 1);

 if (outtail &&

 messagetrans_lookup(&messages, token,

 outtail, msgsize, NULL, 1, id_string) == NULL)

 {

 strb_wrote(output_string);

 return true;

 }

}

return strb_puts(output_string, token) >= 0;

Undo truncation for error handling

/* Try to recreate the top-level data structure again. */

old_dir_list = iterator->dir_list;

linkedlist_init(&iterator->dir_list);

strb_setpos(iterator->path_name, iterator->path_name_len);

strb_putc(iterator->path_name, '\0');

e = enter_dir(iterator);

if (e == NULL)

{

 /* Destroy the old data structures on success. */

 free_levels(&old_dir_list, NULL);

}

else

{

 /* Restore the previous state on error */

 iterator->dir_list = old_dir_list;

 strb_unputc(iterator->path_name);

}

Undo truncation to reinstate a leaf name

/* Remove the leaf name of the current directory from the path */

strb_setpos(iterator->path_name, ancestor->path_name_len);

strb_putc(iterator->path_name, '\0');

/* Try to refill the buffer with catalogue entries for the ancestor

 directory */

{

 DirIteratorLevel *tmp = ancestor;

 e = refill_buffer(iterator, &tmp);

 assert(tmp != NULL);

 ancestor = tmp;

}

/* Reinstate the leaf name of the current directory */

strb_unputc(iterator->path_name);

Undo an append to replace a leaf name

if (strb_putc(scan_data->save_path, '.') < 0)

{

 RPT_ERR("NoMem");

 return false;

}

scan_data->save_path_len = strb_len(scan_data->save_path);

And then later:

/* Remove the previous sub-path (does nothing if already undone) */

strb_delto(scan_data->save_path, scan_data->save_path_len);

e = append_to_string_buffer(scan_data->save_path,

 scan_data->iterator,

 diriterator_get_object_sub_path_name);

Rationale

Encapsulation
Weak encapsulation of any interface is a genie that cannot be put back into the bottle. However,

encapsulation hasn’t historically been a big concern of C programmers compared to performance.

strb_t objects that wrap only a pointer are likely to have a size of 20 bytes in a 32-bit execution

environment or 40 bytes on a 64-bit environment (like mtx_t) and could therefore practicably be

assigned automatic storage duration. This looks tempting.

It could be argued that mtx_t provides a good precedent to follow in general, but under-

specification of the semantics of copying objects of that type was raised by Sebor in N2191 [33].

Many of the issues raised in DR 493 would also apply to strb_t if it were a complete type.

Nevertheless, specifying strb_t as a complete type could have benefits:

• Simpler implementations.

• Unlimited number of strb_t objects without use of malloc.

• No need to call a destructor when managing a user-specified array or a fixed-size buffer.

• Control of storage lifetime and locality with respect to other objects.

These need to be weighed against:

• Making the requirement to call strb_free context-dependent could sow confusion.

• Locality of each strb_t to its associated buffer could be worse than if both had been

allocated together.

• Initialisation functions would require an extra parameter to specify the target object.

• Under-specified or poorly understood rules for correct usage.

• Every strb_t object would be double-initialised or declared without an initialiser.

The requirement to call a destructor is made less onerous in many cases by the defer keyword

proposed by N3199 [32]. To reap all the theoretical benefits of a complete type, programs would be

restricted to very short buffers within each strb_t object or separately declared character arrays.

The following code is intended to illustrate some drawbacks of using a complete strb_t type:

foo_t *alloc_foo(const char *in, const char *out)

{

 foo_t *f = malloc(sizeof(*f));

 if (!f)

 return NULL;

 *f = (foo_t){.count = 14, .style = STYLE_ROMAN }; // first initialisations

 if (strb_init(&f->in, in) >= 0) // second initialisation of 'in'

 {

 if (strb_init(&f->out, out) >= 0) // second initialisation of 'out'

 return f;

 strb_destroy(&f->in);

 }

 free(f);

 return NULL;

}

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2191.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3199.htm

Here is the same code using an incomplete strb_t type (as specified):

foo_t *alloc_foo(const char *in, const char *out)

{

 foo_t *f = malloc(sizeof(*f));

 if (!f)

 return NULL;

 *f = (foo_t){.in = strb_dup(in), .out = strb_dup(out),

 .count = 14, .style = STYLE_ROMAN };

 if (f->in && f->out)

 return f;

 strb_free(f->in);

 strb_free(f->out);

 free(f);

 return NULL;

}

Use of an incomplete type means an extra level of indirection is needed when compared to a plain

character array. However, it provides strong encapsulation and avoids the need to specify copy or

move semantics. It also allows future extensions such as reference counting or deferred

deallocation.

The size of a pointer is well-defined for a given target architecture, and many users like knowing the

stored size of common types. If strdup returns a pointer, then it seems reasonable for strb_dup to

do likewise. The semantics of pointers are already well-defined and understood.

The performance impact of using an incomplete type could be mitigated by hiding a definition of the

underlying structure as a different type and casting strb_t to that type for use by inline functions.

However, that may be unnecessary, given advances in link-time optimisation.

strb_t objects needn’t be allocated by malloc: a pool of statically allocated objects could be used

instead. Storage locality and allocation costs could be optimized by storing short strings in a member

of strb_t and switching to malloc for longer strings, if at all. That would remove a level of

indirection for many common use cases.

These choices depend on the characteristics of the target machine, whether it implements malloc,

and how efficient that implementation is. That is why they are best left to the implementer. The user

can help by passing the likely maximum length of a string to strb_alloc. In many cases, the result

should be a single allocation encapsulating both strb_t and buffer.

Terminology
The identifiers specified by my proposal should not be in existing use, since:

Function names that begin with str, mem, or wcs and a lowercase letter are

potentially reserved identifiers and may be added to the declarations in the

<string.h> header.

(7.33.17 of ISO/IEC 9899:2023, Programming languages — C)

Aside from the fact that identifiers like str_dup are not reserved, it seems undesirable to invent new

identifiers that cannot be distinguished phonetically from existing ones.

Standard functions whose names incorporate ‘init’, ‘destroy’, ‘create’ and ‘delete’ (e.g., tss_create

or mtx_init) all operate on objects whose storage is managed by the caller. Consequently, the

corresponding ‘destroy’ functions (e.g., mtx_destroy) do not accept null. It didn’t seem appropriate

to reuse those terms for functions that can return null, or which do accept null as an argument.

There is no precedent in the standard for ‘new’ although it is commonly used elsewhere.

‘Open’ didn’t seem quite right either: it suggests correctly that null can be returned, but in functions

like fopen, the creation of a FILE object is a side-effect of opening a file, whereas creation of a

strb_t object is explicit. (Another point against ‘open’ and ‘close’ is the aberration that fclose does

not accept null.)

Ultimately, I chose names that suggest strb_t creation and destruction resemble malloc and free.

The Linux kernel uses this pattern, for example in the names of alloc_workqueue_attrs and

free_workqueue_attrs. Existing functions that allocate strings have diverse names (e.g., the ‘a’ in

asprintf means allocate) so I also followed that precedent for similar functions to create strb_t

objects.

The pairing of those functions with strb_free seems apt:

Create Destroy Create Destroy
strb_alloc strb_free

calloc free

strb_dup strdup

strb_ndup strndup

strb_asprintf asprintf

strb_vasprintf vasprintf

Standard functions whose names incorporate ‘cpy’ (copy), ‘dup’ (duplicate) ‘put’ (at a current

position) or ‘cat’ (concatenate) establish a precedent for the meaning of those terms. Reusing them

helps brevity and familiarity. Concatenation doesn’t necessarily imply appending, but that is implicit

in the parameter order. It could also be argued that that putting implies overwriting, but I don’t

think that nuance is often relevant.

The choice of strb_nputs instead of strb_putsn is somewhat arbitrary since there is precedent for

both. The ‘n’ prefix seems to predominate (in strncpy, strncat, etc.) where a character limit

concerns the source rather than the target of an operation (as in snprintf). No 'n' prefix is used for

functions such as memcmp and memcpy, where it is not needed for disambiguation. The main issue

with 'nput' is that it resembles 'unput' (the presumed analogue of ungetc).

There is ambiguity about the meaning of ‘printf’ because sprintf overwrites a character array from

the start, whereas fprintf overwrites characters at a current file position (often perceived as

appending). I resolved that by inventing the term ‘putf’.

The term ‘erase’ is used by both C++ and GLib. I considered using ‘remove’ instead of ‘erase’ since

there is precedent for it in the C standard but decided the risk of confusion between strb_remove

and strb_free would be too great. (This is also true of ‘delete’, but I side-stepped it by defining the

semantics as delete-to.) Note that ‘rem’ is short for ‘remainder’ rather than ‘remove’ in the name of

functions like remquo.

strb_ptr could be named strb_get, since it has a similar purpose to tss_get. I decided against that

to allow stream-like ‘get’ functions (e.g., strb_getc) to be added in future.

strb_set could be an alternative name for strb_nputc, since its interface resembles memset. This

would eliminate potential confusion with strb_unputc but doesn’t suggest stream-like semantics.

Initialisation
strb_alloc is omitted from the core interface to allow freestanding implementations to restrict

their support for the new interface to allocation of a fixed number of strb_t objects of small size.

I considered basing the design of strb_alloc on setvbuf. Specifically:

If buf is not a null pointer, the array it points to may be used instead of a buffer

allocated by the setvbuf function and the argument size specifies the size of the

array; otherwise, size may determine the size of a buffer allocated by the

setvbuf function.

(7.23.5.5 of ISO/IEC 9899:2023, Programming languages — C)

Other sources are more explicit that the size argument is merely a hint. It should therefore be

acceptable to pass 0 and get a default buffer size.

This satisfied several requirements in one function:

• Creation of an internal buffer whose initial size is specified by the caller (like

g_string_sized_new) to reduce the need for subsequent reallocations.

• Creation of a buffer from pre-allocated storage (like fmemopen) to allow safe management

of any character array.

• Creation of an empty internal buffer (like g_string_new(NULL)) without passing the

address of an empty string.

However, I decided against it:

• The interface is complex to document, implement and understand.

• It would be tempting to write strb_alloc(0, 0) instead of strb_alloc(0, NULL) or

strb_alloc(0, nullptr), which would be opaque.

• The name strb_alloc does not indicate possible use of an array.

• It creates a new class of run-time error if an implementation (conformant or not) requires

an array to be passed.

• It’s easier to discuss inclusion of functions than nullability of parameters.

• Null pointers are commonly used as an error indicator; allowing them to be passed to

strb_alloc removes the possibility of detecting mishandling of errors by static analysis.

Separating strb_use and strb_alloc clarifies programs and simplifies the common use case

equivalent to g_string_sized_new.

The append functionality of fmemopen is useful for managing many persistent character arrays

without requiring the same number of persistent FILE objects. However, requiring the array passed

into strb_use to contain at least one null character would have drawbacks:

• It requires a linear search for the first null character (although this could end quickly).

• It creates a new class of run-time error (when no null character is present).

• Pre-initialising an array to an empty string is awkward or inefficient.

The last point might need further explanation. The following declaration does not initialise the first

character of the array to null; instead, it initialises every character to null:

char buf[100] = "";

strb_t *sb = strb_use(sizeof buf, buf);

This is probably not what users expect or want – especially those who use automatic storage

because it is “faster”.

The following alternative only initialises the first character, but is awkward and error-prone:

char buf[100];

buf[0] = '\0';

strb_t *sb = strb_use(sizeof buf, buf);

It seems undesirable to force either alternative on every caller of strb_use that specifies an array.

strb_reuse partially solves this by making it explicit when the content of pre-allocated storage is

significant:

char buf[100] = "Hello";

strb_t *sb = strb_reuse(sizeof buf, buf);

if (sb) strb_puts(sb, " world");

It would be easy to allow strb_dup(NULL) with the same meaning as g_string_new(NULL), but that

would be redundant and irregular with respect to strb_asprintf and the existing strdup function.

Parameter order
The strb_t address is passed as the first parameter to strb_nputs, strb_puts and strb_putc

instead of last. This mismatches the position of the FILE * parameter passed to functions fputs and

fputc. However, the parameter order of <stdio.h> functions isn’t consistent; regularity within the

new interface seems more important.

It's tempting to think that a character count should always be passed before a related pointer so that

the pointer can be declared as a variably modified type. However, I do not think that such

declarations would be correct for my proposed interface.

For example, the following declaration specifies that str must point to an array of at least n

characters:

int strb_ncpy(strb_t *sb, size_t n, const char str[n]);

This is not strictly correct because strb_ncpy does not read beyond the first null character it

encounters. If the index of the first null character is less than n-1, then str need not point to an

array of at least n characters.

Another reason not to adopt this style of declaration is that most standard functions instead pass

parameters in the opposite order. However, I made an exception for strb_use to allow a diagnostic

to be produced if the passed-in array is too short:

int main(void)

{

 char buf[1];

 strb_use(2, buf);

 return 0;

}

Output of GCC 13.2:

<source>: In function 'main':

<source>:12:5: warning: 'strb_use' accessing 2 bytes in a region of size 1 [-

Wstringop-overflow=]

 12 | strb_use(2, buf);

 | ^~~~~~~~~~~~~~~~

Positioning
fgetpos and fsetpos were added in ANSI C [26] to deal with files which are too large for fseek and

ftell because of the limitation of encoding file positions in values of type long. This consideration

doesn’t apply to strings, whose length must always be representable by type size_t. Reuse of the

terms ‘seek’ and ‘tell’ is intended to hint that unrestricted random access to strings is supported.

strb_seek is simpler than fseek, in that it cannot seek relative to a specified position. This avoids

mixing signed and unsigned integer types. It can be combined with other functions to achieve the

same effects as fseek:

• strb_seek(sb, 0) is equivalent to fseek(stream, 0, SEEK_SET).

• strb_seek(sb, strb_tell(sb) - 1) is equivalent to fseek(stream, -1, SEEK_CUR).

• strb_seek(sb, strb_len(sb)) is equivalent to fseek(stream, 0, SEEK_END).

A possible drawback is that any integer overflow (e.g., if strb_tell(sb) returns 0 in the example

above) occurs in the calling code instead of in fseek. This would result in a huge position value,

probably followed by storage allocation failure during the next ‘put’ operation.

I decided against specifying a complete opaque type to store string positions, along the lines of

fpos_t. If provided, such a type seems likely to be abused (by treating it as a character index) by

those who want direct control over positioning.

Even if a wcsb_t type and functions to read from a wide string buffer were added, a position type

would still not be required. It is only necessary to incorporate mbstate_t in fpos_t because wide-

oriented streams convert wide characters to multibyte characters and vice versa, as described in

7.23.2.6 of the C23 standard:

Each wide-oriented stream has an associated mbstate_t object that stores the

current parse state of the stream. A successful call to fgetpos stores a

representation of the value of this mbstate_t object as part of the value of the

fpos_t object. A later successful call to fsetpos using the same stored fpos_t

value restores the value of the associated mbstate_t object as well as the

position within the controlled stream.

https://www.lysator.liu.se/c/rat/d9.html#4-9-9-2

The question of how unwritten characters exposed by seeking could be initialised is addressed by

the Single UNIX Specification [27]:

The fseek() function allows the file-position indicator to be set beyond the end

of existing data in the file. If data is later written at this point, subsequent reads

of data in the gap will return bytes with the value 0 until data is actually written

into the gap.

This is a safe default value because null characters terminate strings. On the other hand, it does not

affect the length reported by strb_len and is arguably less useful than clamping the position to the

string length.

Deletion
Data from GitHub indicates that g_string_truncate (12.2K files, 7th) is more widely used than

g_string_erase (4.4K files, 11th), despite providing a subset of the latter's functionality. This

reflects my experience with CBUtilLib, which only provides stringbuffer_truncate. Of the prior art

examined, only GLib provides a function to delete an arbitrary range of characters. If no standard

truncation function is provided, it must be easy to construct the equivalent operation; the same

does not necessarily apply to deletion.

What the above figures do not show is how truncation is commonly used. I observe two idioms:

• g_string_truncate(string, 0) to empty the string.

• g_string_truncate(string, string->len - n) to remove n characters from the end of

a string.

The first of these is equivalent to, but more efficient than, g_string_assign(string, ""); the

second suggests a gap between the intended and actual usage of GLib.

Users often want to undo one or more 'put' operations when the current position is still at the end

of the written characters. This could be part of error handling, or a routine action such as appending

the next file name within a directory to a path string.

Whether deleting characters is appropriate depends on the current mode: Undoing an overwrite (to

the extent that's possible) only entails rewinding the position to the start of the overwritten

characters; otherwise, following fields in a string that is intended to have a fixed layout would

mistakenly be moved.

However, it's essential to minimise the need for users to write mode- or position-specific code,

otherwise benefits to composability intended to emerge from use of the new interface may not be

realised. That is why a delete function should not delete characters in strb_overwrite mode.

Deleting forward

A function to delete at the current position does not need to move the position indicator, but undo

with a delete-forward function would need preceding calls to strb_tell and strb_seek:

strb_puts(sb, "foo");

if (strb_puts(sb, "bar") < 0) {

 strb_seek(sb, strb_tell(sb) – strlen("foo"));

 strb_delfwd(sb, strlen(“foo”)); // no-op in overwrite mode

}

https://pubs.opengroup.org/onlinepubs/7908799/xsh/fseek.html

Often, the total number of characters put into the buffer is not readily available. An old position

could be subtracted from the current position to obtain the number of characters to delete, but the

resultant code begins to look tricky:

size_t start = strb_tell(sb);

if (fgets(foo, sizeof foo, f))

 strb_puts(sb, foo);

if (strb_puts(sb, "bar") < 0) {

 size_t len = strb_tell(sb) - start;

 strb_seek(sb, start);

 strb_delfwd(sb, len); // no-op in overwrite mode

}

Deletion of matching substrings is another likely use case. Functions like strstr return a pointer to

the start of a match, not the end, so deletion of a match feels natural with a delete-forward

function:

_Optional const char *match = strstr(strb_ptr(sb), “foo”);

if (match) {

 strb_seek(sb, match - strb_ptr(sb));

 strb_delfwd(sb, strlen("foo")); // no-op in overwrite mode

}

In favour of delete-forward:

• Closest resemblance to g_string_erase (and likely user expectations).

• Simple to specify that delete-forward is ignored in strb_overwrite mode.

• Deletion of matching substrings feels natural.

Against delete-forward:

• Undoing any previous 'puts' requires calls to strb_tell and strb_seek. Ideally, common

operations should take place at the current position.

Deleting backward

A function to delete characters behind the current position must move the position indicator back by

the same amount, otherwise successive calls would not delete contiguous substrings. Undo with a

delete-back function would not need a preceding call to strb_seek:

strb_puts(sb, "foo");

if (strb_puts(sb, "bar") < 0)

 strb_delbck(sb, strlen(“foo”)); // reposition-only in overwrite mode

The non-trivial version of the same code:

size_t start = strb_tell(sb);

if (fgets(foo, sizeof foo, f))

 strb_puts(sb, foo);

if (strb_puts(sb, "bar") < 0)

 strb_delbck(sb, strb_tell(sb) - start); // reposition-only in overwrite mode

However, it feels less natural to seek the end of a match than the beginning:

_Optional const char *match = strstr(strb_ptr(sb), “foo”);

if (match) {

 strb_seek(sb, match - strb_ptr(sb) + strlen("foo"));

 strb_delbck(sb, strlen("foo")); // reposition-only in overwrite mode

}

In favour of delete-back:

• Initial position is suitable for undo. No call to strb_seek is needed (unlike delete-forward).

• Repositioning is implicit (as for strb_puts et al.).

• Undoing a known number of 'puts' does not require a call to strb_tell (unlike delete-

forward).

Against delete-back:

• Deletion of matching substrings feels unnatural.

• Less resemblance to g_string_erase.

• Complex to specify that delete-back only updates the position indicator in strb_overwrite

mode.

Deleting to an absolute position

To avoid choosing between delete-back and delete-forward, a delete-to function could delete all

characters between the current position and a specified absolute position:

strb_puts(sb, "foo");

if (strb_puts(sb, "bar") < 0)

 strb_delto(sb, strb_tell(sb) – strlen("foo")); // reposition-only in overwrite

mode

The non-trivial version of the same code:

size_t start = strb_tell(sb);

if (fgets(foo, sizeof foo, f))

 strb_puts(sb, foo);

if (strb_puts(sb, "bar") < 0)

 strb_delto(sb, start); // reposition-only in overwrite mode

The delete-match use case:

_Optional const char *match = strstr(strb_ptr(sb), “foo”);

if (match) {

 strb_seek(sb, match - strb_ptr(sb));

 strb_delto(sb, strb_tell() + strlen("foo")); // no-op in overwrite mode

}

In favour of delete-to:

• Multi-purpose.

• Initial position is suitable for undo. No call to strb_seek is needed (unlike delete-forward).

• Repositioning is implicit for undo (as for strb_puts et al.).

• Undoing an unknown number of 'puts' requires just one call to strb_tell (fewer than

delete-back).

Against delete-to:

• Undoing a known number of 'puts' requires a call to strb_tell (more than delete-back).

• Passing an absolute position to a delete function could cause confusion, depending on its

name.

• Deleting a matching string requires a call to strb_tell or reuse of a stored/calculated

current position.

• Complex to specify that delete-to only updates the position indicator in strb_overwrite

mode.

Deleting to a signed offset

Another alternative would be to specify a delete-relative function that accepts a signed offset (like

fseek) to delete relative to the current position:

strb_puts(sb, "foo");

if (strb_puts(sb, "bar") < 0)

 strb_del(sb, -(int)strlen(“foo”)); // reposition-only in overwrite mode

The non-trivial version of the same code:

size_t start = strb_tell(sb);

if (fgets(foo, sizeof foo, f))

 strb_puts(sb, foo);

if (strb_puts(sb, "bar") < 0)

 strb_del(sb, -(int)(strb_tell(sb) - start));

The delete-match use case:

_Optional const char *match = strstr(strb_ptr(sb), “foo”);

if (match) {

 strb_seek(sb, match - strb_ptr(sb));

 strb_del(sb, (int)strlen("foo")); // no-op in overwrite mode

}

Casts in the above examples bring forward a conversion from size_t to int and suppress any

diagnostic messages that might otherwise be issued. This reduces the likelihood of the result of the

conversion being unrepresentable from a certainty to improbable.

For delete-relative:

• Multi-purpose.

• Initial position is suitable for undo. No call to strb_seek is needed (unlike delete-forward).

• Repositioning is implicit (as for strb_puts et al.).

• Undoing a known number of 'puts' does not require a call to strb_tell (unlike delete-

forward).

• Deletion of matching substrings feels natural.

Against delete-relative:

• Often requires a conversion to a signed type that could produce an implementation-defined

result or raise an implementation-defined signal.

• Limits the number of characters that can be deleted to half the theoretical maximum string

length.

• Consistent use of size_t seems a desirable property to maintain.

• Complex to specify that delete-relative only updates the position indicator in

strb_overwrite mode.

Conclusions

Different functions suit different use cases:

• Delete-forward or delete-relative suit deletion of matching substrings.

• Delete-backward or delete-relative suit undoing a known number of puts.

• Delete-to suits undoing an unknown number of puts.

I dismissed delete-relative because of its intractable signed/unsigned type issues.

If a strb_erase function is provided then it must have the same delete-forward behaviour as

g_string_erase and std::string:erase, to avoid surprise. Minimally, the name of a delete-back

or delete-to function needs to make clear that its semantics are nothing like g_string_erase.

(Implementing the exact semantics of g_string_erase would raise the question of what effect it

should have on the position indicator, if any.)

I decided to specify delete-to (as strb_delto) instead of delete-forward or delete-backward because

it can do either. Deleting from an arbitrary position requires the caller to know that position. If the

start position is known, then it should be trivial to calculate the end position (or vice versa).

Using delete-backward to undo ‘put’ operations requires the caller to calculate the number of

characters to be removed. Except in trivial cases, it is less error-prone and more efficient to pass an

old result of strb_tell to a delete-to function. Removing the need to maintain running totals is one

of the goals of my proposal.

Delete-backward is still important, but better served under a different name. The standard function

ungetc pushes one character back onto an input stream. This concept has been extended to output

streams by providing a strb_unputc function, with the intention of replacing usage like

g_string_truncate(string, string->len - 1).

strb_unputc has another use: if strb_putc was used to truncate a string by writing a null character,

then strb_unputc can be used to ‘undo’ truncation by reinstating the original character! The

original character must have been stored in strb_overwrite mode. This completes the functionality

of stringbuffer_undo.

The first character appended after stringbuffer_truncate overwrites the null terminator stored

by that function, whereas a character appended after strb_putc(sb, '\0') does not. I don't

foresee that being important in practice because such append operations also prevent truncation

being undone by stringbuffer_undo (or strb_unputc).

Direct insertion
It must be straightforward and efficient to implement all the proposed write functions (strb_puts,

strb_putf, etc.) using a combination of direct insertion and existing standard functions.

This serves several purposes:

• Proves the usability of direct insertion.

• Avoids divergence in time or space complexity between direct insertion and other

algorithms.

• Reduces implementation and verification costs.

• Functions can be documented in terms of other functions.

A null character may appear anywhere in an array – not just at the end. For example, the following

call to sprintf creates a string with a null character at both ends:

sprintf(buf, "%c.", 0);

A null character may also appear anywhere in the buffer of a strb_t object, since it is easy to insert

one by calling strb_putf(sb, "%c", 0). It would be hard to prevent such misuse. Consequently,

strb_len(sb) and strlen(strb_ptr(sb)) can return different results. However, this is rarely the

desired outcome of insertion of a null-terminated string.

There are three ways of implementing insertion of a null-terminated string into an array:

1. Move the tail of the destination string by the length of the source string. Keep a copy of the

destination character to be overwritten by the source string’s terminator, then restore it

after the insertion.

2. Move the tail of the destination string by one more than the length of the source string, then

move the tail back by one character after the insertion.

3. Move the tail of the destination string by the length of the source string. Duplicate the

source string, insert all its characters except the terminator, then destroy the duplicate.

Unfortunately, all those solutions require a three-step process, which introduces the potential error

of calling a ‘prepare’ function but neglecting to call the corresponding ‘finish’ function.

3 is not ‘direct’ insertion, so it can be dismissed. 2 requires extra memory accesses which could be

nearly as inefficient as copying from an intermediate buffer. That leaves only method 1.

Restoring an overwritten character could be done explicitly (by a ‘finish’ function) or implicitly

(before the next read or write occurs). Implicit restoration could also be a side-effect of calling

strb_ptr; any value it previously returned would be invalid after an insertion anyway because the

buffer’s address might have changed. However, it seems unintuitive for strb_ptr to modify the

string.

A three-step process is also required if fewer characters are written into the buffer than expected

(e.g., because strb_write was passed a maximum value like MB_LEN_MAX). In this scenario, excess

characters must be deleted. Often, only one of those corrections needs to be applied (e.g., c32rtomb

may output fewer than MB_LEN_MAX bytes but never appends a null terminator to its output).

However, requiring user code to solve either problem would be more error-prone than requiring a

call to a ‘finish’ function.

The interface provided by CBUtilLib requires adaptation:

• stringbuffer_prepare_append outputs the maximum number of characters that can be

written. When only appending is allowed, it is trivial to return the amount of free space at

the end of the buffer (which is often more than requested). When inserting, opening a

bigger gap than requested would be counterproductive, so returning the available space is

redundant.

• stringbuffer_finish_append receives the number of characters written and uses this to

update the string length. When only appending is allowed, it doesn't matter if fewer

characters were written than expected. When inserting a string of unknown length, it's

impossible to restore the character overwritten by the terminator without keeping every

potentially overwritten character (either by dynamically allocating another buffer, or by

moving the tail of the destination string by double the length of the source string).

Keeping every potentially overwritten character until 'finish' is called could violate assumptions

about the size of buffer required for string operations. This is particularly important when the buffer

is an array specified by the user. Consequently, I removed the characters-written parameter from

'finish', and with it the feature of correcting for fewer characters having been written than expected.

Why not require the user to include space for a null terminator in the size passed to 'prepare', and

then call strb_unputc instead of 'finish' to remove any unwanted terminator? Those aren’t

equivalent: in strb_insert mode, strb_unputc moves the tail of the string by one character,

whereas strb_wrote never does that.

Unlike stringbuffer_prepare_append, the number of characters passed to strb_write need not

include space for a terminator. This is safer, and better fits with the return value of functions like

snprintf.

In conclusion, I considered this:

int strb_vputf(strb_t *sb, const char *format, va_list args)

{

 va_list args_copy;

 va_copy(args_copy, args);

 int len = snprintf(NULL, 0, format, args);

 if (len >= 0) {

 _Optional char *buf = strb_write(sb, len); // move tail by +len & keep buf[len]

 if (buf) {

 sprintf(buf, format, args_copy);

 strb_wrote(sb); // restore buf[len] overwritten by null

 }

 }

 va_end(args_copy);

 return len;

}

Preferable to this:

int strb_vputf(strb_t *sb, const char *format, va_list args)

{

 va_list args_copy;

 va_copy(args_copy, args);

 int len = snprintf(NULL, 0, format, args);

 if (len >= 0) {

 _Optional char *buf = strb_write(sb, len); // move tail by +len

 if (buf) {

 char tmp = buf[len]; // keep character expected to be overwritten

 sprintf(buf, format, args_copy);

 buf[len] = tmp; // restore character overwritten by null

 }

 }

 va_end(args_copy);

 return len;

}

Or this:

int strb_vputf(strb_t *sb, const char *format, va_list args)

{

 va_list args_copy;

 va_copy(args_copy, args);

 int len = snprintf(NULL, 0, format, args);

 if (len >= 0) {

 _Optional char *buf = strb_write(sb, len + 1); // move tail by +len + 1

 if (buf) {

 sprintf(buf, format, args_copy);

 strb_unputc(sb); // move tail by -1 and delete null character

 }

 }

 va_end(args_copy);

 return len;

}

Although all are valid usage of the interface as specified.

Error handling
The provision of a stored error indicator is based on several observations:

1. Writing comprehensive error-handling code is difficult.

2. The presence of such code (even if correct, and even if not executed) harms both

programmer and execution efficiency.

3. The performance of code that fails typically doesn’t matter.

The fact that the GPU driver, standard I/O streams, and other prior art such as OpenGL’s glGetError

function [28] provide this feature also indicate that it can be useful. In my experience, its usefulness

increases with program size (since it is automatically preserved across function call and return).

The proposed interface only allows errors to be cleared explicitly (by calling strb_clearerr). This

seems less likely to surprise users, but if a strb_rewind function is ever added then it must clear the

error indicator to match rewind.

Choice of functions
I did not consider it necessary to specify ‘nprintf’ variants of the formatted string functions because

the standard does not describe them for streams, and I didn’t find any prior art other than snprintf

and vsnprintf. I therefore assume that truncation is usually a ‘bug’ rather than a feature. This

avoids likely confusion about whether the size parameter includes space for a null terminator.

Use of strb_len instead of strb_tell is likely to become an anti-pattern that harms composability,

since they are equivalent when the position indicator is at the end (as it usually is). Nevertheless, I

believe it's necessary to provide both functions.

The strb_cpy function fulfils two needs:

• An equivalent to g_string_assign.

• An equivalent to cutils_astring_clear (by replacing the current string with "").

Without strb_cpy, the current string could instead be replaced by:

strb_seek(sb, 0);

strb_delto(sb, SIZE_MAX); // delete to the end

strb_puts(sb, "empty");

But the above sequence might be considered too onerous.

Unfortunately:

• strb_cpy violates the general rule that all operations use the current position.

• It’s not obvious what effect strb_cpy has on the current character position. (It moves to the

end of the string.)

• There is a risk that producer functions accidentally call strb_cpy instead of strb_puts. This

might not be noticed immediately, and it would limit the benefits to interoperability

intended to result from use of the new interface.

https://registry.khronos.org/OpenGL-Refpages/gl4/html/glGetError.xhtml

I didn’t want to specify an equivalent to g_string_printf, for the same reasons. According to my

data, g_string_printf is used less often than g_string_append_printf (and probably in many

cases where the latter could be substituted).

However, allocating the precious strb_printf name to mean something different from

g_string_printf and orthogonal to strb_cpy seemed too risky. Instead, I chose to rename the

functions that have stream-like semantics as strb_putf and strb_vputf, which is also more

succinct.

strb_nputc is provided to satisfy a user request for a function to output a character a specified

number of times [30]. It is also included to spark debate about the naming of strb_unputc.

Arguably, strb_ndup, strb_asprintf and strb_vasprintf need not be provided because GLib

doesn’t provide equivalents. However, strb_ndup seems like a useful equivalent to strndup that

might reasonably be expected to exist. strb_asprintf and strb_vasprintf address a similar need

to the GNU/BSD functions asprintf and vasprintf, but with the simpler interface favoured by the

Linux kernel.

Not every GLib function has a direct equivalent. Most of the missing functionality can be replicated

by combining calls to two or more functions belonging to the proposed interface. The number of

calls required depends on context (e.g., successive insertions do not require multiple calls to

strb_seek).

g_string_new(NULL) strb_alloc(0);

g_string_new(init) strb_dup(init);

g_string_new_len(init, len) strb_ndup(init, len);

g_string_sized_new(dfl_size) strb_alloc(dfl_size);

g_string_free(string, TRUE) strb_free(sb);

s = g_string_free(string, FALSE) s = strdup(strb_ptr(sb));

strb_free(sb);

g_string_free_and_steal(string) s = strdup(strb_ptr(sb));

strb_free(sb);

g_string_free_to_bytes(string) Not supported
g_string_equal(v, v2) strcmp(strb_ptr(v), strb_ptr(v2));

g_string_hash(str) hash = 0;

for (i = 0; i < strb_len(sb); ++i)

 hash += strb_ptr(sb)[i];

g_string_assign(string, rval) strb_cpy(sb, rval);

g_string_truncate(string, len) strb_setmode(sb, strb_insert);

strb_seek(sb, len);

strb_delto(sb, SIZE_MAX);

g_string_insert_len(string, pos, val,

len)

strb_setmode(sb, strb_insert);

strb_seek(sb, pos);

strb_nputs(sb, val, len);

g_string_append(string, val) strb_seek(sb, strb_len(sb));

strb_puts(sb, val) ;

g_string_append_len(string, val, len) strb_seek(sb, strb_len(sb));

strb_nputs(sb, val, len) ;

g_string_append_c(string, c) strb_seek(sb, strb_len(sb));

strb_putc(sb, c) ;

g_string_prepend(string, val) strb_setmode(sb, strb_insert);

strb_seek(sb, 0);

strb_puts(sb, val);

g_string_prepend_c(string, c) strb_setmode(sb, strb_insert);

strb_seek(sb, 0);

strb_putc(sb, c);

g_string_prepend_len(string, val, len) strb_setmode(sb, strb_insert);

strb_seek(sb, 0);

strb_nputs(sb, val, len);

https://stackoverflow.com/questions/14678948/how-to-repeat-a-char-using-printf

g_string_insert(string, pos, val) strb_setmode(sb, strb_insert);

strb_seek(sb, pos);

strb_puts(sb, val);

g_string_insert_c(string, pos, c) strb_setmode(sb, strb_insert);

strb_seek(sb, pos);

strb_putc(sb, c);

g_string_overwrite(string, pos, val) strb_setmode(sb, strb_overwrite);

strb_seek(sb, pos);

strb_puts(sb, val);

g_string_overwrite_len(string, pos,

val, len)

strb_setmode(sb, strb_overwrite);

strb_seek(sb, pos);

strb_nputs(sb, val, len);

g_string_erase(string, pos, len) strb_setmode(sb, strb_insert);

strb_seek(sb, pos);

strb_delto(sb, pos + len);

g_string_replace(string, find, replace,

limit)

strb_setmode(sb, strb_insert);

for (i = 0; i < limit || !limit; ++i)

{

 match = strstr(strb_ptr(sb), find) –

 strb_ptr(sb);

 if (!match) break;

 size_t pos = match - strb_ptr(sb);

 strb_seek(sb, pos);

 strb_delto(sb, pos + strlen(find));

 strb_puts(sb, replace);

}

g_string_ascii_down(string)

s = strb_write(sb, 0)

for (i = 0; i < strb_len(sb); ++i)

 s[i] = tolower(s[i]);

g_string_ascii_up(string)

s = strb_write(sb, 0)

for (i = 0; i < strb_len(sb); ++i)

 s[i] = toupper(s[i]);

g_string_printf(string, format, ...) strb_printf(sb, format, ...);

g_string_append_printf(string,

format, ...)

strb_seek(sb, strb_len(sb));

strb_putf(sb, format, ...);

Several ImageMagick functions seem overly specialized and therefore are not supported directly:

StringInfo *head =

SplitStringInfo(string_info, offset)

_Optional strb_t *head =

strb_ndup(strb_ptr(sb), offset);

strb_seek(sb, 0);

strb_delto(sb, offset);

SetStringInfoLength(string_info, length) strb_setmode(sb, strb_insert);

strb_seek(sb, strb_len(sb));

if (length < strb_len(sb))

 strb_delto(sb, length);

else if (strb_write(sb,

 length - strb_len(sb)))

 strb_wrote(sb, length - strb_len(sb));

SetStringInfoDatum(string_info, source) strb_setmode(sb, strb_overwrite);

strb_seek(sb, 0);

if (strb_write(sb, strb_len(sb))) {

 memcpy(strb_ptr(sb), source, strb_len(sb));

 strb_wrote(sb, strb_len(sb));

}

StringInfo *clone =

 CloneStringInfo(string_info)

_Optional strb_t *clone =

 strb_dup(strb_ptr(sb));

ConcatenateStringInfo(string_info,

source)

strb_seek(sb, strb_len(sb));

strb_puts(sb, strb_ptr(source));

SetStringInfo(string_info, source) strb_cpy(sb, strb_ptr(source));

Return values
fputs only returns 'a nonnegative value' if successful. It’s tempting to specify that strb_puts and

strb_nputs should instead return the number of characters written.

This would be regular with respect to strb_putf and strb_vputf. It could also be useful for callers

who wish to update a running total. However, removing the need for callers to maintain such totals

is one of the goals of my proposal. A total could be computed more reliably from the return value of

two or more calls to strb_ftell.

Also, it would be illogical to allow up to SIZE_MAX characters to be written given that the return

value only allows up to INT_MAX writes to be reported. Changing the return type to size_t isn’t a

solution because putting 0 characters is not an error case.

The strb_putf and strb_vputf functions return an in-band error value and have the same issue of

not being able to report more than INT_MAX writes. However, I'm expecting most callers to ignore

the return value or simply check that it is nonnegative.

Some might question why strb_cpy and strb_ncpy do not return a pointer to the destination array

like the strcpy and strncpy functions which they resemble.

1. It seems preferable to have a consistent return type and interpretation of return values for

the whole interface.

2. A pointer returned by strb_cpy or strb_ncpy could not be dereferenced without first

checking for null. This would preclude idiomatic usage such as is possible when calling

strcpy or strncpy.

For example, this is safe:

char array[10];

puts(strcpy(array, "Hello"));

Whereas this would be unsafe:

_Optional strb_t *array = strb_alloc(10);

if (array)

 puts(strb_cpy(array, "Hello"));

Possible future directions
The most obvious addition would be support for wide character strings:

typedef struct wcsb_t wcsb_t;

_Optional wcsb_t *wcsb_alloc(size_t size,

 _Optional const wchar_t buf[size] /*in*/);

void wcsb_free(_Optional wcsb_t *sb /*in*/);

const wchar_t *wcsb_ptr(const wcsb_t *sb /*in*/);

size_t wcsb_len(const wcsb_t *sb /*in*/);

These were omitted for brevity and because they don’t substantially affect the design.

Functions could be added to read from the current position and advance by the number of

characters read:

_Optional char *strb_gets(strb_t *sb /*in,out*/,

 size_t n /*characters+1*/,

 char str[n] /*out*/);

int strb_getc(strb_t *sb /*in,out*/);

int strb_vgetf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 va_list args /*in*/);

int strb_getf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 ...);

The following functions could instead read and convert characters from the start of a string:

int strb_vscanf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 va_list args /*in*/);

int strb_scanf(strb_t *sb /*in,out*/,

 const char *format /*in*/,

 ...);

However, most prior art does not provide functions such as those above, so their inclusion is

questionable.

Using const char * as the parameter type for functions such as strb_puts is good for

interoperability but prevents the error state from being automatically propagated from source to

destination, where the source is another strb_t object.

It could be useful to add variants of such functions which instead accept const strb_t * for

convenience and to allow error propagation. However, it would be difficult to extend variadic

functions such as strb_printf to support the same functionality.

Acknowledgements
The author would like to recognize the following people for their ideas, help, feedback, and

encouragement: James Renwick, Linus Torvalds, Philip Withnall, Luke Culpepper, Rob Genders, Achal

Pandey, Nikunj Patel, Matthew Clarkson, Dennis Tsiang, Raffaele Aquilone, Lukas Zapolskas, Martin

Uecker, Aaron Ballman, Jens Gustedt, and Elizabeth Bazley.

Legal notices

GPU driver snippets
Copyright (C) 2023. Arm Limited or its affiliates. All rights reserved.

This proprietary and confidential software may only be used by an authorized person under a valid

licensing agreement from Arm Limited or its affiliates.

Arm Limited has given permission to i) share the content as part of the standards development

process, ii) publish the content, or parts thereof, in original or modified form in ISO or ISO/IEC

standards and iii) exploit the content as part of an ISO or ISO/IEC standard according to ISO and IEC

practice.

CBUtilLib
Copyright (C) 2012 Christopher Bazley

This library is free software; you can redistribute it and/or modify it under the terms of the GNU

Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the

License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if

not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-

1307 USA

ImageMagick
Copyright @ 1999 ImageMagick Studio LLC, a non-profit organization dedicated to making software

imaging solutions freely available.

You may not use this file except in compliance with the license. You may obtain a copy of the license

at https://imagemagick.org/script/license.php

unless required by applicable law or agreed to in writing, software distributed under the license is

distributed on an "as is" basis, without warranties or conditions of any kind, either express or

implied.

See the license for the specific language governing permissions and limitations under the license.

Linux kernel
SPDX-License-Identifier: GPL-2.0

Copyright (C) 1991, 1992 Linus Torvalds

POSIX
Copyright © 2001-2018 IEEE and The Open Group

This document is copyrighted by the IEEE and The Open Group. It is made available for a wide variety

of both public and private uses. These include both use, by reference, in laws and regulations, and

use in private self-regulation, standardization, and the promotion of engineering practices and

methods. By making this document available for use and adoption by public authorities and private

users, the IEEE and The Open Group do not waive any rights in copyright to this document.

GNU/BSD
Copyright 1994-2024 The FreeBSD Project.

Redistribution and use in source (AsciiDoc) and 'compiled' forms (HTML, PDF, EPUB and so forth)

with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (AsciiDoc) must retain the above copyright notice, this list of

conditions and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (Converted to PDF, EPUB and other formats) must

reproduce the above copyright notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the distribution.

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT

SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

GLib
GLIB - Library of useful routines for C programming

Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald

SPDX-License-Identifier: LGPL-2.1-or-later

This library is free software; you can redistribute it and/or modify it under the terms of the GNU

Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the

License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if

not, see <http://www.gnu.org/licenses/>.

References
[1] BBC Microcomputer Disc Filing System User Guide

http://chrisacorns.computinghistory.org.uk/docs/Acorn/Manuals/Acorn_DiscSystemUGI2.pdf

[2] The Advanced Disc Filing System User Guide

https://chrisacorns.computinghistory.org.uk/docs/Acorn/Manuals/Acorn_ADFSUG.pdf

[3] FileCore - Phase 1 Functional Specification

https://www.marutan.net/wikiref/Acorn%20Registered%20Developer%20REFERNC/RO4/API/HTML/

FILECORE.HTM

[4] Carnegie Mellon University – SEI CERT C Coding Standard – STR03-C. Do not inadvertently

truncate a string

https://wiki.sei.cmu.edu/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string

[5] Programmer's Reference Manual – Format of a sprite

http://www.riscos.com/support/developers/prm/sprites.html#22649

[6] CBUtilLib

http://starfighter.acornarcade.com/mysite/programming.htm#cbutillib

[7] fmemopen - open a memory buffer stream

https://pubs.opengroup.org/onlinepubs/9699919799/functions/fmemopen.html

[8] open_memstream, open_wmemstream - open a dynamic memory buffer stream

https://pubs.opengroup.org/onlinepubs/9699919799/functions/open_memstream.html

[9] open_memstream.c (C) 2007 Eric Blake

https://github.com/artetxem/mitzuli/blob/master/libraries/tesseract-android-

tools/src/main/native/com_googlecode_leptonica_android/stdio/open_memstream.c

[10] fmemopen(3) — Linux manual page

https://man7.org/linux/man-pages/man3/fmemopen.3.html

[11] glibc – libc - Bug 1995 - fprintf() + fmemopen() error (?)

https://sourceware.org/bugzilla/show_bug.cgi?id=1995

[12] PRINTF(3) — FreeBSD Manual Pages

https://man.freebsd.org/cgi/man.cgi?query=asprintf

[13] asprintf(3) — Linux manual page

https://man7.org/linux/man-pages/man3/asprintf.3.html

[14] Elixir Cross Referencer – Linux kernel source

https://elixir.bootlin.com/linux/latest/source/include/linux/sprintf.h

[15] [PATCH] Implement kasprintf

https://github.com/spotify/linux/commit/e905914f96e11862b130dd229f73045dad9a34e8

[16] GLib – Wikipedia

https://en.wikipedia.org/wiki/GLib

[17] GLib.String

https://docs.gtk.org/glib/struct.String.html

[18] Index of /sources/glib/1.1/

https://download.gnome.org/sources/glib/1.1/

[19] GLib handle out of memory

https://stackoverflow.com/questions/16974254/glib-handle-out-of-memory

[20] Carnegie Mellon University – SEI CERT C Coding Standard – ERR02-C. Avoid in-band error

indicators

https://wiki.sei.cmu.edu/confluence/display/c/ERR02-C.+Avoid+in-band+error+indicators

[21] ImageMagick History

https://imagemagick.org/script/history.php

[22] MagickCore String Methods

https://github.com/ImageMagick/ImageMagick/blob/main/MagickCore/string.c

[23] Programmer's Reference Manuals – SWI Calls – MessageTrans_Lookup

https://www.riscosopen.org/wiki/documentation/show/MessageTrans_Lookup

[24] GitHub code search results

https://github.com/search?q=%2Fg_string_overwrite%5B%5E_%5D%2F+path%3A*.c+language%3A

C&type=code&ref=advsearch

[25] ANSI C Rationale – The rewind function

https://www.lysator.liu.se/c/rat/d9.html#4-9-9-5

[26] ANSI C Rationale – The fseek function

https://www.lysator.liu.se/c/rat/d9.html#4-9-9-2

[27] The Single UNIX ® Specification, Version 2 – fseek

https://pubs.opengroup.org/onlinepubs/7908799/xsh/fseek.html

[28] glGetError – OpenGL 4 Reference Pages

https://registry.khronos.org/OpenGL-Refpages/gl4/html/glGetError.xhtml

[29] Updated Field Experience With Annex K — Bounds Checking Interfaces

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm

[30] C – How to repeat a char using printf? – Stack Overflow

https://stackoverflow.com/questions/14678948/how-to-repeat-a-char-using-printf

[31] _Optional: a type qualifier to indicate pointer nullability

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3089.pdf

[32] Improved __attribute__((cleanup)) Through defer

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3199.htm

[33] Effects of copying a mtx_t object

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2191.htm

