W6 Y/ 38

e/t

Floating-Point C Extensions

X3J11 ‘

FP/IEEE Subcommittee
Technical Report

Final Report: Draft #2
WG14/N319, X3J11/94-003
January 6, 1994

Foreword

The Numerical C Extensions Group, NCEG, at its initial meeting in May 1989, identified
support for IEEE floating-point arithmetic as one of its focus areas and organized a
subgroup to produce a technical report. NCEG, now the ANSI working group X3J11.1,
has had the benefit of both C language expertise and also IEEE floating-point expertise. It
has included individuals with substantial experience with language extensions (albeit
proprietary) for IEEE floating-point. And, following the C language standardization,
NCEG has had a stable, well defined host for its extensions. Thus NCEG has had a
unique opportunity to solve this long-standing problem.

When IEEE binary floating-point standard 754 became an official standard in July 1985, 26
months before the radix-independent standard 854, several IEEE implementations were
already shipping. Now virtually all new floating-point implementations conform to the
IEEE standards—at least in format, if not to the last detail. Although these standards have
been enormously successful in influencing hardware implementation, many IEEE features
remain impractical or unavailable for use by programmers. The IEEE standards do not
include language bindings—part of the cost of delivering the basic standard in a timely
fashion. The ANSI C committee attempted to eliminate conflicts with IEEE arithmetic, but
did not specify IEEE support. In the meantime, particular companies have defined their
own IEEE language extensions and libraries [4, 8, 10]; not surprisingly, lack of portability
has impeded programming for these interfaces.

The initial version of this document, in August 1989, was organized foremost as a
specification for IEEE implementations, with notes for other implementations. However,
from the beginning, substantial portions of the specification were not specific to IEEE
floating-point. For broader utility the document was reorganized as a general floating-point
specification with additional specification for IEEE implementations.

NCEG mailings have included twelve drafts of this document, which have been reviewed
to varying degrees by NCEG’s FP/IEEE subgroup, NCEG as a whole, and numerous
other interested parties. Proprietary extensions for IEEE support have provided prior art
for many features. Substantial portions of the specification have been implemented in both
developmental and commercial compilers and libraries.

An earlier draft of “Floating-Point C Extensions” (X3J11.1/92-040) was distributed for
preliminary review to various professional organizations, including X3J11, WG14,
X3J16/WG21, X3T2, and X/Open. The subsequent draft (X3J11.1/93-001) was
distributed for public comment. NCEG approved the next draft (X3J11.1/93-028,
WG14/N291, X3J11/93-037) for forwarding to X3J11 as its FP/IEEE technical report. At
its December 1993 meetings, NCEG approved the minor changes listed in “Changes to
Floating-Point C Extensions” (WG14/N320, X3J11/94-004), which are incorporated into
this, the second draft of the technical report (WG14/N319, X3J1 1/94-003). Comments
accompanying the NCEG votes on the motion to forward X3J11.1/93-028 to X3J11 are
attached following the main document below.

People who have made especially substantial contributions to this document include, in
alphabetical order: Jerome Coonen, Bill Gibbons, David Hough, Rex Jaeschke,
W. Kahan, Clayton Lewis, Stuart McDonald, Colin McMaster, Rick Meyers, David
Prosser, and Fred Tydeman.

Pagei

(—l

NI

Others who have provided invaluable contributions, reviews, or administrative help
include, in alphabetical order: Joel Boney, Norris Boyd, Larry Breed, Walter Bright,
W. J. Cody, Elizabeth Crockett, Karen Deach, James Demmel, Fred Dunlap, Clive
Feather, Yinsun Feng, Samuel Figueroa, James Frankel, Scott Fraser, David Gay, Eric
Grosse, Ron Guilmette, Doug Gwyn, Bill Homer, Kenton Hanson, Paul Hilfinger, Martha
Jaffe, Bob Jervis, David Keaton, Earl Killian, David Knaak, John Kwan, Roger
Lawrence, Tom MacDonald, Michael Meissner, Randy Meyers, Antonine Mione, Stephen
Moshier, Jon Okada, Conor O'Neill, Tom Pennello, Tim Peters, Thomas Plum, Sanjay
Poonen, Pat Ricci, Ali Sazegari, Roger Schlafly, Steve Sommars, Richard Stallman, Linda
Stanberry, Gordon Sterling, Bill Torkelson, and Terrence Yee.

This document benefited from the author’s previous experience with Apple Computer,

Inc.’s numerics and languages groups, developing the Standard Apple Numerics
Environment (SANE) and its various language bindings.

Jim Thomas
January 6, 1994

Page ii

3/0

10

15

20

25

30

35

45

Floating-Point C Extensions
WG14/N319, X3J11/94-003

Jim Thomas
Taligent, Inc.
10201 N. DeAnza Blvd.
Cupertino, CA 95014-2233
jim_thomas@taligent.com

1. INTRODUCTION

1.1 Purpose

This document specifies:

1. aset of Standard C extensions, suitable for most implementations, and designed to
facilitate a wide range of numerical programming;

2. a further set of extensions and definitions, suitable for implementations that support
IEEE floating-point standards 754 and 854, and designed to provide full access to
the features of those standards—allowing access also to similar features in non-
IEEE implementations.

This document is intended for incorporation into a Technical Report of the Numerical C

Extensions Group (NCEG/X3J11.1).

1.2 Scope

The specifications of this document, while extending Standard C, still lie within the
scope of that standard ([17] §4.2; [1] §1.2).

This document does not:

1. describe Standard C, except where it relates to extensions or subtleties of
implementation, but instead refers implicitly to the Standard C documents [17], [1];

2. describe IEEE floating-point per se, but instead refers implicitly to the 754 and 854
standards documents;

3. address other NCEG areas, such as complex arithmetic, which are expected to
accommodate IEEE standard arithmetic.

January 6, 1994 ‘ DRAFT Page 1

37/

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

1.3

10.

11.

12,

13.

14.

15.
16.

17.

Page 2

Floating-Point C Extensions

References

American National Standard for Information Systems—Programming Language C
(X3.159-1989).

IEEE Standard for Binary Floating-Point Arithmetic (ANSVIEEE Std 754-1985).
Also, Binary floating-point arithmetic for microprocessor systems (IEC 559:1989).

IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE Std
854-1987).

Apple Numerics Manual, Second Edition, Addison-Wesley (1988).

“Functions to Support the IEEE Standard for Binary Floating-Point Arithmetic”, by
W. J. Cody and Jerome T. Coonen (to appear, Transactions on Mathematical

Software).

“Contributions to a Proposed Standard for Binary Floating-Point Arithmetic”, by
Jerome Coonen, PhD thesis, University of California, Berkeley (1984).

“Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s
Sign Bit”, by W. Kahan, Proceedings of the joint IMA/SIAM conference on The
State of the Art in Numerical Analysis, 14-18 April 1986, Clarendon Press (1987).

. Numerical Computation Guide, Sun Microsystems, Inc. (March 16, 1990).

“Enhanced Arithmetic for Fortran”, by R. P. Corbett, ACM Signum Newsletter,
Vol. 18, No. 1 (January 1983) and ACM Sigplan Newsletter, Vol. 17, No. 12
(December 1982).

UN% System V/386 Release 4 Programmer’s Reference Manual, Prentice Hall
(1990).

“A Proposed Radix- and Word-length-independent Standard for Floating-point
Arithmetic”, by W. J. Cody et al, IEEE Micro, Vol. 4, No. 4 (August 1984).

“Correctly Rounded Binary-Decimal and Decimal-Binary Conversion”, by David
M. Gay, Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories
(November 30, 1990)—NCEG 91-019.

Numerics Programming Guide, Zortech C++ Compiler 3.0, Zortech Limited (May
1991). A pioneer implementation of substantial portions of this specification.

“Overloading Floating-Point Functions in C”, Bill Gibbons (November 1991)—
NCEG 91-047.

“Generic Functions”, David Hough (November 1991)—NCEG 91-046.

‘itgnfgcan National Standard Programming Language FORTRAN (ANSI X3.9-

International Standard Programming Languages—C, (ISO/IEC 9899:1990 (E)).

DRAFT January 6, 1994

312

10

15

20

25

30

35

45

50

18.

19.
20.

21.

22

23.

24.
25.

1.4

WG14/N319, X3J11/94-003

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup,
Addison-Wesley (1990).

“Contracted Multiply-Adds”, W. Kahan (September 20, 1991)—NCEG 91-042.

“An Argument of Apple’s Support of the Extended Floating-Point Type”, Jim
Thomas and Jerome Coonen (September 14, 1989)—NCEG 89-037.

C* Language Reference Manual, James L. Frankel, Draft Technical Report,
Thinking Machines Corporation (May 16, 1991)—NCEG 91-023.

“Augmenting a Programming Language with Complex Arithmetic”, W. Kahan and
J. W. Thomas (November 15, 1991)—NCEG 91-039.

“Algorithm XXX: Specfun—A Portable Package of Special Functions and Test
Drivers”, W. J. Cody (work in progress).

“Floating-Point C Extensions”, Jim Thomas (August 10, 1991)—NCEG 91-028.
“Amendment #1 to ISO C standard” (ISO/IEC 9899:1990/Amendment 1:1994(E)).

Organization of Document

The major subsections are:

1.

o

WU 0w p aw.w

this introduction;

characteristics of the translation and execution environments;
language syntax, constraints, and semantics;

library facilities;

summary of language syntax extensions;

optimization notes;

summary of library facilities;

implementation limits;

documentation guide for operators and functions;

specification of library facilities for IEEE implementations.

Sections that can be regarded as extending or modifying a particular section of the
Standard C documents are marked with the section numbers from the ISO C [17] and
ANSI C [1] documents, for example

3.1.2 Floating constants (ISO §6.1.3.1; ANSI §3.1.3.1)

January 6, 1994 DRAFT Page 3

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Rationale, in smaller font size, accompanies sections that are controversial or \yherg
further explanation seems needed. Subsections entitled “For IEEE Implementations
contain specification that applies specifically to implementations that support features of

the IEEE floating-point standards.

As in the IEEE floating-point standards, use of the word shall signifies that which is
obligatory for conformance; use of the word should signifies that which is strongly
recommended, though impractical for certain implementations.

10 1.5 Definition of Terms

e Double—the IEEE floating-point standards’ double data format. Written in
program-text style, double refers to the Standard C data type. Where noted,
double refers locally to both IEEE and also non-IEEE double precision formats.

15

e Double-based architecture—a floating-point architecture designed to produce

primarily double format results.

« Evaluation format—the format used to represent the result of an expression. It may
20 be wider than the semantic type of the expression.

 Exception flag—a flag signifying that a floating-point exception has occurred.
IEEE implementations support overflow, underflow, invalid, divide-by-zero, and
- inexact exception flags.
« Expression evaluation method—a method for determining the evaluation formats
for expressions.

e Extended—the IEEE floating-point standards’ double-extended data format.
30 Extended refers to both the common 80-bit and so-called quadruple 128-bit IEEE
formats. Where noted, extended refers locally to both IEEE and also non-IEEE

formats that are wider than double.

» Extended-based architecture—a floating-point architecture designed to produce
35 primarily extended format results.

» Flag—see exception flag.

* Floating-point environment—collectively all floating-point status flags and control
40 modes.

* Floating-point standards—specifically IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985) and IEEE Standard for Radix-Independent
Floating-Point Arithmetic (ANSI/IEEE Std 854-1987).

45
* IEEE implementation—an implementation that conforms to one or both of the IEEE
floating-point standards. See floating-point standards.
* Implementation-defined behavior—behavior that depends on the characteristics of
50 the implementation and that each implementation shall document. (As in
Standard C.)
Page 4 DRAFT January 6, 1994

324

WG14/N319, X3J11/94-003

e Mode—short for floating-point control mode.

» NaN—in a floating-point format, an encoding that signifies Not-a-Number. In this
document the term NaN generally denotes quiet NaNs.

e Normal number—a nonzero, finite number that is not subnormal. (As in IEEE
standard 854.)

e Quiet NaN—a NaN that propagates through almost every arithmetic operation
10 without raising an exception.

* Rounding direction mode—a dynamic mode that controls the style of rounding used
by floating-point operations. For IEEE implementations the rounding directions are
upward, downward, toward zero, and to nearest.

15
e Rounding precision mode—a dynamic or static mode that controls the precision to

which floating-point operations round their results.

e Signaling NaN—a NaN that generally raises an exception when occurring as an
20 arithmetic operand. This specification does not cover signaling NaNs.

* Single—the IEEE floating-point standards’ single data format. Where noted, single
refers locally to both IEEE and also non-IEEE single precision formats.

25 Single/double architecture—a floating-point architecture designed to produce with
like efficiency either single or double format results, with any extended arithmetic
being substantially slower.

* Single/double/extended architecture—a floating-point architecture designed to
30 produce with like efficiency either single, double, or extended results.

 Standard C—the C language standard, International Standard ISO/IEC 9899 and
American National Standard Programming Language C .

35 * Subnormal number—a nonzero floating-point number whose exponent is the
format's minimum and whose leading significand digit is zero. (As in IEEE
standard 854.)

* Undefined behavior—behavior, for an erroneous program or erroneous data, for
40 which this specification imposes no requirement. (As in Standard C.)

* Unspecified behavior—behavior, for a correct program and correct data, for which
this specification imposes no requirement. (As in Standard C.)

45 ¢ Waming—a translation-time message alerting the user when reasonable or common
expectations for a formally correct program may not be met.

1.6 Compliance

50 In order to comply as an implementation supporting IEEE standard floating-point, an
implementation must conform to one, or both, of the IEEE standards 754 and 854—
which ones is implementation-defined.

January 6, 1994 DRAFT Page 5

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003 Floating-Point C Extensions

2. ENVIRONMENT

Any floating-point status flags and control modes supported by the implementation are

here referred to collectively as the floating-point environment. Programs that test flags
or run under non-defauit modes must do so under the effect of an enabling

fenv_access pragma.

#pragma fenv_access on-off-switch

on-off-switch: one of:
on off default

can occur outside external declarations and takes effect from its occurrence until another
fenv_access pragma is encountered, or until the end of the translation unit. The effect of
this pragma appearing inside an external declaration is undefined. If part of a program tests
flags or runs under non-default mode settings, but is not under the effect of an enabling
fenv_access pragma, then the behavior of that program is undefined. (Part of a program
is under the effect of an enabling fenv_access pragma if that part is translated while the
state of the pragma is on.) The default state (on or off) for the pragma is implementation-
defined. (§4.4 specifies facilities for accessing the floating-point environment.)

The floating-point environment as defined here includes only execution-time modes, not the
myriad of possible translation-time options that may affect a program's results. Examples
of such translation-time options include: chopped or rounded multiplication on CRAY Y-
MP systems, D or G format for VAX, and fast or correctly-rounded divide on the Intel 860.
Each option's implementation-defined or deviant properties, relative to this specification,
should be well documented.

The purpose of the fenv_access pragma is to allow certain optimizations, namely global
common subexpression elimination, code motion, and constant folding, that could subvert
the testing of flags and changing of modes. For example, in

{
double x;
void f(double);
void g(double);

f(x + 1);
gix + 1);

}

the function £ might depend on status flags set as a side effect of the first x + 1. The
second x + 1 might depend on control modes set as a side effect of the function call £. The
imposed teraporal ordering would require two evaluations of x + 1. This specification says
that if in fact the program tests flags or changes modes through the call to £, it must so
declare with an enabling fenv_access pragma. In general, if the state of fenv_access is
off then the translator can assume that default modes are in effect.

The user model is supported by certain programming conventions:
1. A function call must not alter its caller’s modes, clear its caller’s flags, nor depend on

the state of its caller’s flags unless the function is so documented. (To do otherwise
would be extremely dangerous, irrespective of this specification.)

Page 6 DRAFT January 6, 1994

3/6

10

15

20

30

35

45

50

55

WG14/N319, X3J11/94-003

2. A function call is assumed to require default modes, unless its documentation promises
otherwise, or unless the function is known not to use floating-point.

3. A function call is assumed to have the potential of raising floating-point exceptions,
unless its documentation promises otherwise, or unless the function is known not to use
floating-point.

With these conventions a programmer can assume default modes, or ignore them altogether,

safely and without code or intellectual overhead. Responsibilities, and ordinarily modest
overhead, associated with accessing the floating-point environment fall entirely on the

programmer or program that does so.

No standard library function, except those in <fenv.h>, tests or clears its caller’s flags or
changes its caller’s modes.

Libraries are encouraged to document their use, or non-use, of floating-point and their
raising of floating-point exceptions.

The performance of code under the effect of an enabling fenv_access pragma may well be
important; in fact, an algorithm may access the floating-point environment specifically for
performance. The implementation should optimize as aggressively as the fenv_access
pragma allows. (See §B.1.)

An implementation could simply honor the floating-point environment in all cases and
ignore the pragma.

Dynamic vs static modes

Dynamic modes are potentially problematic because

1. the programmer may have to defend against undesirable mode settings—which imposes

intellectual, as well as time and space, overhead.

2. the translator may not know which mode settings will be in effect or which functions
change them at execution time—which inhibits optimization.

This proposal attempts to address these problems without changing the dynamic nature of
the modes.

An alternate approach would have been to present a model of static modes, with explicit
utterances to the translator about what mode settings would be in effect. This would have
avoided any uncertainty due to the global nature of dynamic modes or the dependency on
unenforced conventions. However, some essentially dynamic mechanism still would have
been needed in order to allow functions to inherit (honor) their caller’s modes. The IEEE
standards require dynamic rounding direction modes. For the many architectures that
maintain these modes in control registers, implementation of the static model would be
more costly. Also, Standard C has no facility, other than pragmas, for supporting static
modes.

An implementation on an architecture that provides only static control of modes, for
example through opword encodings, still could support the dynamic model, by generating
multiple code streams with tests of a private global variable containing the mode setting.
Only modules under an enabling fenv_access pragma would need such special treatment.
To further limit the problem, the implementation might employ additional pragmas
specifically to indicate where non-default modes would be admissible.

January 6, 1994 DRAFT Page 7

WG14/N319, X3111/94-003 Floating-Point C Extensions

For IEEE Implementations

The IEEE floating-point standards require that an implementation support certain status
flags and control modes.

The exception flags—invalid, overflow, underflow, divide-by-zero,. and inexact—caq be
queried at execution time to determine whether a floating-point exception has occurred since
the beginning of execution or since its flag was explicitly cleared. (The flags are sticky.)

The rounding direction modes—to-nearest, toward-zero, upward (toward +-o), and downward
(toward -es)—can be altered at execution time to control the rounding direction for floating-

point operations.
The rounding precision modes cause a system whose results are always double or extended
to shorten the precision of its results, in order to mimic systems that deliver results to

single or double precision. Some systems need not implement rounding precision modes—
see §4.4.2.

The traps recommended by the IEEE floating-point standards require modes for enabling and
disabling. Trap-enable modes lie outside the scope of this document.

2.1 Translation

An implementation should provide a warning for each translation-time floating-point
exception, other than inexact. The implementation shall document all mode settings that
affect the behavior of translation-time arithmetic.

For IEEE Implementations
During translation the IEEE standard default modes are in effect:
rounding direction: to-nearest
rounding precision: results not shortened
trapping: all traps disabled

An implementation is not required to provide a facility for altering the modes for
translation-time arithmetic, or for making exception flags from the translation available to
the executing program. The language and library provide facilities to cause floating-point
operations to be done at execution time, when they can be subjected to varying dynamic

modes and their exceptions detected. The need does not seem sufficient to require similar
facilities for translation.

2.2 Execution

2.2.1 Startup
At program startup any floating-point modes are initialized as for translation-time

arithmetic. The implementation shall document all startup mode settings that affect the
behavior of arithmetic.

This promotes consistency between translation- and execution-time computations.

Page 8 DRAFT January 6, 1994

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

For IEEE Implementations

At program startup the floating-point environment is initialized as prescribed by the
IEEE floating-point standards:
exception flags: all clear
rounding direction: to-nearest
rounding precision: results not shortened
trapping: all traps disabled

2.2.2 Changing the environment

Operations defined in ISO §6.3 (ANSI §3.3) and functions and macros defined for
standard libraries change flags and modes just as indicated by their specification (which
may include conformance to standards); they do not change flags or modes (so as to be
detectable by the user) in any other cases.

2.3 Environmental Limits

2.3.1 Characteristics of floating types @ISO §5.2.4.2; ANSI §2.2.4.2)
The value of the Standard C macro

FLT_ROUNDS
is dynamically determined to represent the effective rounding direction.

Thus IEEE implementations, and any others that allow changing the rounding direction at
execution time, must implement FLT_ROUNDS as an execution-time inquiry, not as a
constant (when the state of fenv_access is on).

This specification augments <float.h> with two macros that characterize the
evaluation method (§3.2.3.1) for evaluating floating-point expressions. The minimum
evaluation format is characterized by the value of _MIN_EVAL_FORMAT:

0 float
1 double
2 long double

Whether widest-need evaluation is performed is characterized by _WIDEST_NEED_EVAL:

0 no
1l yes

If the minimum evaluation format is 1ong double then the value of _WIDEST_NEED_EVAL
is irrelevant.

The values _MIN_EVAL_FORMAT and _WIDEST NEED_EVAL need not be constants.
An implementation that provides alternate expression evaluation methods must assure that

translation-time evaluation of _MIN_EVAL_FORMAT and _WIDEST_NEED_EVAL reflects the
current one.

January 6, 1994 DRAFT Page 9

<l
=2

10

15

20

25

30

35

45

50

WG14/N319, X3711/94-003 Floating-Point C Extensions

3. LANGUAGE

3.1 Lexical Elements aso §6.1; ANsI §3.1)

3.1.1 Types @ISO §6.1.2.5; ANSI §3.1.2.5)

The 1ong double type should have strictly more precision than double which should
have at least twice the number of digits of precision as float. If not, the
implementation should emit a warning when processing a translation unit that uses
distinct floating types with the same precision.

This facilitates porting code that, intentionally or not, depends on differences in type widths.

Many results are exact or correctly rounded when computed with twice the number of digits

of precision as the data. For example, the calculation

float 4, x, vy, 2, w;
d = (double) x * y - (double) z * w;

yields a correctly rounded determinant if double bas twice the precision of £1oat and the

individual operations are correctly rounded. (The casts to double are unnecessary if the
minimum evaluation format is double oOf long double—see §3.2.3.1.)

For IEEE Implementations
The C floating types match the IEEE standard floating-point formats as follows:

C type IEEE format

float single

double double

long double extended, else a non-IEEE extended format, else
double

Any non-IEEE extended format, used as the long double format for an IEEE
implementation, has more precision than IEEE double and at least the range.

Minimal conformance to the IEEE floating-point standards does not require a format wider
than single. The narrowest C double type allowed by Standard C (ISO §5.2.4.2; ANSI
§2.2.4.2) is wider than IEEE single, and wider than the minimum IEEE single-extended
format. (IEEE single-extended is an optional format intended only for those
implementations that don’t support double; it has at least 32 bits of precision.) Both
Standard C and the IEEE standards would be satisfied if f1oat were IEEE single and double
were an IEEE single-extended format with at least 35 bits of precision. However, this
specification goes slightly further by requiring double to be IEEE double rather than just a
wide IEEE single-extended.

The primary objective of the IEEE part of this specification is to facilitate writing portable
code that exploits the IEEE floating-point standards, including their standardized single and
double data formats. Bringing the C data types and the IEEE standard formats into line
advances this objective.

This specification accommodates what are expected to be the most important IEEE floating-
point architectures for general C implementations—see §3.2.3.

Page 10 DRAFT January 6, 1994

320

10

15

20

25

30

35

45

50

35

WG14/N319, X3J11/94-003

Because of Standard C’s bias toward doubl e, extended-based architectures might appear to be
better served by associating the C double type with IEEE extended. However, such an
approach would not allow standard C types for both IEEE double and single and woulq 80
against current industry naming, in addition to undermining this speciﬁ_cation’s portability
goal. Other features in this document, for example the type definitions float_t and
double_t (defined in §4.3), are intended to allow effective use of architectures with more

efficient, wider formats.
The long double type is not required to be IEEE extended because

1. some of the major IEEE floating-point architectures for C implementations do not
support extended,

2. double precision is adequate for a broad assortment of numerical applications, and

3. extended is less standard than single or double in that only bounds for its range and
precision are specified in IEEE standard 754.

For implementations without extended in hardware, non-IEEE extended arithmetic written in
software, exploiting double in hardware, provides some of the advantages of IEEE extended
but with significantly better performance than true IEEE extended in software. [20] explains
advantages of extended precision.

Specification for a variable-length extended type—one whose width could be changed by the
user—was deemed premature. However, not unduly encumbering experimentation and
future extensions, for example for variable length extended, is a goal of this specification.

Narrow-format Implementations

Some C implementations, namely ones for digital signal processing, provide only the IEEE
floating-point standards’ single format, possibly augmented by single-extended, which may
be narrower than IEEE double or Standard C double, and possibly further augmented by
double in software. These non-conforming implementations might generally adopt this
specification, though not matching its requirements for types.

One approach would be: match Standard C f1oat with single; match Standard C double
with single-extended, else single; and match Standard C 1ong double with double, else
single-extended, else single. Then most of this specification could be applied
straightforwardly. Users should be clearly wamed that the types may not meet expectations.

Another approach would be to refer to a single-extended format as 1ong float and then not
recognize any C types not truly supported. This would provide ample warning for programs
requiring double. The translation part of porting programs could be accomplished easily
with the help of type definitions. In the absence of a double type, most of this specification
for double could be adopted for the 1ong float type. Having distinct types for
long float and double, previously synonyms, requires more imagination.

3.1.1.1 NaNs

Floating types may support NaN (Not-a-Number) values, which do not represent
numbers. A NaN that generally raises an exception when encountered as an operand of
arithmetic operations is called a signaling NaN, and the operation is said to trigger the
signaling NaN; this document does not define the behavior of signaling NaNs. A NaN
that behaves predictably and does not raise exceptions in arithmetic operations is called
a quiet NaN; this document uses the term NaN to denote quiet NaNs.

January 6, 1994 DRAFT Page 11

2~

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The IEEE floating-point standards specify quiet and signaling NaNs, but these terms can be
applied for some non-IEEE implementations as well—for example, the VAX reserved
operand and the CDC and CRAY indefinite qualify as signaling NaNs. In IEEE s_tandard
arithmetic, operations that trigger a signaling NaN argument generally return a quiet Naﬂ
result provided no trap is taken; neither traps nor any other facility for signaling NaNs is
required. True support for signaling NaNs implies restartable traps, such as the optional
traps specified in the IEEE floating-point standards.

The primary utility of quiet NaNs—*“to handle otherwise intractable situatiqns. such as
providing a default value for 0.0/0.0” [11}—can be supported through straightforward
extensions to C. See §3.3.2, 4.2.1.2, 42.2.1-2, 43, 439.2.

Other applications of NaNs may prove useful. Available parts of NaNs have been used to
encode auxiliary information, for example about the NaN’s origin [4]. Signaling NaNs are
good candidates for filling uninitialized storage; and their available parts could distinguish
uninitialized floating objects. IEEE signaling NaNs and trap handlers potentially provide
hooks for maintaining diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for auxiliary information that could be encoded
in NaNs, is problematic. Trap handling varies widely among implementations.
Implementation mechanisms may trigger signaling NaNs, or fail to, in mysterious ways.
The IEEE floating-point standards require that NaNs propagate, but not all implementations
faithfully propagate the entire contents. And even the IEEE standards fail to specify the
contents of NaNs through format conversion, which is pervasive in some C implementation
mechanisms. For these reasons this document does not define the behavior of signaling

NaNs nor specify the interpretation of NaN significands.

[24), a previous version of this document, contains specification for signaling NaNs. It
could serve as a guide for implementation extensions in support of signaling NaNs.

3.1.2 Floating constants (ISO $6.1.3.1; ANSI §3.1.3.1)

Floating constants are converted to their internal representation at translation time. Each
constant is represented in a format (perhaps wider than required by the constant's type)
determined by the effective expression evaluation method (§3.2.3.1). The resulting
values from translation-time conversion of (valid) floating constants match those from
execution-time conversion with default rounding modes by library functions, like
strtod. See §4.2.1.2.

Note that since floating constants are converted to appropriate internal representations at
translation time, default rounding direction and precision will be in effect and execution-time
exceptions will not be raised, even under the effect of an enabling fenv_access pragma.
Library functions, for example strtod, provide execution-time conversion of decimal
strings.

3.1.2.1 Hexaldecimal floating constants (ISO §6.1.3.1, 6.1.8; ANSI §3.1.3.1,
3.1.8)

The Standard C floating-constant syntax is augmented to include hexadecimal floating
constants.

Page 12 DRAFT January 6, 1994

38

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003

Syntax

floating-constant:
h.e;adecinml-ﬂoating-constant

hexadecimal-floating-constant:
ox hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
ox hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
ox hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
ox hexadecimal-digit-sequence binary-exponent-part floating-suffixopt

hexadecimal-fractional-constant:
hexadecimal-digit-sequencegpt . hexadecimal-digit-sequence
hexadecimal-digit-sequence .

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

binary-exponent-part:
p Signgpt digit-sequence
P signops digit-sequence

The binary exponent gives a decimal integer representing a power of 2. If FLT_RADIX
is a power of two, hexadecimal floating constants are correctly rounded. The
implementation shall emit a warning if a hexadecimal constant cannot be represented
exactly in its evaluation format (see §3.2.3.1). Further accuracy specification for the
conversion of hexadecimal floating constants to internal format is implied by the
specification for the strtod functions (§4.2.1.2).

In order to accommodate hexadecimal floating constants, the Standard C syntax for
preprocessing numbers (ISO §6.1.8; ANSI §3.1.8) is augmented to include

pp-number:

pp-number p sign
pp-number P sign

Example
<float.h> for an IEEE 754 implementation might contain:

#define FLT_MAX 0x1.FFFFFEpl27f /* or OxF.FFFFFpl24f */
#define FLT_EPSILON Oxlp-23f
#define FLT_MIN Oxl1lp-126f£

Example

The constant -0x1.0000000000001p0 represents the largest IEEE 754 double
precision value less than -1.

Hexadecimal more clearly expresses the significance of floating constants.

January 6, 1994 DRAFT Page 13

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The binary-exponent part is required to avoid ambiguity from an £ suffix (being mistaken as
a hexadecimal digit).

Constants of long double type are not generally portable, even among IEEE
implementations.

Unlike integers, floating values cannot all be represented directly by hexadecimal constant
syntax. A sign can be prefixed for negative numbers and -0. Infinities might be produced
by hexadecimal constants that overflow. NaNs require some other mechanism. Note that
0x1.FFFFFEp128£, which might appear to be an IEEE single-format NaN, in fact overflows
to an infinity in the single format (and causes a translation-time wamning).

Infinity and NaN constants, useful for static and aggregate initialization, should be
considered for future extensions.

An alternate approach might have been to represent bit patterns. For example
#define FLT_MAX 0x.7F7FFFFF

This would have allowed representation of NaNs and infinities. However, numerical values
would have been more obscure owing to bias in the exponent and the implicit significand
bit. NaN representations would not have been portable—even the determination of IEEE
quiet NaN vs signaling NaN is implementation-defined. NaNs and infinities are provided
through macros in §4.3.

The straightforward approach of denoting octal constants by a 0 prefix would have been
inconsistent with allowing a leading o digit—a moot point as the need for octal floating
constants was deemed insufficient.
The caret ~ was ruled out as a character to introduce the exponent because doing so would
have used up a potential operator.

3.2 Conversions

3.2.1 Floating and integral (SO §6.2.13; ANSI §3.2.1.3)

For conversion from floating to integer type, if the floating value is infinite or NaN or if
the integral part of the floating value exceeds the range of the integer type then the
invalid exception, if available, is raised and the value of the result is unspecified.

For IEEE Implementations

Whether conversion of nonintegral floating values whose integral part is within the
range of the integer type raises the inexact exception is unspecified.

Conversion from floating to integral rounds toward zero, consistent with Standard C. IEEE
rounding is provided by the library function rinttol.

IEEE standard 854, though not 754, directly specifies that floating-to-integral conversion
raise the inexact exception for nonintegral in-range values. In those cases where it matters,
library functions can be used to effect such conversions with or without raising the inexact
exception. See rint, rinttol, and nearbyint in §F.6.

Conversion from integer to floating type is an IEEE standard floating-point operation,
rounding according to the current rounding direction mode.

Page 14 DRAFT January 6, 1994

~N

(SR}

5

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

Note that rounding indeed will be required if an integer is too wide to represent exactly in
the floating-point format.

3.2.2 Floating types @ISO §6.2.1.4; ANSI §3.2.1.4)

For IEEE Implementations
Conversions between floating types are specified by the IEEE floating-point standards.

3.2.3 Expression evaluation (SO §6.2.1.5 ANSI §3.2.1.5)

This specification recognizes five distinct expression evaluation methods. A floating-
point expression has both a semantic type and an evaluation format. Each evaluation
format is the format of one of the floating types. The result of the expression is
represented in the expression’s evaluation format. An expression evaluation method
determines the evaluation formats for expressions. Which expression evaluation
methods are provided is implementation-defined.

For most floating operations Standard C defines the semantic type of the operation to be the
widest type of its operands, but gives explicit license to represent the operation’s result in a
format wider than its type.

The use here of the term method is unrelated to its use in Smalltalk.

Although specifying just one method would have facilitated porting code, any one method
would have been unacceptably inefficient on some important architectures. On the other
hand, still other expression evaluation methods are conceivable, for example evaluating
float operations to float format, and all others to long double. The expression
evaluation methods described in this section comprise an intentionally small set with at
least one method that is efficient for any of the existing or anticipated, commercially
significant, floating-point architectures:

Floating-point architectures

In the following description of floating-point architectures, the terms extended, double, and
single have a slightly broader meaning than in the rest of this document. They still refer to
floating formats, but apply to both IEEE and non-IEEE systems. Generally, extended is
wider than double which is wider than single.

Extended-based. The arithmetic engine is extended. Source operands can be single, double,
or extended, though generally arithmetic with single and double types is less efficient,
requiring extra conversions. Examples include Intel 80x87, Cyrix 3D87, Motorola 6888x,
and AT&T WE 32x06. The Motorola 88110 and Intel 960 can be used as extended-based
architectures, or alternatively as single/double/extended ones (see below).

Double-based. The arithmetic engine is double. Source operands can be single or double,
though generally arithmetic with the single type is less efficient, requiring extra
conversions. Extended may be available, but implemented in software. Examples include
IBM RISC System/6000, PDP-11 in double mode, CRAY, and CYBER 180. On CRAY
and CYBER, single and double may be the same format. The CYBER provides some
hardware support for extended.

Single/double. These provide orthogonal operations for single and double arithmetic.
Single is typically faster than double. Extended may be available, but implemented in

January 6, 1994 DRAFT Page 15

7

)

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003 Floating-Point C Extensions

software. Examples include MIPS, SPARC, HP PA-RISC, Motorola 88100, Intel 860,
and systems assembled with Weitek or BIT processors. The MIPS, SPARC, and HP PA-
RISC architectures specify extended, though it is not yet in hardware.

Single/double/extended. These provide orthogonal operations for single, double, and
extended arithmetic. Single is faster than double, which is faster than extended. Examples

include Motorola 88110, Intel 960, IBM S/370, and VAX.

3.2.3.1 Methods

The expression evaluation methods are characterized by two properties: (1) the
minimum-width format (float, double Or long double) for expression evaluation,
and (2) whether determination of the evaluation format is affected b){ the context of the
operation according to the rules for widest-need evaluation (explained below). The
combinations of these two properties yield the five expression evaluation methods:

float no

i

. double no

3. long double <irrelevant>
4. float yes

e double yes

Minimum evaluation format. The minimum evaluation format may be float, double,
or long double. The evaluation format for operations subject to the usual arithmetic
conversions and for floating constants is at least this wide, even if the semantic type is
less.

The early C implementations provided just the f1cat and double floating-point types and
evaluated all floating expressions to double. Intentional or not, some C programs have
relied on extra precision for their computation with float operands. A minimum
evaluation format of doubl e is a natural choice for double-based architectures.

Implementations for single/double and single/double/extended architectures may find a
minimum evaluation format of float compellingly more efficient, despite potential
problems of conformity to expectations based on C’s tradition of wide evaluation.

Even on a single/double or single/double/extended architecture, an implementation might
provide double as a minimum evaluation format, for compatibility reasons. Common
statements of the form

£1 "= £2"op £ 3% /* where f1, £2, f3 are of type float */

can be done optimally by many such implementations, including all IEEE ones, where
rounding the result to double and then to float is equivalent to rounding to flcat
directly.

A minimum evaluation format of 1ong double is common on extended-based architectures.
Programs that run under one of the other expression evaluation methods generally run at
least as well when all expressions are evaluated t0 long double. Most program failures
due to extra precision arise from its inconsistent use (see §B.5).

Representation of constants in a format commensurate with expression evaluation, not a
traditional practice, better meets certain expectations than would representation strictly
according to semantic type—for example, 0.1f == 1.0£/10.0f. Viewed as translation-

Page 16 DRAFT January 6, 1994

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

time operations that convert decimal strings to internal floating representations, literal
floating constants naturally follow the method of expression evaluation.

Without widest-need evaluation. Without widest-need, thp evaluation forma} for an
operation or constant is simply the wider of its semantic type and the minimum
evaluation format.

With widest-need evaluation. With widest-need, the evaluation format for an operation
is the widest of the semantic types appearing in a certain enclosing expression and at
least as wide as the minimum evaluation format. More precisely, the evaluation format
for an operation subject to the usual arithmetic conversions, or for an assignment
(including the assignment of function arguments to parameters, but not cast
conversions), is propagated to its operands (or arguments): if an operand is a variable
or an operation not subject to the usual arithmetic conversions it is converted to the
evaluation format; if the operand is an operation subject to the usual arithmetic
conversions, or a floating constant, the evaluation format is imposed recursively.

Examples

With the declarations

float f£:;

double d;

long double 14;
double dd(double);
double fd(float);

widest-need with a minimum evaluation format of £1cat implies:

G . Oitation. ‘Evalnation £

1d ¢ (£ *f) - long double
+ long double
1d + fd(f * £) = float
+ long double
1d + dd(f * £f) - double
+ long double
1d i+ @os afie® £) ® double
d + long double
f + (d =14 * 14) bl long double
+ double
1d + (double) (f * £) * float
+ long double
1d + (d -= £ * £) & double
- double
+ long double
1d + (f++ * --4d) ++ float
- double
* long double
+ long double
l1d == £ * £ * long double

January 6, 1994 DRAFT Page 17

G

N
N

WG14/N319, X3111/94-003 Floating-Point C Extensions

£/ (da+4, £&%5 + double
* float
/ float
£ PRipE g lpude /@ wnild) - float
74 long double
+ long double
14 + 0.1f 0.1f long double
+ long double
f +0.1 0.2 double
+ double

The definition of widest-need is based on a widest need evaluation for Fortran presented in
[9]. It does not affect integer expression evaluation, which is covered by Standard C.

As computer speed and memory size increase, so will the number of problems attempted and
the size of data sets. Thus, the likelihood that a program will suffer serious roundoff error
for some actual data will increase. Wider precision, not for the entire computation but just
for expressions containing certain variables, often will fix the problem, without unduly
affecting performance, and without requiring costly error analysis. With widest-need, an
expression is automatically evaluated to the format of its widest component. To achieve the
same effect without widest-need expression evaluation, the programmer must add or delete
casts and constant suffixes throughout the program.

Widest-need expression evaluation is a particularly attractive compromise for architectures
whose wider formats are significantly slower. It offers the accuracy of wide evaluation
where likely needed and also the speed of narrow evaluation where clearly intended. Note
that casts can be used to inhibit widest-need widening, even within a wide expression.

Previous drafts defined a #pragma evaluate which allowed switching expression
evaluation methods between external declarations. This facility was believed to be without
sufficient utility and somewhat error prone. Implementations that support multiple
expression evaluation methods can supply translation options.

3.2.3.2 Contraction operators

A floating-point engine may provide an atomic operation for multiple binary operators.
Such an atomic operation is referred to here as a contraction operator and the multiple
binary operators as contracted, because rounding errors or side effects from their
computation may be omitted. Contracted operators should incur no greater-magnitude
rounding error than if they were not contracted. Whether contraction operators are
employed is implementation-defined.

An implementation that is able to multiply two double operands and produce a float
result in just one machine instruction might contract the multiplication and assignment in:

float £;
double dl, d42;

£-d1* a2;
Other examples of potential contraction operators include:

compound assignments +=, -=, €1C.;

temary add X +y + 2}
multiply-add X*y+ z
Page 18 DRAFT January 6, 1994

]2,7

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

Contractions can lead to subtle anomalies even while increasing accuracy. The value of
expressions like a * b + c * d will depend on how the translator uses a contracted
multiply-add. Knowing that the implementation contracts multiply-adds, the programmer
should be able to control results (and reap the benefits of contraction) through simple coding
measures, for example parenthesizing (a * b) + ¢ * d. However, the Intel 860°s
multiply-add is slightly more problematic. Since it keeps a wide but partial product,
a * b + z may differ from c * 4 + z even though the exact mathematical products a * b
and c * dare equal; the result depends not just on the mathematical result and the format,
as ordinarily expected for error analysis, but also on the particular values of the operands.

The extra accuracy of the IBM RISC System/6000’s fused multiply-add, which produces a
result with just one rounding, can be exploited for simpler and faster codes. See [19] for

details.
The fp_contract pragma can be used to allow or disallow contraction operators.
#pragma f£p_contract on-off-switch

This pragma can occur outside external declarations, and allows or disallows
contraction operators from its occurrence until another fp_contract pragma is
encountered, or until the end of the translation unit. The default state (on or off) for the
pragma is implementation-defined.

For IEEE Implementations

Contraction operators honor infinities, NaNs, signed zeros, subnormals, and the
rounding directions in a manner consistent with the basic arithmetic operations covered
by the IEEE floating-point standards. Contraction operators should raise exceptions in
a manner generally consistent with the basic arithmetic operations covered by the IEEE
floating-point standards.

Contraction operators should deliver the same value as their uncontracted counterpart,
else be correctly rounded—that is, deliver the infinitely precise result of their contracted
operations, rounded (once) to the destination format according to the effective rounding
method.

3.2.4 Wide representation

Three pragmas give license for the implementation to represent function return values,
function parameters, and variables in a format wider than their declared type.

#pragma fp_wide_function_returns on-off-switch
#pragma fp_wide_function_parameters on-off-switch
#pragma f£p_wide_variables on-off-switch

#pragma fp_wide_function_returns on—allows floating return values to be
represented in a wider format than (and not narrowed to) the declared type of the
function.

#;?ragma fp_wide_function_parameters on—allows ﬂoating 'parameters tobeina
wider format than (and not narrowed to) the declared type of the formal parameter.

January 6, 1994 DRAFT Page 19

Cy

v
&
~0

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

Floating-Point C Extensions

#pragma fp_wide_variables on—allows values of automatic scalar floating
variables to be in a wider format than their declared type.

If the on-off-switch is of £ then widening is disallowed. The default state for these
pragmas is off.

Standard C compatibility requires that the default state for the pragmas be off.

These pragmas can occur outside external declarations, and all_ow @if op) or disallqw (if
off) widening from their occurrence until another pragma instructing otherwise is
encountered, or until the end of the translation unit. The effect of these pragmas
appearing inside an external declaration is undefined. Widening is consistent
throughout the effect of an enabling pragma: either all instances of the retumns,
parameters, or variables are widened or none are; the representation format for a
parameter or variable does not vary. However, which, if any, of these pragmas
actually cause widening is implementation-defined. The
fp_wide_function_returns and fp_wide_function_parameters pragmas may
affect function definitions or calls but not prototypes.

When the implementation detects an address or sizeof operator of a widened
parameter or variable it emits a translation-time warning; execution-time behavior is
then undefined.

This mechanism facilitates generating efficient code for extended-based or double-based
architectures. §3.2.3 and §4.3 provide rationale. The typedefs float_t and double_t
allow finer application than do the pragmas, but require more extensive changes to existing
code.

The function writer who decides that narrowing arguments and returns to their semantic type
is less desirable than efficiency can write the function under the effect of enabling
fp_wide_function_parameters and fp_wide_function_returns pragmas. Similarly
the programmer who uses the function can apply these pragmas to the call site. In either
case widening (not narrowing) may or may not occur. These pragmas do not demand
widening, nor even recommend it, but merely declare that widening would be acceptable. It
is up to the implementation to determine whether widening would be both safe and also
more efficient. For example, implementations that pass different type (floating) parameters
in different formats can not widen parameters of external functions safely.

Even among implementations which respond to the pragmas, the location in the source code
where the pragmas must be placed to be effective may vary. For example, an
implementation might perform requisite narrowing of parameters at the call site, in which
case the call would have to be under the effect of an enabling
fp_wide_function_parameters pragma; or, it might narrow within the function,
in which case the function definition would have to be under the effect of the pragma.

The pragmas do not affect function prototypes. Doing so might have benefited
implementations that pass different floating type arguments and returns in different ways.
However, maintaining consistency between the prototype and implementation seemed
particularly error prone. A language extension to assure the consistency seemed unjustified.
The float_t and double_t type definitions are available for such prototypes.

Casts are not affected by any of these pragmas, nor by wide expression evaluation, so can be
used portably to force narrowing.

Another approach would have been to introduce register as a function qualifier that would
have allowed widening of both the parameters and the return value. This would have been

Page 20 DRAFT January 6, 1994

(&)
C\

=

WG14/N319, X3J11/94-003

inconsistent with the register storage class specifier, which is unrelated to widening, and
would not have helped with variables.

3.3 Expressions aso §.3; ANsI §3.3)

3.3.1 The arithmetic operators (ISO §6.3.3.1, 6.3.3.3, 6.3.4-6.3.6,
6.3.16; ANSI §3.3.3.1, 3.3.3.3, 3.3.4-3.3.6, 3.3.16)

The implementation should follow the guide referenced in Appendix E to document its
arithmetic operators.

For IEEE Implementations
These operations fall under the specification of the IEEE floating-point standards:

++ - + = byt /
= casts += -= *z /=

The IEEE floating-point standards require that, given default rounding precision, these
operations be rounded to the precision of their evaluation format.

3.3.2 Relational and equality operators @so §6.1.5, 6.3.8, 6.3.9;
ANSI §3.1.5, 3.3.8, 3.3.9)

The Standard C relational and equality operators support the usual mathematical
relationships between numeric values. These operators are augmented to support
relationships involving nonnumeric values, NaNs. For any ordered pair of numeric
values exactly one of the relationships—Iess, greater, and equal—is true. For a NaN
and a numeric value, or for two NaNs, just the unordered relationship is true.

Symbol Relation
less

greater

less or equal

greater or equal

equal

unordered, less, or greater
unordered

<> less or greater

<>= less, equal, or greater

1<= unordered or greater

1< unordered, greater, or equal
t>= unordered or less

> unordered, less, or equal
1<> unordered or equal

AV A

v
non onon

A
v
"

The additional operators are analogous to, and have the same precedence as, the
Standard C relational operators. Where the operands have types and values suitable for
relational operators, the semantics detailed in ISO §6.3.8 (ANSI §3.3.8) apply.

January 6, 1994 DRAFT Page 21

(o
(%]

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The Standard C operator syntax (ISO §6.1.5; ANSI §3.1.5) is augmented to include
the additional operators.

10

15

20

25

30

35

Programs written for (or ported to) systems with NaNs will be expected to handle invalid
and NaN input in reasonable ways. The additional relational operators support such
programs. As operators they, together with the arithmetic operators (+, *, ...), provide a
consistent approach to handling NaNs: the arithmetic operators simply propagate them;
the relational operators facilitate directing them through branches. Thus NaNs can flow

' through many computations without the need for obfuscating or inefficient code.

The alternative of function syntax, such as
isrelation(x, FP_UNORDERED | FP_LESS | FP_EQUAL, y)

instead of x !> y, would not have required language extensions, and could have been as
efficient as built-in operators, though only if the functions were built into the translator.
However, special function calls for comparisons would have been arguably more awkward
and inconsistent with the overall approach to NaNs.

The set of relational operators is obtained by allowing the < combinations and extending
the notion of negated operators, previously only !=, to the relational operators, I, etc.

The expressions (a 'op b) and ! (a op b) always have the same logical value, that is
(a top b) == 1 (a Op b), where op is <, >, <=, >=, <>, Of <>=. Butif the types of a and
b admit NaNs, then ! (a op b) and (a '0p b) may differ in their exception behavior.
Implementations without NaNs, and non-IEEE implementations with NaNs but which
practically cannot support the specification below for [EEE implementations, can regard the
new relationals simply as notational alternatives.

In its definitions for the logical AND, logical OR, and conditional operators and the i f
statement, Standard C assumes that any expression compares equal to 0 if and only if it does
not compare unequal 10 0. This assumption is still valid: a == 0 is true if and only if
a != 0 is false, even if a is a NaN.

The implementation should follow the guide referenced in Appendix E to document its
relational and equality operators.

For IEEE Implementations

For just those relational operators that include < or > but not 1, the invalid exception is
raised if the operands compare unordered.

For example,
(a<b) == !(a l< b)

in all cases, but (a < b) raises invalid when a and b compare unordered whereas !(a !< b)
does not.

The somewhat awkward articulation :(a !< b) for a non-exceptional less than is a
consequence of the IEEE floating-point standards’ priority on supporting existing code that
does not account for NaNs. When x or y is a NaN, any value for x < y, whether the actual
result 0 (false) or its alternative 1 (true), is likely to be misleading; so the IEEE standards
require that such tests raise the invalid exception. Tests of equality give generally useful
results when operands are NaNs, hence do not raise the invalid exception.

The IEEE f!oati_ng-point standards enumerate 26 functionally distinct comparison predicates,
from combinations of the four comparison results and whether invalid is raised. Use of

Page 22 ' DRAFT January 6, 1994

‘J

(ON]

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

logical negation extends the 14 relational and equality operators listed above to the full 26.
(There are 26 not 28 because == and ! = never raise invalid).

This proposal lants a previous one which would have augmented the set of relations by
using the ? symtoden%rtiunordcred, for example a ?>= b instead of a !< b. Use of
the > relationals would have had the advantage that the unordered case would have been dealt
with explicitly. However, the ! relationals are a more natural l.anguage ex_tension,
particularly from the point of view of programmers for (non-IEEE) implementations not
detecting unordered. Also, using 22 as proposed for the unordered operator would have
conflicted with Standard C trigraphs.

Without any language or library support a !> b might be implemented by
al=allbl!=bl| a<=b

However, even more awkward code would be required if a or b had side effects. The
programmer would have to remember to put the NaN tests first, and trust the compiler not
toreplacea != a || b != bby false. Also, special optimization would be necessary to
generate efficient code. Use of functions like isnan or isunordered, which are
recommended in the appendixes to the IEEE floating-point standards, is similarly
problematic.

3.4 Constant Expressions aso s6.4; ANsI §3.9)

A constant expression, other than one in an initializer for an object that has static
storage duration or in an initializer list for an object that has aggregate or union type, is
evaluated (as if) during execution.

This is merely a clarification of Standard C. See §B.4 regarding optimization.
Example

#pragma fenv_access on
void £ (void) (

float w[] = { 0.0/0.0 }; /* does not raise an exception */
static float x = 0.0/0.0; /* does not raise an exception */
float y = 0.0/0.0; /* may raise an exception */
double z = 0.0/0.0; /* may raise an exception */

For the aggregate and static initializations, the division is done at translation time,
raising no (execution-time) exceptions. On the other hand, for the two automatic scalar
initializations the invalid division occurs at execution time.
Previous versions of this section allowed translation-time constant arithmetic, but
empowered the unary + operator, when applied to an operand, to inhibit translation-time
evaluation of constant expressions. The programmer can achieve the efficiency of
translation-time evaluation by using static initialization, for example
static double one_third = 1.0/3.0;

or to decrease the likelihood of storage allocation

const static double one_third = 1.0/3.0;

January 6, 1994 DRAFT Page 23
g i 8

5

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

Floating-Point C Extensions

For IEEE Implementations

This specification acknowledges the semantics of IEEE arithmetic for the as if principle.
In particular, execution-time operations must be affected by modes and must raise
exceptions as required by the IEEE floating-point standards.

Note that results of inexact expressions like 1.0/3.0 canbeaffeaedbyrolmdingm(_)desset
at execution time, and expressions such as 0.0/0.0 and 1.0/0.0 can be used reliably to

generate execution-time exceptions.

3.5 Initialization aso §5.12, 6.57; ANSI §2.1.2, 3.5.7)

All computation for automatic scalar initialization is do_ne (as if) at excgution time. All
computation for initialization of objects that have static storage duration or that have
aggregate or union type is done (as if) at translation time.

Standard C does not specify when aggregate and union initialization is done. Otherwise,
this is merely a clarification of Standard C. Note that, under the effect of an enabling
fenv_access pragma, any exception resulting from execution-time initialization must be
raised at execution time. See §B.4 regarding optimization.

Example

#pragma fenv_access on
void f(void) (

float u[] = (1.1e75 }; /* does not raise exceptions */
static float v = 1.1e75; /* does not raise exceptions */
float w = 1.1e75; /* may raise exceptions */
double x = 1.1e75; /* may raise exceptions */
float y = 1.1e75f; /* may raise exceptions */
long double z = 1.1e75; /* does not raise exceptions */

The aggregate and static initializations of u and v raise no (execution-time) exceptions
because their computation is done at translation time. The automatic initialization of w
requires an execution-time conversion to float of the wider value 1.1e75, which
raises exceptions on some implementations, including all IEEE ones. The automatic
initializations of x and y entail execution-time assignment, but, in some expression
evaluation methods, not to a narrower format, in which case no exceptions need be
raised. The automatic initialization of z entails execution-time assignment, but not to a
narrower format, so no exception is raised. Note that the conversions of the floating
9ogisltants 1.1e75 and 1.1e75f to their internal representations occur at translation time
in all cases.

Use of float_t and double_t variables increases the likelihood of translation-time
computation. For example, the automatic initialization

double_t x = 1.1e75;
could be done at translation time, regardless of the expression evaluation method.

The specification of §3.4-5 does not suit C++, whose static and aggregate initializers need
not be constant. Specifying all floating-point constant arithmetic and initialization to be
(as if) at execution time would be consistent with C++ and, given the fenv_access
mechanism, still would allow the bulk of constant arithmetic to be done, in actuality, at
translation time.

Page 24 DRAFT January 6, 1994

WG14/N319, X3J11/94-003

For IEEE Implementations
This specification acknowledges the semantics of IEEE arithmetic for the as if principle.

5 In particular, execution-time operations must be affected by modes and must raise
exceptions as required by the IEEE floating-point standards.

3.6 Predefined Macro Names aso §6.88; ANsI §3.8.8)

10 __FPCE__ The decimal constant 1, indicating conformance to this
specification.
_FPcE_IEEE__ The decimal constant 1, indicating conformance to the parts of this

specification for IEEE implementations.
15

January 6, 1994 DRAFT Page 25

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003 Floating-Point C Extensions

4. LIBRARY

4.1 Introduction aso §7.12, 7.1.6; ANSI §4.1.2, 4.1.6)

Section 4.2 covers numerical extensions to the Standard C libraries. Section 4.3
documents a new header <£p.h> which provides facilities for general floating-point
programming; <fp.h> supersedes <math.h>. Section 4.4 documents a new header
<fenv.h> which provides access to the floating-point environment. The identifiers
with external linkage declared in either <fp.h> or <fenv.h> are res_erved for use as
identifiers with external linkage only if at least one inclusion of either <fp.h> or
<fenv.h> occurs in one or more of the translation units that constitute the program. In
other regards, <fp.h> and <fenv.h> follow the Standard C specification for standard
headers and reserved identifiers (ISO §7.1.2, 7.1.2.1; ANSI §4.1.2, 4.1.2.1).

This specification for new identifiers with external linkage follows that in [25].
In some cases names are not unique in the first six characters, unlike in Standard C.

4.2 Standard C Library Extensions

4.2.1 General utilities <stdlib.h>

4.2.1.1 The atof function (ISO §7.10.1.1; ANSI $4.10.1.1)

#include <stdlib.h>
double atof(const char *nptr);

The atof function meets the specifications below for strtod.

This document does not require float and long double versions of atof, but instead
encourages the use of strtof and strtold which have a more generally useful interface.

4.2.1.2 The strtof, strtod, and strtold functions @ISO §7.10.1.4; ANSI
$§4.10.1.4)

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);
float strtof(const char *nptr, char **endptr);

long double strtold(const char *nptr, char **endptr) ;

The strtof and strtold functions are float and long double versions of strtod.
Their behavior is the same as that of strtod. However, if the correct value is outside
the range of representable values, strtof and strtold return HUGE_VALF and
HUGE_VALL, respectively, with the appropriate sign. (HUGE_VALF and HUGE_VALL are
introduced in §4.3.)

Translation-time conversion of valid floating constants exactly matches execution-time
conversion provided the default rounding modes are in effect. See §3.1.2.

Page 26 DRAFT January 6, 1994

334

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

The expected form of the subject sequence accepted by strtod is broadened to include
an optional plus or minus sign, then a 0x or 0X, and then followed by one of:

1. anonempty sequence of hexadecimal digits optionally containing a “decimal-point”
character, then a binary-exponent part, but no floating suffix;

2. anonempty sequence of hexadecimal digits containing a “decimal-point” character,
but no floating suffix.

For implementations whose FLT_RADIX is a power of 2, a hexadecimal floating source
value is correctly rounded to the appropriate internal format. For implementations
whose FLT_RADIX is not a power of 2, the result should be one of the two numbers in
the appropriate internal format that are adjacent to the hexadecimal floating source
value, with the extra stipulation that the error have the correct sign for the current
rounding direction.

Also, the syntax accepted by strtod includes:

St:gno pt INF

Signopt INFINITY

Signopt NAN

signopt NAN(n-char-sequenceopt)

where

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

and any strings equivalent except for case in the INF, INFINITY, Or NAN part.

The character sequences INF and INFINITY produce an infinity, if representable, else
are treated as numeric input that overflows.

Character sequences of the form NAN or NAN (n-char-sequencegpt) are converted to
quiet NaNs, if supported, else are treated as invalid input. An implementation may use
the n-char-sequence to determine extra information to be represented in the NaN’s
significand; which n-char-sequence’s are meaningful is implementation-defined.

So much is implementation-defined because so little is portable. Attaching meaning to
NaN significands is problematic, even for one implementation, even an IEEE one. For
example, the IEEE floating-point standards do not specify the effect of format conversions
on NaN significands—conversions, perhaps generated by the compiler, may alter NaN
significands in obscure ways.

Requiring a sign for NaN or infinity input was considered as a way of minimizing the
chance of mistakenly accepting nonnumeric input. The need for this was deemed
insufficient, partly on the basis of prior art.

For simplicity, the infinity and NaN representations are provided through straightforward

extensions, rather than through a new locale (ISO §7.4; ANSI §4.4). Note also that
Standard C locale categories do not affect the representations of infinities and NaNs.

January 6, 1994 DRAFT Page 27

o~

5

10

15

20

25

30

35

45

50

WG14/N319, X3711/94-003 Floating-Point C Extensions

The strtod function should honor the sign of zero if the arithmetic supports signed
zeros.

For IEEE Implementations

Conversion from a numeric decimal string with DEC IMAL_DIG'(deﬁned in §4.3) or
fewer significant digits to the widest supported IEEE format is correctly rounded
according to the effective rounding direction. For conversion of a numeric decimal
string D, with more than DECIMAL_DIG digits, consider the two bounding, adjacent
decimal strings L and U, both having DECIMAL_DIG significant digits, such that the
values of L, D, and U satisfy L <D < U. The result of conversion is one of the (equal
or adjacent) values that would be obtained by correctly rounding L and U according to
the current rounding direction, with the extra stipulation that the error with respect to D
has the correct sign for the current rounding direction.

Correct rounding refers to the style of rounding that the IEEE floating-point standards
prescribe for their arithmetic operations: the delivered value is the (destination) format's
value that is closest, in the sense of the effective rounding direction, to the infinitely precise
result.

DECIMAL_DIG is sufficiently large that L and U will usually round to the same internal
floating value, but if not will round to adjacent values.

The IEEE floating-point standards require perfect rounding for a large though incomplete
subset of decimal conversions. This specification goes beyond the IEEE floating-point
standards by requiring perfect rounding for all decimal conversions, involving DECIMAL_DIG
or fewer decimal digits and a supported IEEE format, because practical methods are
becoming publicly available (see [12]). Although not requiring correct rounding for
arbitrarily wide decimal numbers, this specification is sufficient in the sense that it ensures
that every internal numeric value in an IEEE format can be determined as a decimal
constant.

The strtod function honors the sign of zero. It treats the overflow, underflow, and
inexact exceptions in accordance with the IEEE floating-point standards. And, it raises
the invalid exception on invalid numeric input.

This document's previous specification that strtod return a NaN for invalid numeric input,
as recommended by IEEE standard 854, was withdrawn because of the incompatibility with
Standard C, which demands that st rtod return 0 for invalid numeric input.

4.2.2 Input / output <stdio.h>

4.2.2.1 The fprintf function @ISO §7.9.6.1; ANSI §4.9.6.1)

The a and A conversion specifiers provide hexadecimal floating representations. The
conversion specifier a means that the argument is converted to a hexadecimal floating
representation in the style [-]0xh.hhhhptd. The number of hexadecimal digits h after
the decimal-point character is equal to the precision; if the precision is missing then for
implementations whose FLT_RADIX is a power of 2 the precision is sufficient for an
exact representation of the source value, and for other implementations the precision
should be sufficient to distinguish (see rationale below) values of the source type,
except that trailing zeros may be omitted. The hexadecimal digit to the left of the
decimal-point character is nonzero for normal values and is otherwise chosen by the

Page 28 DRAFT January 6, 1994

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

implementation; if the precision is zero and the # flag is not specified, no decimal-point
character appears. The A conversion specifier will produce a number with x and p
instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2.

Binary implementations should choose the hexadecimal digit to the left of the decimal-point
character so that subsequent digits align to nibble boundaries. For example, the next value
greater than one in the common IEEE 754 80-bit extended format should be

0x8.000000000000001p-3
The next value less than one in IEEE 754 double should be
Ox1.fffffffffffffp-1

Note that if the precision is missing, trailing zeros may be omitted. For example, the value
positive zero might be

0x0.p+0

The more suggestive conversion specifiers for hexadecimal formatting, namely x and h,
were unavailable. Since h was taken H was ruled out in favor of a lower/upper case option.
Possibilities other than a included: b 5 k m g r t v w y z. The optional h to indicate
hexadecimal floating, as in the, was deemed a less natural fit with the established scheme
for specifiers and options.

The decimal-point character is defined in Standard C (ISO §7.1.1; ANSI §4.1.1). Radix-
point character would have been a better term.

The precision p is sufficient to distinguish values of the source type if

p-1 n
16 b
where b is FLT_RADIX and # is the number of base-b digits in the significand of the source

type. A smaller p might suffice depending on the implementation’s scheme for determining
the digit to the left of the decimal-point character. (See [6], Ch 7.)

For implementations whose FLT_RADIX is a power of 2, the source value is correctly
rounded to a hexadecimal floating number with the given precision. For
implementations whose FLT_RADIX is not a power of 2, the result should be one of the
two adjacent numbers in hexadecimal floating style with the given precision, with the
extra stipulation that the error have the correct sign for the current rounding direction.

The F conversion specifier has the same effect as £ except for infinity and NaN
formatting (specified below).

The optional precision, optional L, and 0 and # flag characters all have the same effect
for a, A, and F conversions as for e, E, £, g, and G .

With e-style formatting, the exponent field contains at least two digits, and only as
many more digits as necessary to represent the exponent.

For all floating conversions, an infinite value is converted in one of the styles [-]inf
or [-]infinity—which style is implementation-defined.

January 6, 1994 DRAFT Page 29

Cy

NEN

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

For all floating conversions, a NaN value is converted in one of the styles [-]nan or
[-1nan (n-char-sequence —which style, and the meaning of any n-char-sequence, is

implementation-defined.
See §4.2.1.2 Rationale.

When applied to infinite and NaN values, the -, +, and space flag characters have their
usual meaning; the # and o flag characters have no effect .

Use of an upper case format specifier, a, E, F, or G, results in INF, INFINITY, Or NAN
instead of inf, infinity, OF nan.

Use of the 2 and F format specifiers constitutes a minor extension to Standard C which does
not reserve them.

The results of all floating conversions of a negative zero should include a minus sign.

For IEEE Implementations

If the number of significant decimal digits is at most DECIMAL_Di1G, then the result
from converting a value from an IEEE format is correctly rounded for the current
rounding direction. If the number of significant decimal digits is more than
DECIMAL_DIG but the source value is exactly representable with DECIMAL_DIG digits,
then the result is an exact representation with trailing zeros. Otherwise, the source
value is bounded by two adjacent decimal strings L < U, both having DECIMAL_DIG
significant digits; the value of the result decimal string D satisfies L <D < U, with the
extra stipulation that the error have the correct sign for the current rounding direction.

See §4.2.1.2 Rationale. For binary-to-decimal conversion, the infinitely precise result is
just the source value, and the destination format's values are the numbers representable with
the given format specifier. The number of significant digits is determined by the format
specifier, and in the case of fixed-point conversion by the source value as well.

The results of all floating conversions of a negative zero shall include a minus sign.

4.2.2.2 The fscanf function (ISO §7.9.6.2; ANSI §4.9.6.2)

For a, 2, e, E, £, F, g, and G conversion specifiers, all valid syntax—including
hexadecimal-floating-constant, infinity, NaN, and signed zero—is treated in the same
manner as strtod.

4.3 Floating-Point Extensions <fp.h>

The header <fp.h> declares several types, macros and functions to support general
floating-point programming. It provides essentially all of Standard C <math.h>, as
well as facilities required or recommended by the IEEE floating-point standards, and a
few other facilities that have proved broadly useful. [17] and [1] contain basic
descriptions, not repeated in this document, of the Standard C functions. Appendix F
contains specification that is particularly suited for IEEE implementations. The
implementation should follow the guide referenced in Appendix E to document its
<£fp.h> functions.

Page 30 DRAFT January 6, 1994

390

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

The typedefs

float_t
double_t

are defined to be the implementation’s most efficient floating types at least as wide as
float and double, respectively. (Every value of type float_t is also a value of type

double_t.)
Facility to use wider types is needed for writing portable efficient code. Currently Standard
C gives no way of asking for the most efficient floating type with at least a given width.
Thus different prototypes are more efficient on different floating-point architectures.

architecture (see §3.2.3) most efficient prototype

extended-based long double f(long double)
double-based double f(double)
single/double float f(float)

single/double/extended float f(float)

Differences may involve whether values can be kept in registers, hence are substantial.
Implementations for the various floating-point architectures might use these type

definitions:
architecture float_t double_t
extended-based long double long double
double-based double double
single/double float double
single/double/extended float double

An alternate approach of modifying the semantics of the register storage-class specifier,
when applied to a floating type, to mean that the associated value may be wider than the
type, was rejected as inconsistent with existing use of register in Standard C.

The macro '
HUGE_VAL

is as defined in ANSI C §4.5.

The macros

HUGE_VALF
HUGE_VALL

are float and long double analogs of HUGE_vaL. They expand to positive f1loat
and long double expressions, respectively. Like HUGE_VAL, each can be a positive
infinity in an implementation that supports infinities.

January 6, 1994 DRAFT Page 31

3y)

10

15

20

25

30

35

45

55

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The macro

INFINITY

expands to a floating expression representing an implementation-defined positive or
unsigned infinity, if available, else to a positive floating constant that overflows at

translation time.
The macro

NAN

is defined if and only if the implementation supports quiet NaNs. It expands to a
floating-point expression representing an implementation-defined quiet NaN.

Ideally the I1NFINITY and NAN macros would be suitable for static and aggregate
initialization, though currently such is not required by this specification.

No type is specified for the INFINITY and NAN macros because conversions between
floating-point types convert infinities to infinities and NaNs to NaNs, without raising
exceptions.

The macros

FP_NAN
FP_INFINITE
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutually exclusive kinds of floating-
point values. They expand to int constant expressions with distinct values and
suitable for use in #if preprocessing directives.
Some prior art uses a finer classification: FP_POS_INFINITE, FP_NEG_INFINITE, etc. The
current consensus is that those specified, in conjunction with the signbit macro, are
generally preferable.

Results for the inquiry macros specified in the remainder of this section are undefined if
the argument is not of floating type.

This allows efficient implementation.
The macro
fpclassify(floating-expr)
evaluates to the value of the number classification macro appropriate to the value of its
argument. First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then classification is based on the type of the argument.
It is important to know the type that classification is based on. For example, a value might

be zero when converted to £1o0at, subnormal when converted to doubl e, and normal when
converted to 1long double.

Page 32 DRAFT January 6, 1994

31/’2/

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

fpclassi fy might be implemented as

#define fpclassify(x) ((sizeof(x) == sizeof(float)) ? _ _fpclassifyf(x) \
: (sizeof(x) == sizeof (double)) ? __fpclassifyd(x) \
: __fpclassifyl(x))

The macro
signbit (floating-expr)

evaluates to an int expression that is nonzero if and only if the sign of the argument
(infinities, zeros, and NaNs included) is negative.

The IEEE floating-point standards do not specify the effect of arithmetic operations on a
NaN's sign bit. However, signbit of a NaN is valid in the sense that, even if x is a NaN,

signbit (x) is invariant until x changes.
The macro
isfinite(floating-expr)

evaluates to an int expression that is nonzero if and only if its argument has a finite
value (zero, subnormal, or normal). First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then determination is based on
the type of the argument.

The macro

isnormal (floating-expr)

evaluates to an int expression that is nonzero if and only if its argument value is
normal: neither zero, subnormal, infinite, nor NaN. First, an argument represented in
a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

The macro
isnan(floating-expr)

evaluates to an int expression that is nonzero if and only if its argument value is a
NaN.

The macro
DECIMAL_DIG

expands to an int constant expression suitable for use in #if preprocessing directives.
Its value is an implementation-defined number of decimal digits which is supported by
conversion between decimal and all internal floating-point formats. Conversion from
(at least) double to decimal with DECIMAL_D1G digits and back should be the identity
function. And, bEcIiMAL_D1G should give an appropriate number of digits to carry in
canonical decimal representations.

January 6, 1994 DRAFT Page 33

793

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003 Floating-Point C Extensions

In order that correctly rounded conversion from an intemnal ﬂoating-point‘format ‘yith
precision m to decimal with DECIMAL_DIG digits and back be the identity function,

DECIMAL_DIG should be a positive integer n satisfying

nz2m, if FLT_RADIX is 10
10" - 15> pLr_raDIX™, otherwise

Refer to [6], Chapter 7, for details.

DECIMAL_DIG is distinct from Standard C's DBL_DIG, which is defined in terms of
conversion from decimal to double and back.

DECIMAL_DIG was deemed more useful than Fp_coNv_DIG, which previous versions of this
document defined as the number of decimal digits for which the implementation guaranteed
correctly rounded conversion.

For IEEE Implementations

Conversion from the widest supported IEEE standard format to decimal with
DECIMAL_DIG digits and back is the identity function. See §4.2.1.2 and 4.2.2.1
regarding conversion requirements.

Examples

If the minimum-width IEEE 754 extended format (64 bits of precision) is supported,
DECIMAL_DIG must be at least 21. If IEEE 754 double (53 bits of precision) is the widest
IEEE format supported, then DECIMAL_DIG must be at least 17. By contrast, LDBL_DIG and
DBL_DIG are 19 and 15, respectively, for these formats.

4.3.1 Overloaded functions

The specification of the header <£p.h> uses the notion of overloaded functions. The
function designators are overloaded with multiple prototypes which become declared
when <£p.h> is included. They are used much like ordinary functions, but they
behave more like typical built-in arithmetic operators: their semantic type is affected by
their arguments; their result is at least as wide as the minimum evaluation format; and,
with widest-need expression evaluation, the evaluation format propagates from the call
to its arguments.

For each overloaded function defined in this section, the implementation provides a set
of functions—one for the minimum evaluation format and one for each wider floating
format. Their prototypes are identical except for their floating-point return type and one
or more overloading parameters whose type is identical to the return type. Prototypes
have the form

floating-type function-designator (argument-list) ;

Subsequent sections give a form in this style for each overloaded function. The form
determines the required prototypes.

Example
The square root function has the prototype form

floating-type sqrt(floating-type X);

Page 34 DRAFT January 6, 1994

10

15

20

25

30

35

45

55

WG14/N319, X3J11/94-003

So, if the minimum evaluation format were £1oat then the implementation would have

float sqrt(float);
double sqrt (double);
long double sqrt(long double);

Example
The remquo function has the form
floating-type remquo(floating-type x, floating-type y, int *quo);

So, if the minimum evaluation format were double then the implementation would
have

double remquo(double, double, int *);
long double remquo(long double, long double, int *);

A function call that is compatible with one of the prototypes for an overloaded function
is compatible with all of them. For such a function call, occurring after inclusion of
<fp.h> in the translation unit, the implementation determines the evaluation format for
the call and chooses the matching prototype. First, any integer arguments for the
overloading parameters are converted to double. Then the evaluation format for the
call is determined to be the widest of

1. the arguments for the overloading parameters,

2. the minimum evaluation format,

and in the case of widest-need (§3.2.3.1)

3. any evaluation format propagated down to the call.

With widest-need expression evaluation, the evaluation format for the call, which
matches the type of the invoked function, is propagated through the call to the
arguments corresponding to the overloading parameters.

Taking the address of an overloaded function or passing it as an argument to a function
results in undefined behavior.

Overloaded functions cooperate with expression evaluation methods much as arithmetic
operators do. For example, with

double d; float f£f;
d = sqrt(f + £);

the type of sqrt and evaluation format of + actnally used are:

float no float float
double no double double
long double either long double long double
float yes double double
double yes double double
January 6, 1994 DRAFT Page 35

JY

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

Modeled after C++, the iudimemary overloading required by this specification can
reasonably be expected to be compatible with future overloading extensions to C. General
purpose overloading for C is beyond the scope of this document.

This specification does not prescribe any particular implementation mechanism. It could be
implemented simply with built-in macros. A function such as

floating-type sqrt (floating-type);
could be implemented with

#undef sqrt
#define sqrt(x) __BUILTIN_OVERLOAD_sqrt (x)

Note that implementations whose minimum evaluation format is 1ong double require no
overloading mechanism since only one prototype, the long double one, is needed for each
function.

This specification borrows heavily from [14] and [15]). [15] is functionally similar, but is
presented in the style of Fortran generic intrinsic functions. Like this specification, [14] is
consistent with C++ overloading. Adding a suitable subset of C++ overloading to C, as
prescribed by [14], would support the overloading required here, and as well provide a useful
user-extensible overloading mechanism. (With the current C++ overloading rules,
additional prototypes would be required to handle integer arguments. [14] suggests how
C++ overloading might be extended to accommodate widest-need.)

The C* language, an extended C, includes a function overloading scheme that supports its
parallel types. The C* definition in [21] differs from this specification and current C++ in
that its overloading resolution depends on the order of parameters.

The great majority of existing C programs are expected to run correctly straightaway when
<fp.h> is included instead of <math.h>. Overloaded functions differ from corresponding
Standard C library functions essentially only in the semantic types of return values.

Use of Standard C’s reserved £ and 1 suffixed identifiers could be supported with macros
such as

#define sinf(x) sin((float) (x))
(Taking the address of such a function or passing it as an argument would be disallowed.)

The ability to overload on integer as well as floating types would have been useful for some
functions, for example copysign. Overloading with different numbers of arguments would
have allowed reusing names, for example remainder for remquo. However, these facilities
would have complicated the specification somewhat and their natural consistent use, such as
for a floating abs or a two argument atan, would have introduced further inconsistencies
with Standard C for insufficient benefit.

This specification in no way limits the implementation’s options for efficiency, including
inlining library functions (ISO §7.1.6; ANSI §4.1.6).

Floating-Point C Extensions

4.3.2 Trigonometric functions (@ISO §7.5.2; ANSI §4.5.2)

The header <£p . h> declares overloaded versions of all the Standard C trigonometric
functions.

Page 36 DRAFT January 6, 1994

3y

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

4.3.2.1 The acos function (ISO §7.5.2.1; ANSI §4.5.2.1)
Synopsis

#include <fp.h>
floating-type acos (floating-type X);

4.3.2.2 The asin function (ISO §7.5.2.2; ANSI §4.5.2.2)
Synopsis

#include <fp.h>
floating-type asin(floating-type X);

4.3.2.3 The atan function (ISO §7.5.2.3; ANSI §4.5.2.3)
Synopsis

#include <fp.h>
floating-type atan(floating-type X);

4.3.2.4 The atan2 function (ISO §7.5.2.4; ANSI §4.5.2.9)
Synopsis

#include <fp.h>
floating-type atan2(floating-type y, floating-type X);

4.3.2.5 The cos function (ISO §7.52.5; ANSI §4.5.2.5)
Synopsis

#include <fp.h>
floating-type cos(floating-type x);

4.3.2.6 The sin function (ISO §7.5.2.6; ANSI §4.5.2.6)
Synopsis

#include <fp.h>
floating-type sin(floating-type X);

4.3.2.7 The tan function (ISO §7.5.2.7; ANSI §4.5.2.7)
Synopsis

#include <fp.h>
floating-type tan(floating-type Xx);

4.3.3 Hyperbolic functions (ISO §7.5.3; ANSI §4.5.3)

The header <£p.h> declares overloaded versions of the Standard C hyperbolic
functions and their arc counterparts.

January 6, 1994 DRAFT Page 37

347

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

4.3.3.1 The acosh function
Synopsis

#include <fp.h>
floating-type acosh(floating-type X);

Description
The acosh function computes the (nonnegative) arc hyperbolic cosine of x.
Returns
The acosh function returns the arc hyperbolic cosine.
4.3.3.2 The asinh function
Synopsis

#include <fp.h>
floating-type asinh(floating-type X);

Description
The asinh function computes the arc hyperbolic sine of x.
Returns
The asinh function returns the arc hyperbolic sine.
4.3.3.3 The atanh function
Synopsis

#include <fp.h>
floating-type atanh(floating-type x);

Description
The atanh function computes the arc hyperbolic tangent of x.
Returns
The atanh function returns the arc hyperbolic tangent .
4.3.3.4 The cosh function (ISO §7.5.3.1; ANSI §4.5.3.1)
Synopsis

#include <fp.h>
floating-type cosh(floating-type X);

Page 38 DRAFT January 6, 1994

3¢

10

15

20

P

30

35

40

45

50

WG14/N319, X3J11/94-003

4.3.3.5 The sinh function (ISO §7.5.3.2; ANSI §4.5.3.2)
Synopsis

#include <fp.h>
floating-type sinh(floating-type X);

4.3.3.6 The tanh function @ISO §7.5.3.3; ANSI $4.5.3.3)
Synopsis

#include <fp.h>
floating-type tanh(floating-type x);

4.3.4 Exponential and logarithmic functions @so §7.54; ANsI
§4.5.4)

The header <£p.h> declares overloaded versions of the Standard C exponential and
logarithmic functions—except for modf which is declared but not overloaded—and

several related functions.
4.3.4.1 The exp function (ISO §7.54.1; ANSI §4.5.4.1)
Synopsis

#include <fp.h>
floating-type exp(floating-type x);

4.3.4,2 The exp2 function
Synopsis

#include <fp.h>
floating-type exp2(floating-type X);

Description
The exp2 function computes the base-2 exponential of x: 2X.
Returns
The exp2 function returns the base-2 exponential.
4.3.4.3 The expml function
Synopsis

#include <fp.h>
floating-type expml (floating-type x);

January 6, 1994 DRAFT Page 39
JY

N

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Description

The expm1 function computes the base-e exponential of the argument, minus 1:
eX - 1. For small magnitude x, expml (x) is expected to be more accurate than

exp(x) - 1.
Returns
The expml function returns e* - 1.
4.3.4.4 The frexp function (ISO §7.5.4.2; ANSI §4.5.4.2)
Synopsis

#include <fp.h>
floating-type frexp(floating-type value, int *exp);

4.3.4.5 The ldexp function (ISO §7.54.3; ANSI §4.54.3)
Synopsis

#include <fp.h>
floating-type ldexp(floating-type x, int exp);

4.3.4.6 The log function (ISO §7.54.4; ANSI §4.54.4)
Synopsis

#include <fp.h>
floating-type log(floating-type X);

4.3.4.7 The logl0 function (ISO §7.5.4.5; ANSI §4.54.5)
Synopsis

#include <fp.h>
floating-type loglO(floating-type Xx);

4.3.4.8 The loglp function
Synopsis

#include <fp.h>
floating-type loglp(floating-type X);

Description

The 10g1p function computes the base-¢ logarithm of 1 plus the argument. For small
magnitude x, loglp (x) is expected to be more accurate than log (1 + x).

Returns

The 1og1p function returns the base-e logarithm of 1 plus the argument.

Page 40 DRAFT January 6, 1994
750

WG14/N319, X3J11/94-003

ol 4.3.49 The log2 function
Synopsis

5 #include <fp.h>
floating-type log2(floating-type X);

Description

10 The 1og2 function computes the base-2 logarithm of x.

Returns

The 1og2 function returns the base-2 logarithm.

15
4.3.4.10 The logb function

Synopsis

20 #include <fp.h>
floating-type logb(floating-type X);

Description

25 The 1ogb function extracts the exponent of x, as a signed integral value in the format of
x. If x is subnormal it is treated as though it were normalized; thus for positive finite

X,
1 S x * FLT_RADIX"10gb(X) < FLT RADIX
30 The treatment of subnormal x follows the recommendation in IEEE standard 854, which
differs from IEEE standard 754 on this point. Even 754 implementations should follow
this definition rather than the one recommended (not required) by 754.

Particularly on machines whose radix is not 2, 1ogb can be expected to obtain the exponent
35 more accurately and quickly than frexp.

Returns
The 1ogb function returns the signed exponent of its argument.
4.3.4.11 The modf functions (ISO §7.5.4.7; ANSI §4.5.4.6)
Synopsis

45 #include <fp.h>
double modf (double value, double *iptr);
float modff (float value, float *iptr);
long double modfl(long double value, long double *iptr);

50 4.3.4.12 The scalb function

Synopsis
— #include <fp.h>
55 floating-type scalb(floating-type x, long int n);
January 6, 1994 DRAFT Page 41

35/

10

15

20

25

30

a5

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Description

The scalb function computes x * FLT_RADIX® efficiently, not normally by computing
FLT_RADIX" explicitly.

Returns
The scalb function retumns x * FLT_RADIXP .

On machines whose radix is not 2, scalb, compared with 1dexp, can be expected to have
better accuracy, speed, and overflow and underflow behavior.

The second parameter has type long int, unlike the corresponding int parameter for
1dexp, because the factor required to scale from the smallest positive floating-point value to

the largest finite one, on many implementations, is too large to represent in the minimum-
width int format allowed by Standard C.

4.3.5 Power and absolute value functions (ISO §7.5.5, 7.5.6; ANSI
§4.5.5, 4.5.6)

The header <fp . h> declares overloaded versions of the Standard C power and absolute
value functions and a hypotenuse function.

4.3.5.1 The fabs function @Jso §7.5.6.2; ANSI §4.5.6.2)
Synopsis

#include <fp.h>
floating-type fabs(floating-type x);

4.3.5.2 The hypot function
Synopsis

#include <fp.h> »
floating-type hypot (floating-type x, floating-type y);

Description

The nypot function computes the square root of the sum of the squares of x and y,
without undue overflow or underflow.

Returns
The hypot function returns the square root of the sum of the squares of x and y.
4.3.5.3 The pow function @ISO §7.5.5.1; ANSI §4.5.5.1)
Synopsis

#include <fp.h>
floating-type pow(floating-type x, floating-type y);

Page 42 DRAFT January 6, 1994

AR

WG14/N319, X3J11/94-003

4.3.5.4 The sqrt function @ISO §7.5.5.2; ANSI $4.5.5.2)
!

Synopsis

#include <fp.h>
floating-type sqrt(floating-type X);

4.3.6 Error and gamma functions

10
See [23] regarding implementation.

4.3.6.1 The erf function
15 Synopsis

#include <fp.h>
floating-type erf(floating-type x);

20 Description
The er£ function computes the error function of x.
Returns
25
The erf function returns the error function of x.
4.3.6.2 The erfc function
30 Synopsis

#include <fp.h>
floating-type erfc(floating-type Xx):

35 Description
The erfc function computes the complementary error function of x.
Returns
The erfc function returns the complementary error function of x.
4.3.6.3 The gamma function
45 Synopsis

#include <fp.h>
floating-type gamma (floating-type x);

50 Description

The gamma function computes the gamma function of x: I'(x).

January 6, 1994 DRAFT Page 43
353

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Returns

The gamma function returns I'(x).
In UNIX System V [10], both the ganma and 1gamma functions compute loge(IT'(x)D.
4.3.6.4 The lgamma function
Synopsis

#include <fp.h>
floating-type lgamma (floating-type X);

Description

The 1gamma function computes the logarithm of the absolute value of gamma of x:
loge(IF(x)I).

In UNIX System V [10), a call to 1gamma sets an external variable signgam to the sign of
gamma (x), which is -1 if

x < 0 && remainder(floor(x), 2) != 0

Note that this specification does not remove the external identifier signgam from the user’s
name space. An implementation that supports, as an extension, l1gamma’s setting of
signgam must still protect the external identifier signgam if defined by the user.

Returns

The 1gamma function returns loge(IF(x)I).

4.3.7 Nearest integer functions @ISO §7.5.6; ANSI §4.5.6)

The header <fp.h> declares overloaded versions of the Standard C nearest integer
functions, nearest integer functions specified by the IEEE standards, and functions
similar to common Fortran nearest integer functions.
4.3.7.1 The ceil function (ISO §7.5.6.1; ANSI §4.5.6.1)
Synopsis

#include <fp.h>
floating-type ceil (floating-type Xx);

4.3.7.2 The floor function @ISO §7.5.5.1; ANSI §4.5.5.1)
Synopsis

#include <fp.h>
floating-type floor(floating-type X);

Page 44 DRAFT January 6, 1994

8%

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

4.3.7.3 The nearbyint function

Synopsis

#include <fp.h>
floating-type nearbyint (floating-type Xx);

Description

The nearbyint function differs from the rint function (§4.3.7.4) only in that the
nearbyint function does not raise the inexact exception. (See §F.6.3-4.)

For implementations that do not support the inexact exception, nearbyint and rint are
equivalent.

Returns
The nearbyint function returns the rounded integral value.
4.3.7.4 The rint function
Synopsis

#include <fp.h>
floating-type rint (floating-type X);

Description

The rint function rounds its argument to an integral value in floating-point format,
using the current rounding direction.

Returns
The rint function returns the rounded integral value.
4.3.7.5 The rinttol function
Synopsis

#include <fp.h>
long int rinttol(long double x);

Description
The rinttol function rounds its argument to the nearest long int, rounding
according to the current rounding direction. If the rounded value is outside the range of
long int, the numeric result is unspecified.

Returns

The rinttol function returns the rounded long int value, using the current rounding
direction.

January 6, 1994 DRAFT Page 45

TN

10

15

20

25

30

35

45

50

WG14/N319, X3111/94-003 Floating-Point C Extensions

4.3.7.6 The round function
Synopsis

#include <fp.h>
floating-type round(floating-type X);

Description

The round function rounds its argument to the nearest integral value in floating-point
format, using add half to the magnitude and chop rounding a la the Fortran anint
function, regardless of the current rounding direction.

Returns
The round function returns the rounded integral value.
4.3.7.7 The roundtol function
Synopsis

#include <fp.h>
long int roundtol(long double X);

Description
The roundtol function returns the rounded long int value, using add half to the
magnitude and chop rounding a la the Fortran nint function and the Pascal round
function, regardless of the current rounding direction. If the rounded value is outside
the range of long int, the numeric result is unspecified.

Returns
The roundtol function returns the rounded 1ong int value.

4.3.7.8 The trunc function
Synopsis

#include <fp.h>
floating-type trunc(floating-type Xx);

Description

The trunc function rounds its argument to the integral value, in floating format, nearest
to but no larger in magnitude than the argument.

Returns

The trunc function returns the truncated integral value.

Page 46 DRAFT January 6, 1994
337

WG14/N319, X3J11/94-003

= 4.3.8 Remainder functions @ISO §7.5.6; ANSI §4.5.6)

The header <£p.h> declares an overloaded Standard C £mod function and two versions
of the IEEE floating-point standards’ remainder function.

5
4.3.8.1 The fmod function @ISO §7.5.6.4; ANSI §4.5.6.4)
Synopsis
10 #include <fp.h>

floating-type fmod(floating-type x, floating-type Yy):
4.3.8.2 The remainder function
15 Synopsis

#include <fp.h>
floating-type remainder (floating-type X,
floating-type Y);

20
Description

The remainder function computes the remainder x REM y required by the IEEE
floating-point standards.
25
“When y #0, the remainder r = x REM y is defined regardless of the rounding mode by the
mathematical relation r = x - y * n, where n is the integer nearest the exact value of x/y;
whenever In - x/y | = 1/2, then n is even. Thus, the remainder is always exact. If r = 0, its
30 sign shall be that of x.” [3] §5.1.
(This definition can be implemented for non-IEEE as well as IEEE machines.)

Returns
35 The remainder function returns x REM y.
4.3.8.3 The remquo function
Synopsis
40
#include <fp.h>

floating-type remquo(floating-type x, floating-type y,
int *quo);

45 Description

The remquo function computes the same remainder as the remainder function. In the
object pointed to by quo it stores a value whose sign is the sign of x/y and whose

magnitude is congruent mod 2™ to the magnitude of the integral quotient of x/y, where
50 n is an implementation-defined integer at least 3.

Returns

The remquo function returns x REM y.

January 6, 1994 DRAFT Page 47

Gy
“~
N)

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The remquo function is intended for implementing argument reductions, which can c.xploit a
few low-order bits of the quotient. Note that x may be so large in magnitude relative to y
that an exact representation of the quotient is not practical.

4.3.9 Manipulation functions
These extension functions manipulate representations of floating-point numbers.
4.3.9.1 The copysign function
Synopsis

#include <fp.h>
floating-type copysign(floating-type x, floating-type Y);

Description

The copysign function produces a value with the magnitude of x and the sign of y. It
produces a NaN (with the sign of y) if x is a NaN. On implementations that represent a
signed zero but do not treat negative zero consistently in arithmetic operations, the
copysign function regards the sign of zero as positive.

The requirement that copysign regard a negative sign of zero as positive if the arithmetic
treats negative zero like positive zero is justified in order to preserve more identities. For
example, to preserve the identity, the square root of the product is the product of the square
roots, the algorithm in [22] for the complex square root depends on consistency of
copysign with the rest of the arithmetic: if -0 behaves like +0 then the square root of the

product would yield

B*(1-00) =V=3+0i - 0+3i

but if copysign were to treat the sign of -0 as negative then the product of the square roots
would yield

V3 *V-1-0i 5 V3 *0-i)=0-+3i
Returns
The copysign function returns a value with the magnitude of x and the sign of y.
4.3.9.2 The nan functions
Synopsis

#include <fp.h>

double nan(const char *tagp):

float nanf (const char *tagp):

long double nanl (const char *tagp):

Description

If the implementation supports quiet NaNs in the type of the function, then the call
nan (*n-char-sequence*) is equivalent to strtod(*NAN (n-char-sequence) *,

Page 48 DRAFT January 6, 1994

i

.

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

(char**) NULL); the call nan("*) is equivalent to strtod("NAN()*, (char**)
NuLL). Similarly nanf and nanl are defined in terms of strtof and strtold. If
tagp does not point to an n-char-sequence string tl}en the 'result NaN ’_s content is
unspecified. A call to a nan function of a type for which the implementation does not
support quiet NaNs is unspecified.

Returns

The nan functions return a quiet NaN, if available, with content indicated through
tagp.

4.3.9.3 The nextafter functions
Synopsis

#include <fp.h>

floating-type nextafter(floating-type x, long double y);
float nextafterf(float x, float y);

double nextafterd(double x, double y);

long double nextafterl(long double x, long double y);

Description

The nextafter functions determine the next representable value, in the type of the
function, after x in the direction of y. The nextafter functions returny if x ==

Returns

The nextafter functions return the next representable value after x in the direction of
Vs

It’s sometimes desirable to find the next representation after a value in the direction of a
previously computed value—maybe smaller, maybe larger. The nextafter functions have
a second floating argument so that the program will not have to include floating-point tests
for determining the direction in such situations. And, on some machines these tests may
fail due to overflow, underflow, or roundoff.

The overloaded nextafter function depends substantially on the expression evaluation
method—which is appropriate for certain uses but not for others. The explicitly typed
functions can be employed to obtain next values in a particular format. For example,

nextafterf(x, y)

will return the next £1oat value after (float) x in the direction of (float) y regardless
of the evaluation method.

The second parameter of the overloaded nextafter function has type long double
primarily to keep the overloading scheme simple. Promotion of the second argument to
long double is harmless but unnecessary.

For the case x == y, the IEEE floating-point standards recommend that x be returned. This
specification differs in order that nextafter (-0.0, +0.0) return +0.0 and
nextafter(+0.0, -0.0) return -0.0.

January 6, 1994 DRAFT Page 49

L

N0y

10

15

20

25

30

35

45

50

WG14/N319, X3711/94-003 Floating-Point C Extensions

4.3.10 Maximum, minimum, and positive difference functions

These extension functions correspond to standard Fortran functions, dim, max, and min
[16].

Their names have £ prefixes to allow for integer versions—following the example of fabs
and abs.

4.3.10.1 The fdim function
Synopsis

#include <fp.h>
floating-type fdim(floating-type X, floating-type Y):;

Description

The £dim function determines the positive difference between its arguments:

x-y, ifx>y
+0 , if xsy

Returns
The £dim function returns the positive difference between x and y.
4.3.10.2 The fmax function
Synopsis

#include <fp.h>
floating-type fmax(floating-type x, floating-type Y);

Description
The £max function determines the maximum numeric value of its arguments.

NaN arguments should be treated as missing data. If one argument is a NaN and the other
numeric, then £max should chose the numeric value. (See §F.9.2.)

Returns
The £max function returns the maximum numeric value of its arguments.
4.3.10.3 The fmin function
Synopsis

#include <fp.h>
floating-type fmin(floating-type x, floating-type Y):

Description

The £min function determines the minimum numeric value of its arguments.

Page 50 DRAFT January 6, 1994

5

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

NaN arguments should be treated as missing data. If one argument is a NaN and the other
numeric, then £min should chose the numeric value. (See §F.9.3.)

Returns

The £min function returns the minimum numeric value of its arguments.

4.4 Floating-Point Environment <fenv.h>

The header <fenv.h> declares two types and several macros and functions to provide
access to the floating-point environment.
Names of macros and functions in this section consistently include an FE_ or fe prefix and
employ certain abbreviations. The prefix calls attention to environmental access functions,
which require an enabling fenv_access pragma (see §2). The abbreviations env and
except are used in Standard C and UNIX System V, respectively.

The interface described here is not intended to support trap handlers, which are outside the
scope of this document.

The typedef

fenv_t
is a type for representing the entire floating-point environment.
The typedef

fexcept_t

is a type for representing the floating-point exception flags collectively, including any
status the implementation associates with the flags.

See rationale in §4.4.1.
Each macro

FE_INEXACT
FE_DIVBYZERO
FE_UNDERFLOW
FE_OVERFLOW
FE_INVALID

is defined if and only if the implementation supports the exception by means of the

functions in §4.4.1. The defined macros expand to int constant expressions whose
values are distinct powers of 2, all suitable for use in #if preprocessing directives.

The macro
FE_ALL_EXCEPT

is simply the bitwise OR of all exception macros defined by the implementation.

January 6, 1994 DRAFT Page 51

2

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Each macro

FE_TONEAREST
FE_UPWARD
FE_DOWNWARD
FE_TOWARDZERO

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of the fegetround and fesetround functions. The
defined macros expand to int constant expressions whose values are distinct
nonnegative values, all suitable for use in #if preprocessing directives.

The rounding direction macros might expand to constants corresponding to the values of
FLT_ROUNDS, the Standard C inquiry for the rounding direction of addition, but need not.

The macro
FE_DFL_ENV

represents the default floating-point environment—the one installed at program
startup—and has type pointer to fenv_t. It can be used as an argument to <fenv.h>
functions that manage the floating-point environment.

Unsupported macros are not defined in order to assure that their use results in a translation
emror. A program might explicitly define such macros, to allow translation of code (perhaps
never executed) containing the macros. An unsupported exception macro should be defined
to be 0, for example

#ifndef FE_INEXACT
#define FE_INEXACT 0
#endif

so that a bitwise OR of macros has a reasonable effect.

4.4.1 Exceptions

The following functions provide access to the exception flags. The int input argument
for the functions represents a subset of floating-point exceptions, and can be
constructed by bitwise ORs of the exception macros, for example FE_OVERFLOW |
FE_INEXACT. For other argument values the behavior of these functions is undefined.

The IEEE standards require that exception flags represent, at least, whether the flag is set or
clear; the functions fetestexcept, feraiseexcept, and feclearexcept support this
basic abstraction. However, an implementation may endow exception flags with more
information—for example, the address of the code which raised the exception; the functions
fegetexcept and fesetexcept deal with the full content of flags.

In previous drafts of this specification, several of the exception functions returned an int
indicating whether the excepts argument represented supported exceptions. This facility
was deemed unnecessary because excepts & ~FE_ALL_EXCEPT can be used to test invalidity
of the excepts argument.

Page 52 DRAFT January 6, 1994

Y
o
N
\J

—

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

4.4.1.1 The feclearexcept function
Synopsis

#include <fenv.h>
void feclearexcept (int excepts);

Description

The feclearexcept function clears the supported exceptions represented by its
argument. The argument excepts represents exceptions as a bitwise OR of exception

macros.
4.4.1.2 The fegetexcept function
Synopsis

#include <fenv.h>
void fegetexcept (fexcept_t *flagp, int excepts);

Description

The fegetexcept function stores an implementation-defined representation of the
exception flags indicated by the argument excepts through the pointer argument
flagp.

4.4.1.3 The feraiseexcept function
Synopsis

_ #include <fenv.h>
void feraiseexcept (int excepts);

Description

The feraiseexcept function raises the supported exceptions represented by its
argument. The argument excepts represents exceptions as a bitwise OR of exception
macros. The order in which these exceptions are raised is unspecified.

It is intended that enabled traps for exceptions raised by the feraiseexcept function are
taken.

For IEEE Implementations

If the argument excepts represents coincident exceptions that are valid for atomic
operations—namely overflow and inexact, or underflow and inexact—then overflow or
underflow is raised before inexact.

The function is not restricted to accept only valid coincident expressions for atomic

operations, so that the function can be used to raise exceptions accrued over several
operations.

January 6, 1994 DRAFT Page 53

(SN
(]

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

4.4.1.4 The fesetexcept function
Synopsis

#include <fenv.h> :
void fesetexcept (const fexcept_t *flagp, int excepts);

Description

The fesetexcept function sets the complete status for those exception flags indicated
by the argument excepts, according to the representation in the object pointed to by
flagp. The value of *f1agp must have been set by a previous call to fegetexcept; if
not, the effect on the indicated exception flags is undefined. This function does not
raise exceptions, but only sets the state of the flags.

4.4.1.5 The fetestexcept function
Synopsis

#include <fenv.h>
int fetestexcept (int excepts);

Description

The fetestexcept function determines which of a specified subset of the exception
flags are currently set. The excepts argument specifies—as a bitwise OR of the
exception macros—the exception flags to be queried.

Returns

The fetestexcept function returns the bitwise OR of the exception macros
corresponding to the currently set exceptions included in excepts.

Example
Call £ if invalid is set, g if overflow is set:
#pragma fenv_access on
int set_excepts;
set_excepts = fetestexcept (FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g():
This mechanism allows testing several exceptions with just one function call. The
argument is a mask because querying all flags may be more expensive on some
architectures.
44.2 Rounding

The fegetround and fesetround functions provide control of rounding direction
modes.

The IEEE floating-point standards prescribe rounding precision modes (in addition to the
rounding direction modes covered by the functions in this section) as a means for systems

Page 54 DRAFT January 6, 1994

7Y

WG14/N319, X3J11/94-003

whose results are always double or extended to mimic systems that deliver results to
parrower formats. An implementation of C can meet this goal in any of the following

ways:
1. By supporting the f1oat minimum evaluation format (see §3.2.3).

2. By providing pragmas or compile options to shorten results by rounding to IEEE single
or double precision.

3. By providing functions to set and get, dynamically, rounding precision modes which
shorten results by rounding to IEEE single or double precision. Recommended are
functions fesetprec and fegetprec and macros FE_FLTPREC, FE_DBLPREC, and
FE_LDBLPREC, analogous to the functions and macros for the rounding direction modes.

This specification does not include a portable interface for precision control because the

IEEE floating-point standards are ambivalent on whether they intend for precision control to

be dynamic (like the rounding direction modes) or static. Indeed, some floating-point

architectures provide control modes, suitable for a dynamic mechanism, and others rely on
instructions to deliver single- and double-format results, suitable only for a static
mechanism.
4.4.2.1 The fegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description
The fegetround function gets the current rounding direction.
Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction.

4.4.2.2 The fesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argument round. If the argument does not match a rounding direction macro, the
rounding direction is not changed.

Returns
The fesetround function returns a nonzero value if and only if the argument matches a

rounding direction macro (that is, if and only if the requested rounding direction can be
established).

January 6, 1994 DRAFT Page 55

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Example —
Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.
#pragma fenv_access on
int save_round;
save_round = fegetround();
int setround_ok = fesetround(FE_UPWARD) ;
assert (setround_ok) ;

fesetround(save_round) ;

4.4.3 Environment

The functions in this section manage the floating-point environment—exception flags,
dynamic rounding modes, and any dynamic modes for handling floating-point
exceptions—as one entity.

4.4.3.1 The fegetenv function
Synopsis

#include <fenv.h>
void fegetenv(fenv_t *envp):;

Description ~

The fegetenv function stores the current floating-point environment in the object
pointed to by envp.

4.4.3.2 The feholdexcept function
Synopsis

#include <fenv.h>
int feholdexcept (fenv_t *envp);

Description

The feholdexcept function saves the current environment in the object pointed to by
envp, clears the exception flags, and installs the non-stop mode, if available, for all
exceptions. For implementations whose floating-point environment contains modes for
exception handling, including a non-stop (continue on exceptions) mode, the
feholdexcept function can be used in conjunction with the feupdateenv function to
write routines that hide spurious exceptions from their callers.

Returns

The feholdexcept function returns nonzero if and only if non-stop exception handling
was successfully installed.

feholdexcept should be effective on typical IEEE implementations which have the default ~~
non-stop mode and at least one other mode for trap handling or aborting. If the

Page 56 DRAFT January 6, 1994

WG14/N319, X3J11/94-003

implementation provides only the non-stop mode then installing the non-stop mode is
trivial.

More appropriate for the user model prescribed in §2, feholdexcept supersedes
feprocent ry which is equivalent to

fegetenv(envp) ;
fesetenv (FE_DFL_ENV) ;

4.4.3.3 The fesetenv function
Synopsis

#include <fenv.h>
void fesetenv(const fenv_t *envp);

Description

The fesetenv function establishes the floating-point environment represented by the
object pointed to by envp. The argument envp must point to an object set by a call to
fegetenv, or equal the macro FE_DFL_ENV Or an implementation-defined value of type
pointer to fenv_t. Note that fesetenv merely installs the state of the exception flags
represented through its argument, and does not raise these exceptions.

4.4.3.4 The feupdateenv function
Synopsis

#include <fenv.h>
void feupdateenv(const fenv_t *envp) ;

Description

The feupdateenv function saves the current exceptions in its automatic storage,
installs the environment represented through envp, and then raises (actually re-raises)
the saved exceptions. For implementations whose floating-point environment contains
modes for exception handling, including a non-stop (continue on exceptions) mode, the
feupdateenv function can be used in conjunction with the feholdexcept function to
write routines that hide spurious exceptions from their callers.

feupdat eenv was called feprocexit in earlier drafts of this specification.
Example
Hide spurious underflow exceptions:

#pragma fenv_access on

fenv_t save_env;

feholdexcept (&save_env) ;

if (... underflow is spurious ...) feclearexcept (FE_UNDERFLOW) ;
feupdateenv(&save_env) ;

January 6, 1994 DRAFT Page 57

10

15

20

25

30

35

WG14/N319, X3J11/94-003 Floating-Point C Extensions

A PPENDIXES

A. Language Syntax Extensions aso sB; ANsI §a)
This appendix summarizes language syntax extensions to Standard C.

A.1 Constants @ISO §B.1.4; ANSI §A.1.4)
floating-constant:
h.e}\:adecimal-ﬂoating-constant
hexadecimal-floating-constant:
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
0x hexadecimal-fractional-constant binary-exponent-part floating-suffixopt
ox hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
ox hexadecimal-digit-sequence binary-exponent-part floating-suffixopt
hexadecimal-fractional-constant:
hexadecimal-digit-sequencegpt . hexadecimal-digit-sequence
hexadecimal-digit-sequence
hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit
binary-exponent-part:
P Signopt digit-sequence
P signopt digit-sequence
A.2 Operators @ISO §B.1.6; ANSI §A.1.6)
operator: one of

1<>= <> <>= I<= i< I>= 1> <>

A.3 Preprocessor Numbers @sO §B.1.9; ANSI §A.1.9)
pp-number:

p;:number p sign
pp-number P sign

Page 58 DRAFT January 6, 1994

(2]

Pty

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

A.4 Relational Expressions (@ISO §B.2.1; ANSI §A.2.1)
relational expression:

relational-expression 1<>= Sshift-expression
relational-expression <> shift-expression
relational-expression <>= shift-expression
relational-expression ‘<= shift-expression
relational-expression < shift-expression
relational-expression '>= shift-expression
relational-expression !> shift-expression
relational-expression <> shift-expression

A.5 Pragmas
$pragma fenv_access on-off-switch

on-off-switch: one of:
on off default

#pragma fp_contract on-off-switch
gpragma fp_wide_function_returns on-off-switch

#pragma fp_wide_function_parameters on-off-switch
$pragma fp_wide_variables on-off-switch

B. Optimization

Many common optimizations for integer arithmetic are not generally valid (nor as
useful) for floating-point. This appendix is an implementation note explaining some of
the constraints.

B.1 Expression evaluation

For IEEE Implementations

Floating-point arithmetic operations and external function calls may entail side effects
which optimization must honor, at least within the scope of an enabling fenv_access
pragma (§2). The flags and modes in the floating-point environment may be regarded
as global variables; floating-point operations (+, *, etc.) implicitly read the modes and
write the flags.

Concern about side effects may inhibit code motion, removal of useless code, and
certain transformations. For example, in

#pragma fenv_access on
double x;

for (i = 0; i < n; i++) x + 1;

January 6, 1994 DRAFT Page 59

C)
o~
N

WG14/N319, X3J11/94-003 Floating-Point C Extensions

x + 1 might overflow, so cannot be removed. And since the loop body might not
execute (maybe 0 2 n),x + 1 cannot be moved out of the loop. Of course these
optimizations are valid if the implementation can rule out the nettlesome cases.

5 Within a basic block exceptions need not be precise. Thus the preceding loop could be
treated as

if (0 < n) x + 1;
10 B.2 Expression transformations

The following transformations are not generally valid.

Removal of parentheses. This is invalid for any floating-point arithmetic. In particular,
15 the implementation cannot apply the associative laws for + and *.

Factoring. Application of the distributive law is invalid for any floating-point
arithmetic. For example, the implementation cannot replace x + x * y by
X *. (1.0 +.y).

20
x - x — 0. The expressions x - x and 0 are not equivalent if x is a NaN or infinite.

(Of course, the two expression are not equivalent if x has side-effects.)

x -y « -(y - x). For IEEE machines, in the default rounding direction, 1 - 1 is +0 but

25 -(1 - 1) is -0. The expressions x - y and -(y - x) are not equivalent on the CDC
CYBER 205, because of abuse of 1’s complement arithmetic. On the other hand, the
expressions x - y,x + (-y),and (-y) + x are equivalent on IEEE machines,
among others.

30 x/5.0 & x * 0.2. Such transformations involving constants generally do not yield
numerically equivalent expressions. If the constants are exact then such
transformations can be made on IEEE machines and others that round perfectly.

X 0 *x — 0. The expressions 0 * x and 0 are not equivalent if x is a NaN or infinite.
1*x,x/1—x. Neither1 * xand xnorx / 1 and x are equivalent if x has almost
g\%;ﬂowed on a CRAY-1 or CRAY-2 or if x has almost underflowed on a CDC

ER 170.

40 x + 0 - x. For IEEE machines, if x is -0 then, in the default rounding direction,
x + (+0) yields +0, not x; the implementation cannot replace x + 0 by x unless it can
determine that x cannot be -0.

x - 0 - x. For IEEE machines, (+0) - (+0) yields -0 when rounding is downward

45 (toward -es), but +0 otherwise, and (-0) - (+0) always yields -0; so, if the state of
fenv_access were off, promising default rounding, then the implementation could
replace x - 0 by x, even if x might be zero.

-x ¢ 0 - x. For IEEE machines, - (+0) yields -0, but 0 - (+0) yields +0 (unless
50 rounding is downward); the expressions are numerically equivalent for all other cases.

Page 60 ' DRAFT January 6, 1994

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

The IEEE floating-point standards prescribe a signed zero to preserve mathematical identities
across certain discontinuities. Examples include

1/ (1 / (£INFINITY)) is fINFINITY
complex_conjugate(sqrt (2)) is sqrt(complex_conjugate(2))

B.3 Relational operators

x I= x - false. In IEEE implementations, the statement x != x is true if x is a NaN.
In non-IEEE implementations with NaNs (reserved operands, indefinites) x t= x may
trap.

x == x — true. In IEEE implementations, the statement x == x is false if x is a NaN.
In non-IEEE implementations with NaNs (reserved operands, indefinites) x == x may
trap.

xlopy e !(x opy). Though equal these expressions are not equivalent on IEEE
implementations if op includes < or >, x or y might be a NaN, and the state of
fenv_access 1S on.

xopy - !(x!opy). This transformation, which would be desirable if extra code were
required to cause the invalid exception for unordered cases, could be performed
provided the state of fenv_access is off.

The sense of relational operators must be maintained. For IEEE implementations, this
includes handling unordered cases as expressed by the source code. (Handling
relationals correctly might not require generating worse code.)

Example
if (a < b) £(); else g(); /* calls g and raises invalid if a and
b are unordered */
is not equivalent to

if (a >= b) g(); else £(); /* calls £ and raises invalid if a and
b are unordered */

nor to

if (a !>= b) £(); else g(): /* calls f without raising invalid
if a and b are unordered */

nor, unless the state of fenv_access is off, to

if (a !< b) g(); else £f(); /* calls g without raising invalid
if a and b are unordered */

but is equivalent to

if (!(a < b)) g(); else £();

January 6, 1994 DRAFT Page 61

i

10

15

20

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

B.4 Constant arithmetic

Under the effect of an enabling fenv_access pragma, the implementation must honor
exceptions raised because of execution-time constant arithmetic. See §3.4, 3.5. Even
under the effect of an enabling fenv_access pragma, an operation on constants that
raises no exception can be folded during translation; implementations that support
dynamic rounding precision modes (§4.4.2) should assure further that the result of the
operation raises no exception when converted to the semantic type of the operation.

B.S Wide representation

Implementations employing wide registers must take care to honor appropriate
semantics. Values must be independent of whether they are represented in a register or
in memory. For example, an implicit spilling of a register must not alter the value.
Also, an explicit store and load must round to the precision of the storage type. In
particular, casts and assignments must perform their specified conversion (ISO
§6.2.1.5; ANSI §3.2.1.5): for

double dl, d42;

float f£;

dl = £ = expression;

d2 = (float)expression;

the values assigned to a1 and a2 must have been converted to £1oat.

C. Library Summary
This appendix summarizes library facilities specified, all or in part, in this document.
C.1 General utilities <stdlib.h> @so §p.11; ANsI §c.11)

double atof(const char *nptr);

double strtod(const char *nptr, char **endptr) ;

float strtof (const char *nptr, char **endptr);

long double strtold(const char *nptr, char **endptr) ;

C.2 Input/output <stdio.h> @so §p.10; ANsI §C.10)

int fprintf(FILE *stream, const char *format, ...);
int fscanf (FILE *stream, const char *format, ...):;

C.3 Floating-point <fp.h>

HUGE_VAL
HUGE_VALF
HUGE_VALL
INFINITY
NAN

FP_NAN
FP_INFINITE

Page 62 DRAFT January 6, 1994

10

15

20

25

30

35

45

50

55

FP_NORMAL
FP_SUBNORMAL
FP_ZERO

WG14/N319, X3J11/94-003

fpclassify (floating-expr)
signbit (floating-expr)
isfinite(floating-expr)
isnormal (floating-expr)
isnan(floating-expr)

DECIMAL_DIG
float_t
double_t
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type

acos (floating-type X);
asin(floating-type X);
atan(floating-type X);

atan2 (floating-type y, floating-type X);
cos (floating-type X);
sin(floating-type x);
tan(floating-type X);
acosh(floating-type X):;
asinh(floating-type x);
atanh(floating-type x);
cosh(floating-type X);
sinh(floating-type x);
tanh(floating-type x);
exp(floating-type X);

exp2 (floating-type x);

expml (floating-type X);
frexp(floating-type value, int *exp):;
ldexp(floating-type x, int exp);
log(floating-type X);
loglO(floating-type X);
loglp(floating-type X);
log2(floating-type X);
logb(floating-type X);

double modf (double value, double *iptr);
float modff (float value, float *iptr):
long double modfl(long double value, long double *iptr);

floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type
floating-type

scalb(floating-type x, long int n);
fabs (floating-type x);

hypot (floating-type x, floating-type Yy);
pow(floating-type x, floating-type y):
sqrt (floating-type x);
erf(floating-type Xx);
erfc(floating-type X);

gamma (floating-type x);

lgamma (floating-type x);

ceil (floating-type Xx);
floor(floating-type X);

nearbyint (floating-type Xx);

rint (floating-type X);

long int rinttol(long double x);
floating-type round(floating-type x);
long int roundtol(long double x);
floating-type trunc(floating-type Xx);

floating-type
floating-type
floating-type
floating-type

fmod(floating-type x, floating-type y);

remainder (floating-type x, floating-type y);

remquo (floating-type x, floating-type y, int *quo);
copysign(floating-type x, floating-type y):;

January 6, 1994 DRAFT

Page 63

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003

double nan(const char *tagp):;

float nanf (const char *tagp):

long double nanl(const char *tagp):
floating-type nextafter(floating-type x, long double y);
float nextafterf(float x, float y):;

double nextafterd(double x, double y);

long double nextafterl(long double x, long double y)
floating-type fdim(floating-type x, floating-type y)
floating-type fmax(floating-type x, floating-type y)
floating-type fmin(floating-type x, floating-type y)

Se we S e

C.4 Floating-point environment <fenv.h>

FE_INEXACT

FE_DIVBYZERO

FE_UNDERFLOW

FE_OVERFLOW

FE_INVALID

FE_ALL_EXCEPT

FE_TONEAREST

FE_UPWARD

FE_DOWNWARD

FE_TOWARDZERO

FE_DFL_ENV

fenv_t

fexcept_t

void feclearexcept (int excepts);

void fegetexcept (fexcept_t *flagp, int excepts);
void feraiseexcept (int excepts);
void fesetexcept (const fexcept_t *flagp, int excepts);
int fetestexcept(int excepts);

int fegetround(void);

int fesetround(int round);

void fegetenv(fenv_t *envp);

int feholdexcept (fenv_t *envp);

void fesetenv(const fenv_t *envp):;
void feupdateenv(const fenv_t *envp);

D. Implementation Limits

§2.3.1 includes supplementary specification for the Standard C component
#define FLT_ROUNDS
and specification for additional components

#define _MIN_EVAL_FORMAT
#define _WIDEST_NEED_EVAL

Page 64 DRAFT January 6, 1994

Floating-Point C Extensions

374

WG14/N319, X3J11/94-003

E. Operator / Function Documentation Guide

Adapted from “Documentation of Special Properties of Programs that Compute
Elementary Transcendental Functions in the Context of IEEE Standards 754/854 for

5 Floating-Point Arithmetic, with advice for other systems too” (work in.progress), by
W. Kahan (July 1991).

This appendix previews a forthcoming guide to the documentation of floating-point
operators and functions, including most of those in the C language and libraries. For

10 each operator and function, the guide will discuss in detail the prescribed
documentation.

“... Read by a system’s user, this guide explores many of the issues that could

undermine the portability of numerical software if not addressed. Read by a system’s
15 implementor, this guide explains what information ought to be supplied and offers a

format for its presentation. An implementation’s quality can be gauged by the absence

of excuses for some of the sad compromises mentioned here. On the other hand, an

implementor who resorted to one of those compromises without documenting it might

expect users to regard that compromise more as a bug than a feature and to demand its
20 correction.

“Real functions will be dealt with before complex. At first, only the IEEE’s default
rounding mode to-nearest will be presumed, and only the default responses to
exceptions...
25 i
“For systems that do not conform to IEEE 754/854, the number oo, if unavailable, may
be approximated by the largest finite number. If no usable -0 is available, use just 0
instead. And if no NaN-like object is available, replace NaN by whatever is the
system’s usual response to an invalid operation, probably a trap or abortion of
30 execution. Similarly, serious exceptions like overflow and divide-by-zero, if they
cannot raise an appropriate flag testable by the program, may have to trap or abort. In
any event, serious disruption of a program should be accompanied by a user visible
message more informative than, say, a hexadecimal dump. Subnormal numbers, if
unusable, must be replaced by zeros with underflow signaled; of course, this signal
35 may be unavailable or practically inaccessible, and hence usually ignored.

“For each function f(x) considered, implementors should supply the following tableau
of information: ”

40 Invalid Operands

Invalid operands are those x for which f(x) becomes a new NaN. Example: x <0 for
the square root function.

45 Exact Unexceptional Values

Document these for transcendental functions. Example: sin(30) returns £0. f(NaN)
returning a NaN need not be included.

50 Exact Exceptional Values

f(x) returns teo and raises the divide-by-zero exception. Example: log(0).

January 6, 1994 DRAFT Page 65

WG14/N319, X3J11/94-003 Floating-Point C Extensions

Inexact Exceptional Values

Overflow f(x) returns 1o and raises the overflow exception.)
Underflow f(x) is subnormal or 0 and raises the undert]ow exception.
5 Divide-by-zero —signaled when f(x) returns teo though x is only approximately a
pole, e.g. tan(x / 2).
Symmetries
10 Like f(-x) = f(x) if f is an even function.
Monotonicity

*“(...more important than accuracy!)”
15
Accuracy

“Accuracy should be described, if not correctly rounded. Accuracy should normally be
specified in terms of worst-case error in ulps (units in the last place). (Average error or

20 standard deviation is an abuse of statistics, since worst case error is the killer.)
Correctly rounded functions are accurate to within at worst half an ulp; most
transcendental functions are very difficult to compute much more accurately than to
within less than one ulp. Unfortunately, cases exist for which a kind of backward
error-bound may be the best that can be described; this means that the computed value

25 of f(x) may actually be within an ulp or two of f(X) where X is within an ulp or two of
the given argument x. Such a bound is acceptable in situations where x is uncertain by
a few ulps and uncorrelated with anything else that will be combined with f(x);
otherwise such a bound has disagreeable consequences when x comes close to

i singularities of f, so it is a compromise that should be avoided whenever practical.”

Other Noteworthy Properties

“In case correctly rounded is an impracticable accuracy goal, implementations may yet
preserve important properties that would be preserved if every computed value were

35 correctly rounded. Some, like monotonicity and symmetry, have already been
mentioned; others are inequalities and identities that involve related functions, for
instance sqrt (x*x) == fabs(x) absent over/underflow.”

o F. <fp.h> for IEEE Implementations aso s7.s; ansi
$4.5)

This appendix contains recommended specification of library facilities that is
particularly suited for IEEE implementations.

45 The Standard C macro HUGE_VAL and its f1oat and long double analogs, HUGE_VALF
and HUGE_VALL, expand to expressions whose values are positive infinities; their
evaluations raise no exceptions.

50 HUGE_VAL could not be implemented as

#define HUGE_VAL (1.0/0.0)

whose use may raise the divide-by-zero exception.

Page 66 DRAFT January 6, 1994
raive

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003

Special cases for functions in <£p.h> are covered directly or indirectly by the IEEE
floating-point standards. The functions sqrt, remainder, rint, and rinttol have
direct counterparts in these standards. Appendixes to these standards specify the
functions copysign, logb, nextafter, scalb, and nearbyint. The function trunc
is equivalent to rint (or, at the implementor’s option, to nearbyint) with rounding-
toward-zero. The 1dexp function is equivalent to the binary version of the scalb
function specified in an appendix to the IEEE binary floating-point standard 754. The
£mod function is readily derived from the standards’ remainder function (see §F.7.1).
The other functions are not covered explicitly by the IEEE floating-point standards;
however, except as noted, this specification requires that they honor infinities, NaNs,
signed zeros, subnormals, and the exception flags in a manner consistent with the basic
arithmetic operations covered by the IEEE floating-point standards.

Detectable only through invocation of non-Standard C inquiries or exception handling, the
exceptions required here are not in conflict with ISO §7.5.1 (ANSI §4.5.1).

The overflow exception is raised whenever an infinity—or, because of rounding
direction, a maximal-magnitude finite number—is returned in lieu of a value whose
magnitude is too large. (See §2.)

The underflow exception is raised whenever a result is tiny (essentially subnormal or
zero) and suffers loss of accuracy. This NCEG specification for transcendental
functions allows raising the underflow (and inexact) exception when a result is tiny and
probably inexact.

The IEEE floating-point standards offer the implementation multiple definitions of
underflow. All resulting in the same values, the options differ only in that the thresholds
when the exception is raised may differ by a rounding error.

According to the IEEE floating-point standards, an enabled underflow trap is taken if the
result would be tiny, regardless of loss of accuracy.

The inexact exception is raised whenever the rounded result is not identical to the
mathematical result. Except as noted, this NCEG specification for transcendental
functions allows raising the inexact exception when a result is probably inexact.

For some functions, for example pow, determining exactness in all cases may be too costly.

As implied by §2.2.2, the <£p.h> functions do not raise spurious exceptions (detectable by
the user). For example, the implementation must hide an underflow generated by an
intermediate computation of a non-tiny result.

Whether transcendental functions honor the rounding direction mode and any rounding
precision mode is implementation-defined.

Generally, one-parameter functions of a NaN argument return that same NaN and raise
no exception. (See §3.1.1.1.)

For the Standard C <math.h> functions, the specification in the subsections of §F.1
appends to the Standard C definitions. For the NCEG extensions, it appends to the
definitions in §4.3 of this document.

January 6, 1994 DRAFT Page 67

(]

N

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

- F.1 Trigonometric functions @ISO §7.52; ANSI §4.5.2)

F.1.1 The acos function (ISO §7.5.2.1; ANSI §4.5.2.1)
floating-type acos(floating-type X);

® acos (1) returns +0. j) :
* acos (x) returns a NaN and raises the invalid exception for |x| > 1.

F.1.2 The asin function (SO §7.5.2.2; ANSI §4.5.2.2)
floating-type asin(floating-type Xx);

® asin(+0) returns 0. d . ¢
* asin (x) returns a NaN and raises the invalid exception for x| > 1.

F.1.3 The atan function (ISO §7.5.2.3; ANSI §4.5.2.3)
floating-type atan(floating-type x);

® atan(+0) returns +0.
¢ atan (ftINFINITY) returns ix/2.

F.1.4 The atan2 function (ISO §7.5.2.4; ANSI §4.5.2.4)
floating-type atan2(floating-type y, floating-type x);

* If one argument is a NaN then atan2 returns that same NaN; if both arguments are
NaNs then atan2 returns one of its arguments.

® atan2(+0, x) returns +0,forx > 0.

® atan2(+0, +0) returns £0.

® atan2 (0, x) returns ix, forx < 0.

®atan2(10, -0) returns ix.

®atan2(y, +0) returns x/2 fory > 0.

®atan2(y, +0) returns -x/2 fory < 0.

® atan2(ty, INFINITY) returns +0, for finitey > 0.
® atan2 (tINFINITY, x) returns +x/2, for finite x.

® atan2 (ty, -INFINITY) returns ix, for finitey > 0.
® atan2 (+INFINITY, INFINITY) returns ix/4.

® atan2 (+tINFINITY, -INFINITY) returns +3=x/4.

The more contentious cases are y and x both infinite or both zeros. See [7] for a
justification of the choices above.

atan2(y, 0) does not raise the divide-by-zero exception, nor does atan2 (0, 0) raise the
invalid exception.

F.1.5 The cos function (ISO §7.5.2.5; ANSI §4.5.2.5)
floating-type cos(floating-type Xx);

® cos (INFINITY) returns a NaN and raises the invalid exception.

Page 68 DRAFT January 6, 1994

JAE

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

F.1.6 The sin function (ISO §7.5.2.6; ANSI §4.5.2.6)
floating-type sin(floating-type X);

® sin(+0) returns +0. e .
e sin (+INFINITY) returns a NaN and raises the invalid exception.

F.1.7 The tan function (ISO §7.5.2.7; ANSI §4.5.2.7)
floating-type tan(floating-type X);

* tan(+0) returns 0.)
* tan (+INFINITY) returns a NaN and raises the invalid exception.

F.2 Hyperbolic functions @ISO §7.5.3; ANSI §4.5.3)

F.2.1 The acosh function
floating-type acosh(floating-type Xx);
® acosh (1) returns +0.

® acosh (+INFINITY) returns + INFINITY.
e acosh (x) returns a NaN and raises the invalid exception if x < 1.

F.2.2 The asinh function
floating-type asinh(floating-type X);

®* asinh(10) retumns $0.
® asinh(tINFINITY) returns tINFINITY.

F.2.3 The atanh function
floating-type atanh(floating-type Xx);
® atanh(+0) returns £0.
® atanh(+1) returns £INFINITY.
e atanh (x) returns a NaN and raises the invalid exception if 1x1 > 1.
F.2.4 The cosh function (ISO §7.53.1; ANSI §4.5.3.1)
floating-type cosh(floating-type X);
® cosh(+INFINITY) returns + INFINITY.
F.2.5 The sinh function @ISO §7.5.3.2; ANSI §4.5.3.2)
floating-type sinh(floating-type X);

¢ sinh(+0) returns *0.
¢ sinh (tINFINITY) returns +tINFINITY.

January 6, 1994 DRAFT Page 69

Q
J
~

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003 Floating-Point C Extensions

F.2.6 The tanh function @ISO §7.5.3.3; ANSI §4.5.3.3)
floating-type tanh(floating-type x);

¢ tanh(+0) returns 10.
® tanh (tINFINITY) returns +1.

F.3 Exponential and logarithmic functions @so §7.5.4; ANSIM e

F.3.1 The exp function @ISO §7.5.4.1; ANSI §4.5.4.1)
floating-type exp(floating-type X);

® exp (+INFINITY) returns + INFINITY.
® exp (-INFINITY) returns +0.

F.3.2 The exp2 function
floating-type exp2(floating-type x);

¢ exp2 (+INFINITY) returns +INFINITY.
® exp2 (-INFINITY) returns +0.

F.3.3 The expml function
floating-type expml(floating-type x);
® expml (+0) returns $0.
® expml (+INFINITY) returns +INFINITY.
® expml (-INFINITY) returns -1.
F.3.4 The frexp function (ISO §7.54.2; ANSI §4.5.4.2)

floating-type frexp(floating-type value, int *exp);

® frexp (10, exp) returns 10, and returns 0 in *exp.
* frexp (tINFINITY, exp) returns +INFINITY, and returns an unspecified value in

*exp.
* frexp of a NaN argument is that same NaN, and returns an unspecified value in

*exp.
¢ Otherwise, frexp raises no exception.
On a binary system, frexp is equivalent to the comma expression

((*exp = (value == 0) ? 0 : (int) (1 + logb(value))),
scalb(value, -(*exp)))

F.3.5 The Ildexp function (ISO §7.5.4.3; ANSI §4.5.4.3)
floating-type ldexp(floating-type x, int exp);

On a binary system, 1dexp is equivalent to

Page 70 DRAFT January 6, 1994

e

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

scalb(x, exp)

Note that 1dexp may not provide the full functionality of scalb for extended values,
because the power required to scale from the smallest (subnormal) to the largest extended
value exceeds the minimum 1NT_MAX allowed by Standard C.

F.3.6 The log function @ISO §7.5.4.4; ANSI §4.5.4.4)

floating-type log(floating-type X);

e 1og (+0) returns - INFINITY and raises the divide-by-zero exception.
* 1og (x) returns a NaN and raises the invalid exception if x < o.
® 1og (+INFINITY) returns + INFINITY.

F.3.7 The logl0 function (ISO §7.5.4.5; ANSI §4.5.4.5)
floating-type logl0(floating-type X):;

* 10910 (+0) returns -INFINITY and raises the divide-by-zero exception.
* 10g10 (x) returns a NaN and raises the invalid exception if x < 0.
® 10910 (+INFINITY) returns + INFINITY.

F.3.8 The loglp function
floating-type loglp(floating-type X):;
® loglp(+0) returns +0.
* loglp(-1) returns -INFINITY and raises the divide-by-zero exception.

* 1oglp (x) returns a NaN and raises the invalid exceptionif x < -1.
® 1oglp (+INFINITY) returns + INFINITY.

F.3.9 The log2 function
floating-type log2(floating-type X);
* 1og2 (+0) returns - INFINITY and raises the divide-by-zero exception.

e 1og2 (x) returns a NaN and raises the invalid exception if x < 0.
® 1og2 (+INFINITY) returns + INFINITY.

F.3.10 The logb function
floating-type logb(floating-type X);

¢ 1ogb (+INFINITY) returns + INFINITY.
* 1ogb(+0) returns -INFINITY and raises the divide-by-zero exception.

F.3.11 The modf functions (ISO §7.54.6; ANSI §4.5.4.6)

double modf (double value, double *iptr);
float modff (float value, float *iptr);
long double modfl(long double value, long double *iptr);

* modf (value, iptr) returns a result with the same sign as the argument value.
* modf (tINFINITY, iptr) returns+0 and stores +INFINITY through iptr.
* modf of a NaN argument returns that same NaN and also stores it through iptr.

January 6, 1994 DRAFT Page 71

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003 Floating-Point C Extensions

modf behaves as though implemented by

#include <fenv.h>

#include <fp.h>

#pragma fenv_access on

double modf (double value, double *iptr)

{

int save_round = fegetround():;
fesetrour.d (FE_TOWARDZERO) ;
*iptr = nearbyint (value);
fesetround(save_round) ;

return copysign(.
(fabs (value) == INFINITY) ? 0.0 : value - (*iptr),

value) ;

}
F.3.12 The scalb function
floating-type scalb(floating-type x, long int n);

°* scalb(x, n) returns x if x is infinite, zero, or a NaN.
* scalb handles overflow and underflow like the basic IEEE standard arithmetic

operations.

F.4 Power and absolute value functions (so §7.5.5, 7.5.6; ANSI
$4.5.5, 4.5.6)

F.4.1 The fabs function @ISO §7.5.6.2; ANSI §4.5.6.2)
floating-type fabs(floating-type x);

® fabs (+0) returns +0.
® fabs (+INFINITY) returns + INFINITY.

F.4.2 The hypot function
floating-type hypot (floating-type x, floating-type y):
® hypot (x, y), hypot (y, x), and hypot (x, -y) are equivalent.
* hypot (x, y) retumns +INFINITY if x is infinite.
* If both arguments are NaNs then hypot returns one of its arguments; otherwise, if x

is a NaN and y in not infinite then hypot returns that same NaN.
® hypot (x, 10) is equivalent to fabs (x).

Note that hypot (INFINITY, NAN) returns +INFINITY, under the justification that
hypot (INFINITY, y) iS +INFINITY for any numeric value y.

F.4.3 The pow function (ISO §7.5.5.1; ANSI §4.5.5.1)
floating-type pow(floating-type x, floating-type y);

*pow(x, *0) returns 1 for any x.
®* pow(x, +INFINITY) returns +INFINITY for Ix| > 1.

Page 72 DRAFT January 6, 1994

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

* pow(x, +INFINITY) returns +0 for Ix| < 1.

* pow(x, -INFINITY) returns +0 for |x| > 1.

® pow(x, -INFINITY) returns +INFINITY for Ix| < 1.

® pow (+INFINITY, y) returns +INFINITY fory > o.

* pow (+INFINITY, y) returns +0 fory < 0.

* pow(-INFINITY, y) returns -INFINITY for y an odd integer > 0.

e pow(-INFINITY, y) retumns +INFINITY fory > 0 and not an odd integer.

* pow (-INFINITY, y) returns -0 for y an odd integer < 0.

* pow(-INFINITY, y) returns +0 fory < 0 and not an odd integer.

e pow(x, y) returns one of its NaN arguments if y is a NaN, or if x is a NaN and y is
nonzero.

* pow(+1, +INFINITY) returns a NaN and raises the invalid exception.

e pow(x, y) returns a NaN and raises the invalid exception for finite x < 0 and finite
nonintegral y.

* pow(+0, y) returns +INFINITY and raises the divide-by-zero exception for y an odd
integer < 0.

* pow($0, y) returns +INFINITY and raises the divide-by-zero exception fory < 0,
finite, and not an odd integer.

* pow (10, y) returns +0 fory an odd integer > 0.

* pow($0, y) retumns +0 fory > 0 and not an odd integer.

See [7].

pow(NaN, 0). [7] provides extensive justification for the value 1. An opposing point of
view is that any return value of a function of a NaN argument should be a NaN, even if the
function is independent of that argument—as, in the IEEE floating-point standards,
NAN <= +INFINITY is false and raises the invalid exception.

F.4.4 The sqrt functions ISO §7.5.5.2; ANSI §4.5.5.2)

floating-type sqrt(floating-type X);

sqrt is fully specified as a basic arithmetic operation in the IEEE floating-point
standards.

F.5 Error and gamma functions

F.5.1 The erf function

floating-type erf(floating-type X);

® erf (£0) returns +0.
® erf (tINFINITY) returns 1.

F.5.2 The erfc function

floating-type erfc(floating-type x):;

® erfc(+INFINITY) returns +0.
® erfc(-INFINITY) retums 2.

F.5.3 The gamma function

floating-type gamma (floating-type X);

January 6, 1994 DRAFT Page 73

Ly

S
:

Ly

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003 Floating-Point C Extensions

‘gamma(+INFINITY)tennns+INFINITY
e gamma (x) returns a NaN and raises the invalid exception if x is a negative integer or

zero. :)
e gamma (- INFINITY) returns a NaN and raises the invalid exception.

F.5.4 The lgamma function
floating-type lgamma(floating-type Xx);

'1gamma(+INFINITY)Iennns+INFINITY
® lgamma (x) returns +INFINITY and raises the dmde-by-zero exception if x is a

negative integer or zero.
* 1gamma (-INFINITY) returns a NaN and raises the invalid exception.

F.6 Nearest integer functions (ISO §7.5.6; ANSI §4.5.6)

F.6.1 The ceil function (ISO §7.5.6.1; ANSI §4.5.6.1)
floating-type ceil (floating-type X);
® ceil (x) returns x if x is +INFINITY or 10.
The double version of ceil behaves as though implemented by

#include <fenv.h>

#include <fp.h>

#pragma fenv_access on

double ceil(double x)

{
double result;
int save_round = fegetround();
fesetround (FE_UPWARD) ;
result = rint(x); /* or nearbyint instead of rint */
fesetround (save_round);
return result;

)
F.6.2 The floor function (ISO §7.5.6.3; ANSI $4.5.6.3)

floating-type floor(floating-type x);

* floor (x) returns x if x is +INFINITY or 0.

See the sample implementation for ceil in §F.6.1.
F.6.3 The nearbyint function

floating-type nearbyint (floating-type X);

The nearbyint function differs from the rint function only in that the nearbyint
function does not raise the inexact flag.

Page 74 DRAFT January 6, 1994

o

£

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

F.6.4 The rint function

floating-type rint (floating-type Xx);

The rint function use IEEE standard rounding according to the current rounding
direction. It raises the inexact exception if its argument differs in value from its result.

F.6.5 The rinttol function
long int rinttol(long double x);

The rinttol function provides floating-to-integer conversion as prescribed by the
IEEE standards [2], [3] §5.4. It rounds according to the current rounding direction. If
the rounded value is outside the range of 1ong int, the numeric result is unspecified
and the invalid exception is raised. When it raises no other exception and its argument
differs from its result, rinttol raises the inexact exception.

F.6.6 The round function

floating-type round(floating-type X);

The double version of round behaves as though implemented by

#include <fenv.h>
#include <fp.h>
#pragma fenv_access on
double round(double x) {
double result;
fenv_t save_env;
feholdexcept (&save_env) ;
result = rint(x);
if (fetestexcept (FE_INEXACT)) (
fesetround (FE_TOWARDZERO) ;
result = rint(copysign(0.5 + fabs(x), x));

}
feupdateenv(&save_env) ;
return result;

}

round may but is not required to raise the inexact exception for nonintegral numeric
arguments, as this implementation does.

F.6.7 The roundtol function
long int roundtol(long double Xx);
roundtol differs from rinttol with the default rounding direction just in that
roundtol (1) rounds halfway cases away from zero and (2) may but need not raise the
inexact exception for nonintegral arguments that round to within the range of 1ong
int.

F.6.8 The trunc function

floating-type trunc(floating-type x);

January 6, 1994 DRAFT Page 75

10

15

20

25

30

35

45

WG14/N319, X3J11/94-003 Floating-Point C Extensions

The trunc function uses IEEE standard rounding toward zero (regardless of the current
rounding direction).

F.7 Remainder functions @so §7.5.6; ANSI §4.5.6)

F.7.1 The fmod function (ISO §7.5.6.4; ANSI §4.5.6.4)
floating-type fmod(floating-type x, floating-type y):

* If one argument is a NaN then fmod returns that same NaN; if both arguments are
NaNs then £mod returns one of its arguments.

* fmod (£0, y) returns 0 if y is not zero. : b.22 [E] 58] et :
* fmod (x, y) returns a NaN and raises the invalid exception if x is infinite or y is zero.

* fmod(x, *INFINITY) returns x if x is not infinite.
The double version of fmod behaves as though implemented by

#include <fp.h>
double fmod(double x, double y)

{
double result;
result = remainder(fabs(x), (y = fabs(y))):
if (signbit(result)) result += y;
return copysign(result, x);

}

F.7.2 The remainder function
floating-type remainder (floating-type x, floating-type y);

remainder is fully specified as a basic arithmetic operation in the IEEE floating-point
standards.

F.7.3 The remquo function
floating-type remquo(floating-type x, floating-type y, int *quo) ;

remquo follows the specification for remainder. It has no further specification special
to IEEE implementations.

F.8 Manipulation functions

F.8.1 The copysign function
floating-type copysign(floating-type x, floating-type y);

copysign is specified in appendices to the IEEE floating-point standards. It has no
specification special to IEEE implementations.

Page 76 DRAFT January 6, 1994

)

on

10

15

20

25

30

35

45

50

WG14/N319, X3J11/94-003

F.8.2 The nan functions

double nan(const char *tagp):
float nanf (const char *tagp):;
long double nanl(const char *tagp):;

All IEEE implementations support quiet NaNs, hence declare all the nan functions.

F.8.3 The nextafter functions

floating-type nextafter (floating-type x, long double y);
float nextafterf(float x, float y);

double nextafterd(double x, double y);

long double nextafterl(long double x, long double y):;

« If one argument is a NaN then nextafter returns that same NaN; if both arguments

are NaNs then nextafter returns one of its arguments. : _
* nextafter(x, y) raises the overflow and inexact exceptions if x is finite and the

function value is infinite.) .
* nextafter (x, y) raises the underflow and inexact exceptions if the function value is

subnormal and x != y.

F.9 Maximum, minimum, and positive difference functions
F9.1 The fdim function

floating-type fdim(floating-type x, floating-type Y):;

e If one argument is a NaN then fdim returns that same NaN; if both arguments are
NaNs then £dim returns one of its arguments.

F.9.2 The fmax function
floating-type fmax(floating-type x, floating-type Yy):;

e If just one argument is a NaN then fmax returns the other argument; if both
arguments are NaNs then fmax returns one of its arguments.

fmax might be implemented as

isnan(y) ? x : (y <= x 2?2y : X)

Ideally, £max would be sensitive to the sign of zero, for example fmax(-0.0, +0.0)
should return +0; however, implementation in software may be impractical.

Some applications may be better served by a max function that would return a NaN if one
of its arguments were a NaN:

isnan(y) 2y : (y !>x ? x : y)

Note that two branches still are required, for symmetry in NaN cases.

January 6, 1994 DRAFT Page 77

(S
o5
\J

WG14/N319, X3J11/94-003 Floating-Point C Extensions

F.9.3 The fmin function
floating-type fmin(floating-type x, floating-type Y):

£min is analogous to fmax. See §F.9.2.

Page 78 DRAFT January 6, 1994

—

10

15

20

25

30

35

45

55

X3J11.1 Ballot Comments

At its May 1993 meeting, NCEG voted on the motion to forward “Floating-Point C
Extensions” to its parent committee, X3J11. The results were

7 yes
2 yes with comments
1 no with comments

This section contains the comments that accompanied the two yes-with-comments and one
no-with-comments votes. Author’s responses are in italics.

Subject: Comments on NCEG paper X3J11.1/93-001 Floating-Point C Extensions
Vote: Yes, with comment.

The following are IBM's comments to be included with the X3 subgroup
letter ballot on X3J11.1/93-001 as amended by 93-022.

A general comment based upon 26. Miscellanea compiled by Rex Jaeschke
pages 248-249, The Journal of C Language Translation, Volume 3, Number 3,
December, 1991. All dummy argument identifier names used in the C
Standard are non-conforming! Essentially, these identifiers must
either be omitted, spelled with a leading underscore and a capital
letter, or with two leading underscores. Therefore, you need to change
all your function prototypes. IBM votes for adding “_*" to the names.
To see why the current prototypes fail, consider:

#define x 3

#include <math.h>

#define stream 3

#include <stdio.h>

An alternative is to add the following paragraph after page 4, line 7:
As in the C Standard, function prototypes are shown with dummy
argument identifier names in the user's name space. The real
prototypes in the various headers would either omit the identifier, or
add a leading '_' and capitalize the first letter, or add two leading
‘_'s to the identifier. For example,

double modf (double value, double *iptr);
would be done as one of

double modf (double, double *);

double modf(double _Value, double *_Iptr);

double modf(double __value, double *__iptr);

The document follows the approach of Standard C in documenting the libraries in a more readable style than could
appear in real header files.

A second general comment: The Floating-Point Environment is not well
defined and is incomplete. From section 4.4 Floating-Point Environment,
fesetexcept and fesetenv set, but not raise, exceptions. Therefore, set
cannot mean the same thing as raised. Therefore, there must be at least
3 states (set, raised, cleared) for each exception.

Since 3-state is hard to do on a binary machine, it appears that each
exception has associated with it:

1) Set or cleared

2) Raised or not raised

January 6, 1994 Page i

10

15

20

25

30

33

45

50

55

WG14/N319, X3J11/94-003 X3J11.1/93-028 Ballot Comments

3) Trap enabled or disabled
4) Optional information, such as:
a) Address of the code which raised it

Given that a distinction has been made between set and raised, the
functions in section 4.4 are not complete. There is no way to test what
exceptions are currently raised. There is no way to remove a raised
exception. The only way to restore the entire floating-point
environment is to feclearexcept (FE_ALL_EXCEPT); followed by

feupdateenv (&save_env) ;

One issue not addressed is how long is an exception raised?

Each exception flag has just two states: set and clear.

The act of raising an exception is the typical means by which an exception flag becomes set. Arithmetic
operations and the feraiseexcept function raise exceptions. On the other hand, the functions Jesetexcept and
Jesetenv restore flag state captured by prior calls to fegetexcept and fegetenv, respectively. Within this
specification, an exception flag cannot become set until it has been raised.

Now, for the specific comments.

Page 4, line 37, Section 1.5 Definition of Terms, refers to "status
flags® and ®"control modes®, yet neither are defined. So, the next

items are needed.

Page 4, line 9, need to add something like:
Control modes -- variables that the user may set, sense, save, and
restore to control the execution of subsequent arithmetic
operations. Floating-point control mode is made up of at least the
rounding direction mode and the rounding precision mode. An
implementation may also have traps disabled/enabled modes (which is
not covered by this specification).

Page 4, line 51, Mode:
Add at end of sentence: See control modes.

Page 5, line 32, need to add something like:
Status flag -- a flag signifying that a floating-point exception has
occurred since the user last cleared it (each flag may take three
states: set, raised and clear). When not cleared, a status flag
may contain additional system-dependent information, possibly
inaccessible to some users. IEEE implementations support overflow,
underflow, invalid, divide-by-zero, and inexact status flags.

Another choice for this is status flags is made up of exception
flags (raised/not raised) and ‘sticky' accrued flags (set/cleared).

The terms control and status are intentionally allowed more general interpretation than the suggested definitions,
which apply specifically to their use in the IEEE floating-point standards.

Page 15, lines 37-39, Section 3.2.1 Floating and integral
This whole paragraph needs to be reworked for two reasons. First,
it is possible that infinity and/or NaN could be represented in the
integer type; in that case there should not be an exception.
Second, it is possible that for overflow there is an INTEGER
overflow exception that could be raised or signaled instead of a
FLOATING-POINT invalid operation exception. IEEE-754, page 14,
section 7.1 Invalid Operation, item (7) says: “®Conversion of a
binary floating-point number to an integer or decimal format when
overflow, infinity or NaN precludes a faithful representation in
that format and this cannot otherwise be signaled.®

Page ii . January 6, 1994

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

Consistent treatment of NaN or infinity values for integer types seems inconsistent with the Standard. C’s
specification for those types. Even if implementation were possible, program portability would argue for a single
model for raising exceptions in these cases.

Page 26, line 39, Section 4.2.1.2 The strtof, strtod, and strtold

functions:
There is a difference between translation-time and execution-time
with respect to the number of characters (digits) in a number and
that might impact conversion. ANSI C 2.2.4.1, page 14, line 17 has
the minimum limit of 509 characters in a logical source line and
line 19 has 32767 bytes in an object (such as the string passed to
strtod). So the string ®.000...0001e32759" that is 32767 bytes long
(... is around 32755 0's) might convert to the value 0.0 if only the
first 509 digits are used, but convert to the value 1.0 if the full
32767 digits are used. The same difference might also apply to the
scanf family.

The intention is that translation-time and execution-time conversion match when both are within their respective
limits.

Page 27, line 11, Section 4.2.1.2 The strtof, strtod, and strtold

functions:
Is an implementation that supports sign-opt NANS(n-char-sequence-opt)
or sign-opt NANS, for signaling NaNs, in violation of this standard?
If so, than these two syntax forms need to be added. If not, then a
note should be added after line 26 on page 27 explaining that
implementations may be extended to support signaling NaNs, and that
the above is the syntax. NCEG should at least standardize the syntax
of signaling NaNs.

Signaling NaNs are not included in the specification. The value of the suggested partial specification does not
seem to justify the added complexity to the document.

Page 48, lines 27-28, Section 4.3.9.2 The nan functions:
Swap these two lines, so the float comes first. This will then be
consistent with 4.3.4.11 modf functions on page 41.

This has been addressed in Draft 2 of the technical report.

Page 53, line 44, Section 4.4.1.4 The fesetexcept function:
Change °*must® to ®“should®.

“Must” is consistent with the fact that certain behavior is otherwise undefined.

Page 60, line 5, Section B.1 Expression evaluation:
What is the rational[e] for the statement that exceptions need not be
precise?

Making them precise is impractical on some hardware, especially relative to the value of doing so.

Page 67, line 23, Section F. <fp.h> for IEEE Implementations:
Change ‘is' to ‘should be' or 'is probably'. IBM would like to
allow inexact to not be raised in some cases. That is, we would
like inexact to probably be raised when it should be raised.

The suggested change is inconsistent with the IEEE floating-point specification for basic operations.
Page 67, line 40, Section F. <fp.h> for IEEE Implementations

Does ®"appends to® mean that errno support is required? 1I believe

that NCEG wants errno support removed or optional. But, I am

afraid that someone may interpret this area as still requiring

support for errno.

This specification is not intended of itself to require, or prohibit, support for errno.

January 6, 1994 Page iii

10

15

20

25

30

35

45

50

55

WG14/N319, X3J11/94-003

Page 73, line 11, Section F.4.3 The pow function: _
Add rational[e] for why pow(+l, +/- INFINITY) is NaN, instead of +1.

The document generally does mot provide rationale for such cases, which are based on a straightforward

application of limits.

Fred Tydeman, IBM, Austin, Texas (512) 838-3322; fax (512) 838-3484
AIX S/6000 Math library architect & IBM's rep to NCEG (X3J11.1)
Internet: tydeman@ibmpa.awdpa.ibm.com uucp: uunet!ibmsupt!tydeman

Meyers comment was: “The problem with strtof and HUGE_VAL is a systematic
problem with the library functions, and the correction is to add float
and long double versions of HUGE_VAL.*

This has been addressed in Draft 2 of the technical report.

From: Tom MacDonald -- Cray Research Inc.
Subject: CRI's comments on X3J11.1/93-001
Vote: No with comment

Cray Research does not support the forwarding of document X3J11.1/93-001
dated Jan. 20, 1993 to be sent to our parent committee, X3J11, for the
reasons listed below. If these issues are addressed to our satisfaction,
we will change our position and vote Yes.

1) Pragmas

It is a mistake to specify any pragmas in this document. They cannot be
used in macros and are intended for implementation specific needs. One
possibility is introduce new macros that accept ON/OFF/DEFAULT arguments
and expand into implementation specific directives or keywords. This can
be hidden in a header file such as the proposed <fp.h> header.

Replacing the pragmas with macros, though requiring a fairly large number of editorial changes, appears to be
straighiforward. At its May 92 meeting, X3J11.1 considered such a proposal but was reluctant to make the change
without additional review. If X3J11 desires the change, it could be made easily and with no loss of facility.

2) New relational and equality operators

The proposed new relational operators are of questionable utility. These
operators are: !<>=, <>, <>=, !<=, l<, !>=, !>, and !<>. These new
operators are intended to provide additional support for NaNs. However,
the ‘isnan' macro in conjunction with the equality operators (== and !=)
are more than adequate for NaN support. For example:

isnan(X) /* means X is a NaN ./
X=X /* means X is a NaN s/
X==X /* means X is not a NaN */

The most common coding style is to check a function's arguments upon
entry, and if any are NaNs, error processing occurs. There is
insufficient justification for adding all of these new operators.

In contrast the addition of the new operators makes C a more complicated
language. This proposal more than doubles the number of relational and
equality operators. The following table shows how much the complexity of

Page iv January 6, 1994

X3J11.1/93-028 Ballot Comments

T i

10

15

20

30

35

45

50

55

WG14/N319, X3J11/94-003

comparisons increases with these new operators.

Standard C Comparisons

less equal greater

< T F F
<= T T F
> F F T
>= F T T
!= T F T
== F T F

Proposed IEEE Comparisons

less equal greater unordered

< T F F F
<= i T F F
> F F T F
>= F T T F
i= T F T T
== F T F F
I< F T T T
I<= F F T T
> T b ol F T
I>= T F F T
<> F T F T
<> T F i 4 F
<>= L T T F
l<>= F F F T

The number of possible comparisons increases from 18 to 56.

Another issue is the precedence of the new operators. The proposal
states that they have the same precedence as the relational operators
when clearly some of the new operators are more closely tied to equality
operations (e.g., !<>). This only emphasizes that the new operators
obscure the meaning of the terms ‘equality' and “inequality' thereby
making algorithms less clear.

A final issue is that the use of some of these new operators with integer
and pointer types is nonsensical (i.e., !<>= and <>=). The non-symmetric

nature with respect to types is both confusing and troubling.

Rationale in §3.3.2 offers justification for the new operators.

3) Types and portability of code

The proposal states:

*The long double type should have strictly more precision than double
which should have at least twice the number of digits of precision as
float. If not, the implementation should emit a warning when processing

a translation unit that uses distinct floating types with the same
precision.*

Even though this is only a ®should®, we think it is an unnecessary and

January 6, 1994 Page v

[9)
<D
(&

10

15

20

WG14/N319, X3J11/94-003 X3J11.1/93-028 Ballot Comments

misleading suggestion. It is unnecessary because as long as the types
used have at least the minimum amount of precision required by the
algorithm, the result will be accurate to within the ability of the type
to represent the true result. Forcing the distinct types to have
different amounts of precision does not contribute to the accuracy. And
it is misleading because it suggests that code will be completely portable
(that is, give the exact same results) between all implementations that
conform with the proposed standard. This is not true. The document is
riddled with ®"implementation defined" specifications. Almost any of these
open the door for slightly different results in different implementations.
So either all aspects of precision and evaluation methods have to be
precisely and unambiguously defined and required or the goal of absolute
portability must be forgotten. It is not realistic to force all
implementations to just one hardware model, therefore, variations in
results must be expected.

The recommendation acknowledges programs that depend on the prescribed relationships among types but
nonetheless enjoy a level of portability.

Page vi January 6, 1994

)

>3

