
Draft Technical Specification – November 13, 2023 ISO/IEC JTC 1/SC 22/WG 14 CFP Working Draft

 N3180

TECHNICAL ISO/IEC TS
SPECIFICATION 18661-4

Second edition
CFP Working Draft

2023-11-13

Information technology — Programming languages, their environments,
and system software interfaces — Floating-point extensions for C —

Part 4:
Supplementary functions

Technologies de l’information — Langages de programmation, leurs environnements et interfaces du
logiciel système — Extensions à virgule flottante pour C —

Partie 4: Fonctions supplémentaires

Reference number
ISO/IEC TS 18661-4:20yy(E)

ISO/IEC TS 18661-4:CFP Working Draft

ii © ISO/IEC 2023 – All rights reserved

 5

© ISO/IEC 2023 10

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized otherwise in any form or by any means, electronic or mechanical, including
photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the
country of the requester. 15

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22
749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

COPYRIGHT PROTECTED DOCUMENT

mailto:copyright@iso.org

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved iii

Foreword .. iv

Introduction ... v

1 Scope.. 1

2 Conformance .. 1

3 Normative references ... 1 5

4 Terms and definitions .. 1

4.1 .. 2

5 C standard extensions .. 2

5.1 Predefined macros .. 2
5.2 Freestanding implementations ... 2 10
5.3 Headers... 2
5.4 Future directions ... 2

6 Reduction functions <reduc.h> ... 2

6.1 The reduc_sum functions ... 4
6.2 The reduc_sumabs functions .. 4 15
6.3 The reduc_sumsq functions ... 5
6.4 The reduc_sumprod functions ... 6
6.5 The scaled_prod functions ... 7
6.6 The scaled_prodsum functions .. 8
6.7 The scaled_proddiff functions ... 9 20

7 Augmented arithmetic functions <augarith.h> ... 11

7.1 The aug_add functions .. 12
7.2 The aug_sub functions .. 12
7.3 The aug_mul functions .. 13

Bibliography.. 15 25

ISO/IEC TS 18661-4:CFP Working Draft

iv © ISO/IEC 2023 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity. 5
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are 10
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 15
Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity 20
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcommittee
SC 22, Programming languages, their environments, and system software interfaces.

ISO/IEC TS 18661 originally consisted of the following parts, under the general title Information 25
technology — Programming languages, their environments, and system software interfaces — Floating-
point extensions for C:

⎯ Part 1: Binary floating-point arithmetic

⎯ Part 2: Decimal floating-point arithmetic

⎯ Part 3: Interchange and extended types 30

⎯ Part 4: Supplementary functions

⎯ Part 5: Supplementary attributes

Parts 1, 2, 3, and some of Part 4 are integrated into ISO/IEC 9899: 2024 (C23).

ISO/IEC TS 18661 Part 4 Version 2, this document, supersedes ISO/IEC TS 18661-4:2015, the previous 35
version of Part 4.

ISO/IEC TS 18661 Part 5 Version 2, a separate document, supersedes ISO/IEC TS 18661-5:2015, the
previous version of Part 5.
 40

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved v

Introduction

Background

IEC 60559 floating-point standard

The IEC 60559 international standard and the corresponding version of the IEEE 754 standard have
equivalent content. 5

Floating-point standards – matching versions

IEEE 754-1985 IEC 60559:1989

IEEE 754-2008 ISO/IEC/IEEE 60559:2011

IEEE 754-2019 ISO/IEC 60559:2020

The IEEE 754-1985 standard for binary floating-point arithmetic was motivated by an expanding
diversity in floating-point data representation and arithmetic, which made writing robust programs,
debugging, and moving programs between systems exceedingly difficult. Now the great majority of 10
systems provide data formats and arithmetic operations according to this standard. The stated goals of
this standard were (and have remained throughout its revisions) the following, quoted from IEEE 754-
1985[1], Introduction:

1 Facilitate movement of existing programs from diverse computers to those that adhere to
this standard. 15

2 Enhance the capabilities and safety available to programmers who, though not expert in
numerical methods, may well be attempting to produce numerically sophisticated
programs. However, we recognize that utility and safety are sometimes antagonists.

3 Encourage experts to develop and distribute robust and efficient numerical programs that
are portable, by way of minor editing and recompilation, onto any computer that conforms 20
to this standard and possesses adequate capacity. When restricted to a declared subset of
the standard, these programs should produce identical results on all conforming systems.

4 Provide direct support for

a. Execution-time diagnosis of anomalies

b. Smoother handling of exceptions 25

c. Interval arithmetic at a reasonable cost

5 Provide for development of

a. Standard elementary functions such as exp and cos

b. Very high precision (multiword) arithmetic

c. Coupling of numerical and symbolic algebraic computation 30

6 Enable rather than preclude further refinements and extensions.

ISO/IEC TS 18661-4:CFP Working Draft

vi © ISO/IEC 2023 – All rights reserved

To these ends, the standard specified a floating-point model comprising the following:

— formats – for binary floating-point data, including representations for Not-a-Number (NaN) and
signed infinities and zeros;

— operations – basic arithmetic operations (addition, multiplication, etc.) on the format data to
compose a well-defined, closed arithmetic system; also specified conversions between floating-5
point formats and decimal character sequences, and a few auxiliary operations;

— context – status flags for detecting exceptional conditions (invalid operation, division by zero,
overflow, underflow, and inexact) and controls for choosing different rounding methods.

The IEEE 754-2008 standard for floating-point arithmetic, which is equivalent to the ISO/IEC/IEEE
60559:2011 international standard, was a major revision. This revision: 10

— Specified more formats, including decimal as well as binary. It added a 128-bit binary format to its
basic formats. It defined extended formats corresponding to all its basic formats. It specified data
interchange formats (which may or may not be arithmetic), including a 16-bit binary format and an
unbounded sequence of wider formats. To conform to the floating-point standard, an
implementation must provide at least one of the basic formats, along with the required operations. 15

— Specified more operations. It added required operations including (among others) arithmetic
operations that round their result to a narrower format than the operands (with just one rounding),
more conversions with integer types, more classifications and comparisons, and more operations
for managing flags and modes. It added recommended operations including an extensive set of
mathematical operations and seven reduction operations for sums and scaled products. 20

— Placed more emphasis on reproducible results. This is reflected in its standardization of more
operations. For the most part, it completely specified behaviors. It required conversions between
floating-point formats and decimal character sequences to be correctly rounded for at least three
more decimal digits than is necessary to distinguish all numbers in the widest supported binary
format; it completely specified such conversions involving any number of decimal digits. It specified 25
the recommended transcendental functions to be correctly rounded.

— Added a way to specify a constant rounding direction for a static portion of code, with details left to
programming language standards. This feature potentially allows rounding control without
incurring the overhead of runtime access to a global (or thread) rounding mode.

— Added other recommended features including alternate methods for exception handling, controls 30
for expression evaluation (allowing or disallowing various optimizations), support for fully
reproducible results, and support for program debugging.

The IEEE 754-2019 standard for floating-point arithmetic, which is equivalent to the ISO/IEC
60559:2020 international standard, was a minor revision. As such it was limited to upward-compatible
editorial corrections and clarifications and minor enhancements. It added some recommended 35
operations, including ones that might be required features in the next revision.

IEC 60559 (like IEEE 754) defines specific encodings for the exchange of floating-point data between
different implementations. However, it does not define the concrete representation (specific layout in
storage, or in a processor's register, for example) of data or context.

IEC 60559 (like IEEE 754) does not specify how its features are expressed in programming languages. 40
However, its revisions have added guidance for programming language standards, recognizing that
benefits of the floating-point standard, even if well supported in the hardware, are not available to users

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved vii

unless the programming language provides interfaces for the features and reliable behaviors. The
implementation’s combination of both hardware and software determines conformance to the floating-
point standard.

C support for IEC 60559

The C standard specifies floating-point arithmetic using an abstract model. The representation of a 5
floating-point number is specified in a form where the constituent components (sign, exponent,
significand) of the representation are defined but not the internals of these components. In particular,
the exponent range, significand size, and the base (or radix) are implementation-defined. This allows
flexibility for an implementation to take advantage of its underlying hardware architecture.
Furthermore, certain behaviors of most floating-point operations are also implementation-defined or 10
unspecified, including accuracy and aspects of the way special values and exceptional conditions are
handled.

The reason for this approach is historical. At the time when C was first standardized, before the floating-
point standard was established, there were various hardware implementations of floating-point
arithmetic in common use. Specifying the exact details of the model would have made most of the 15
existing implementations at the time non-conforming.

Beginning with ISO/IEC 9899:1999 (C99), C has included an optional second level of specification for
implementations supporting the floating-point standard. C99, in conditionally normative annex F,
introduced nearly complete support for the IEC 60559:1989 standard for binary floating-point
arithmetic. Also, C99’s informative annex G offered a specification of complex arithmetic that is 20
compatible with IEC 60559:1989.

ISO/IEC 9899:2011 (C11) and ISO/IEC 9899:2018 (C17) include refinements to the C99 floating-point
specification, though are still based on IEC 60559:1989. C11 upgraded annex G from “informative” to
“conditionally normative”.

ISO/IEC TR 24732:2009 introduced partial C support for the decimal floating-point arithmetic in 25
ISO/IEC/IEEE 60559:2011. ISO/IEC TR 24732, for which technical content was completed while IEEE
754-2008 was still in the later stages of development, specifies decimal types based on ISO/IEC/IEEE
60559:2011 decimal formats, though it does not include all the operations required by ISO/IEC/IEEE
60559:2011.

ISO/IEC TS 18661 provided a C language binding for ISO/IEC/IEEE 60559:2011, based on the C11 30
standard. ISO/IEC TS 18661 was organized into five parts:

ISO/IEC TS 18661-1:2014 – Binary floating-point arithmetic

ISO/IEC TS 18661-2:2015 – Decimal floating-point arithmetic, Second edition

ISO/IEC TS 18661-3:2015 – Interchange and extended types

ISO/IEC TS 18661-4:2015 – Supplementary functions 35

ISO/IEC TS 18661-5:2016 – Supplementary attributes

ISO/IEC 9899:2024 (C23) incorporates ISO/IEC TS 18661 Parts 1 and 2, the mathematical functions in
Part 4, and, in an annex, Part 3. C23 also updates its floating-point specification to support
ISO/IEC/IEEE 60559:2020.

ISO/IEC TS 18661-4:CFP Working Draft

viii © ISO/IEC 2023 – All rights reserved

This document updates ISO/IEC TS 18661-4. It retains the feature that was not incorporated into C23,
namely the reduction functions. It also adds support for the augmented arithmetic operations
introduced in IEC 60559:2020.

A separate document updates ISO/IEC TS 18661-5, which was not incorporated into C23.

Additional background on supplementary functions 5

This document uses the term supplementary functions to refer to functions that provide operations
recommended, but not required, by IEC 60559 and that are not supported in C23.

IEC 60559 specifies and recommends reduction operations which operate on vector operands to
perform widely used vector computations. These operations, which compute sums and products, may
associate in any order and may evaluate in any wider format. Hence, unlike other IEC 60559 operations, 10
they do not have unique specified results.

IEC 60559 also specifies and recommends augmented arithmetic operations, which are versions of
operations commonly called twoSum and twoProduct. These operations can be used to implement
arithmetic with extra precision, for example for double-double format. They can also be used to
implement efficient reproducible dot products. 15

This document specifies two headers with functions corresponding to the IEC 60559 reduction and
augmented arithmetic operations, respectively. This document does not specify type-generic macros for
the operations.

TECHNICAL SPECIFICATION ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 1

Information technology — Programming languages, their
environments, and system software interfaces — Floating-point
extensions for C —

Part 4: 5

Supplementary functions

1 Scope

This document specifies extensions to programming language C to include functions corresponding to
operations specified and recommended in ISO/IEC 60559 and not supported in C23.

2 Conformance 10

An implementation may conform to one or both feature sets (reduction functions and augmented
arithmetic) in this document. It so conforms if

a) it meets the requirements for a conforming implementation of C23;

and to conform to the reduction functions, the following are true:

b) it defines __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__ or both, indicating 15
support for IEC 60559 binary or decimal floating-point arithmetic, as specified in C23 Annex F;

c) it defines __STDC_IEC_60559_FUNCS_REDUCTION__ to 20yymmL and provides the
<reduc.h> header specified in this document (Clause 6);

and to conform to the augmented arithmetic feature, the following are true:

d) it defines __STDC_IEC_60559_BFP__, indicating support for IEC 60559 binary floating-point 20
arithmetic, as specified in C23 Annex F;

e) it defines __STDC_IEC_60559_FUNCS_AUGMENTED_ARITHMETIC__ to 20yymmL and
provides the <augarith.h> header specified in this document (Clause 7).

3 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are 25
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 9899:2024, Information technology — Programming languages — C

ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-point arithmetic

4 Terms and definitions 30

For the purposes of this document, the terms and definitions given in ISO/IEC 9899:2024,
ISO/IEC 60559:2020, and the following apply.

ISO/IEC TS 18661-4:CFP Working Draft

2 © ISO/IEC 2023 – All rights reserved

4.1

C23
standard ISO/IEC 9899:2024, Information technology — Programming languages C

5 C standard extensions

5.1 Predefined macros 5

The implementation defines one or both of the following macros to indicate conformance to the
specification in this document for support of the corresponding features specified and
recommended in IEC 60559.

__STDC_IEC_60559_FUNCS_REDUCTION__ The integer constant 20yymmL.

__STDC_IEC_60559_FUNCS_AUGMENTED_ARITHMETIC__ The integer constant 10
20yymmL.

5.2 Freestanding implementations

The strictly conforming programs that shall be accepted by a conforming freestanding implementation
that defines one of the feature macros in 5.1 may also use features in the corresponding header
specified in this document. See C23 Clause 4. 15

5.3 Headers

If the implementation defines one of the feature macros in 5.1 then the implementation provides the
corresponding header specified in this document. The header and its use follow the general
specification in C23 7.1 for the C Library as though the header were a subclause of C23 Clause 7 for a
conditional feature. 20

5.4 Future directions

For implementations that define __STDC_IEC_60559_FUNCS_REDUCTION__, function names that

begin with reduc_ or scaled_ are potentially reserved identifiers and may be added to the
declarations in the <reduc.h> header.

For implementations that define __STDC_IEC_60559_FUNCS_ AUGMENTED_ARITHMETIC__, tag 25
names that end with aug_t and function names that begin with aug_ are potentially reserved
identifiers and may be added to the declarations in the <augarith.h> header.

See C23 7.33.

6 Reduction functions <reduc.h>

The header <reduc.h> declares the type and functions in this clause. 30

The type declared is size_t (described in C23 7.21).

Each function in this clause is declared in <reduc.h> if and only if the corresponding type is

supported according to C23 Annex F or Annex H.

The functions in this clause shall be implemented so that intermediate computations do not overflow
or underflow. For the reduc_sum, reduc_sumabs, reduc_sumsq, and reduc_sumprod functions, 35

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 3

the “overflow” or “underflow” floating-point exception is raised and a range error occurs if and only if
the final result overflows or underflows. The scaled_prod, scaled_prodsum, and
scaled_proddiff functions do not raise the “overflow” or “underflow” floating-point exceptions

and do not cause a range error.

The reduction functions do not raise the “divide-by-zero” floating-point exception. 5

With IEC 60559 default exception handling, these functions raise the “inexact” floating-point exception
in response to “overflow” and “underflow” exceptions; otherwise, whether they raise the “inexact”
floating-point exception is unspecified.

Numerical results and exceptional behavior, including the “invalid” floating-point exception, might
differ due to the precision of intermediates and the order of evaluation. However, only one floating-10
point exception is raised (other than “inexact” in response to “overflow” or “underflow”) per reduction
function invocation; exceptions are not raised for each exceptional intermediate operand or result.
Reduction functions may raise the “invalid” floating-point exception if an element of an array argument
is a signaling NaN (see C23 F.2.1). Once an invalid floating-point exception is raised, due to signaling
NaN, ∞−∞, or 0×∞, processing of array elements may stop. 15

Whether and how rounding direction modes affect functions in this clause are implementation defined
and may be indeterminate. This applies to constant as well as dynamic rounding modes, C23 7.6.2
notwithstanding.

The preferred quantum exponent for the reduction functions for decimal floating types is unspecified.

For each of the following synopses, an implementation shall declare the functions suffixed with fN or 20
fNx only if it supports the corresponding binary floating type and the macro
__STDC_WANT_IEC_60559_TYPES_EXT__ is defined at the point in the code where <reduc.h> is
first included. An implementation shall declare the functions suffixed with dN for N ≠ 32, 64 or 128 or
with dNx only if it supports the corresponding decimal floating type and the macro

__STDC_WANT_IEC_60559_TYPES_EXT__ is defined at the point in the code where <reduc.h> is 25
first included.1 (See C23 Annex H.)

1 For N = 32, 64 and 128, the functions suffixed with dN are declared if the implementation supports decimal floating types
(i.e. defines __STDC_IEC_60559_DFP__), without the requirement that the macro
__STDC_WANT_IEC_60559_TYPES_EXT__ be defined.

ISO/IEC TS 18661-4:CFP Working Draft

4 © ISO/IEC 2023 – All rights reserved

6.1 The reduc_sum functions

Synopsis

#include <reduc.h>

#ifdef __STDC_IEC_60559_BFP__ 5
double reduc_sum(size_t n, const double p[static n]);

float reduc_sumf(size_t n, const float p[static n]);

long double reduc_suml(size_t n,

const long double p[static n]);

_FloatN reduc_sumfN(size_t n, const _FloatN p[static n]); 10
_FloatNx reduc_sumfNx(size_t n, const _FloatNx p[static n]);
#endif

#ifdef __STDC_IEC_60559_DFP__

_DecimalN reduc_sumdN(size_t n, const _DecimalN p[static n]);

_DecimalNx reduc_sumdNx(size_t n, 15

const _DecimalNx p[static n]);
#endif

Description

The reduc_sum functions compute the sum of the n elements of array p: ∑ 𝐩[𝑖]𝐧−1
𝑖=0 . If the length n = 0,

the functions return the value +0. If any element of array p is a NaN, the functions return a quiet NaN. If 20
any two elements of array p are infinities with different signs, the functions return a quiet NaN and
raise the “invalid” floating-point exception and a domain error occurs. Otherwise (if no element of p is
a NaN and no two elements of p are infinities with different signs), if any element of array p is an
infinity, the functions return that same infinity.

Returns 25

The reduc_sum functions return the computed sum.

6.2 The reduc_sumabs functions

Synopsis

#include <reduc.h>

 30
#ifdef __STDC_IEC_60559_BFP__

double reduc_sumabs(size_t n, const double p[static n]);

float reduc_sumabsf(size_t n, const float p[static n]);

long double reduc_sumabsl(size_t n,

const long double p[static n]); 35
_FloatN reduc_sumabsfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc_sumabsfNx(size_t n,

const _FloatNx p[static n]);
#endif

#ifdef __STDC_IEC_60559_DFP__ 40
_DecimalN reduc_sumabsdN(size_t n,

const _DecimalN p[static n]);

_DecimalNx reduc_sumabsdNx(size_t n,
const _DecimalNx p[static n]);

#endif 45

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 5

Description

The reduc_sumabs functions compute the sum of the absolute values of the n elements of array p:

∑ |𝐩[𝑖]|𝐧−1
𝑖=0 . If the length n = 0, the functions return the value +0. If any element of array p is an infinity,

the functions return +∞; otherwise, if any element of array p is a NaN, the functions return a quiet NaN.

Returns 5

The reduc_sumabs functions return the computed sum.

6.3 The reduc_sumsq functions

Synopsis

#include <reduc.h>

 10
#ifdef __STDC_IEC_60559_BFP__

double reduc_sumsq(size_t n, const double p[static n]);

float reduc_sumsqf(size_t n, const float p[static n]);

long double reduc_sumsql(size_t n,

const long double p[static n]); 15
_FloatN reduc_sumsqfN(size_t n, const _FloatN p[static n]);
_FloatNx reduc_sumsqfNx(size_t n,

const _FloatNx p[static n]);
#endif

#ifdef __STDC_IEC_60559_DFP__ 20
_DecimalN reduc_sumsqdN(size_t n,

const _DecimalN p[static n]);
_DecimalNx reduc_sumsqdNx(size_t n,

const _DecimalNx p[static n]);
#endif 25

Description

The reduc_sumsq functions compute the sum of squares of the values of the n elements of array p:
∑ (𝐩[𝑖] × 𝐩[𝑖])𝐧−1

𝑖=0 . If the length n = 0, the functions return the value +0. If any element of array p is an

infinity, the functions return +∞; otherwise, if any element of array p is a NaN, the functions return a
quiet NaN. 30

Returns

The reduc_sumsq functions return the computed sum.

ISO/IEC TS 18661-4:CFP Working Draft

6 © ISO/IEC 2023 – All rights reserved

6.4 The reduc_sumprod functions

Synopsis

#include <reduc.h>

#ifdef __STDC_IEC_60559_BFP__ 5
double reduc_sumprod(size_t n, const double p[static n],

const double q[static n]);

float reduc_sumprodf(size_t n, const float p[static n],

const float q[static n]);

long double reduc_sumprodl(size_t n, 10
const long double p[static n],

const long double q[static n]);

_FloatN reduc_sumprodfN(size_t n, const _FloatN p[static n],
const _FloatN q[static n]);

_FloatNx reduc_sumprodfNx(size_t n, 15

const _FloatNx p[static n],
const _FloatNx q[static n]);

#endif

#ifdef __STDC_IEC_60559_DFP__

_DecimalN reduc_sumproddN(size_t n, 20
const _DecimalN p[static n],

const _DecimalN q[static n]);
_DecimalNx reduc_sumproddNx(size_t n,

const _DecimalNx p[static n],
const _DecimalNx q[static n]); 25

#endif

Description

The reduc_sumprod functions compute the dot product of the sequences of elements of the arrays p

and q: ∑ (𝐩[𝑖] × 𝐪[𝑖])𝐧−1
𝑖=0 . If the length n = 0, the functions return the value +0. If any element of array

p or q is a NaN, the functions return a quiet NaN. If a product is 0 × ∞, the functions return a quiet NaN 30
and raise the “invalid” floating-point exception and a domain error occurs. If a sum is of infinities of
different signs, the functions return a quiet NaN and raise the “invalid” floating-point exception and a
domain error occurs. Otherwise (if no array element is a NaN, no product is 0 × ∞, and no sum is of
infinities of different signs), if a term in the summation is an infinity, the functions return that same
infinity. 35

Returns

The reduc_sumprod functions return the computed dot product.

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 7

6.5 The scaled_prod functions

Synopsis

#include <reduc.h>

#ifdef __STDC_IEC_60559_BFP__ 5
double scaled_prod(size_t n,

const double p[static restrict n],

long int * restrict sfptr);

float scaled_prodf(size_t n,

const float p[static restrict n], 10
long int * restrict sfptr);

long double scaled_prodl(size_t n,

const long double p[static restrict n],

long int * restrict sfptr);

_FloatN scaled_prodfN(size_t n, 15

const _FloatN p[static restrict n],
long int * restrict sfptr);

_FloatNx scaled_prodfNx(size_t n,
const _FloatNx p[static restrict n],
long int * restrict sfptr); 20

#endif

#ifdef __STDC_IEC_60559_DFP__

_DecimalN scaled_proddN(size_t n,
const _DecimalN p[static restrict n],
long int * restrict sfptr); 25

_DecimalNx scaled_proddNx(size_t n,
const _DecimalNx p[static restrict n],
long int * restrict sfptr);

#endif

Description 30

The scaled_prod functions compute a scaled product pr of the n elements of the array p and a scale
factor sf, such that

pr × bsf = ∏ 𝐩[𝑖]𝐧−1
𝑖=0

where b is the radix of the type. These functions store the scale factor sf in the object pointed to by
sfptr. If the length n = 0, the functions return the value +1 and store 0 in the object pointed to by 35
sfptr. If any element of array p is a NaN, the functions return a quiet NaN. If any two elements of
array p are a zero and an infinity, the functions return a quiet NaN and raise the “invalid” floating-point

exception and a domain error occurs. Otherwise, if any element of array p is an infinity, the functions
return an infinity. Otherwise, if any element of array p is a zero, the functions return a zero. Otherwise,
if the scale factor is outside the range of the long int type, the functions return a quiet NaN and raise 40
the “invalid” floating-point exception. If a zero, infinity, or NaN is returned, the functions store 0 in the
object pointed to by sfptr.

Returns

The scaled_prod functions return the computed scaled product pr.

ISO/IEC TS 18661-4:CFP Working Draft

8 © ISO/IEC 2023 – All rights reserved

6.6 The scaled_prodsum functions

Synopsis

#include <reduc.h>

#ifdef __STDC_IEC_60559_BFP__ 5
double scaled_prodsum(size_t n,

const double p[static restrict n],

const double q[static restrict n],

long int * restrict sfptr);

float scaled_prodsumf(size_t n, 10
const float p[static restrict n],

const float q[static restrict n],

long int * restrict sfptr);

long double scaled_prodsuml(size_t n,

const long double p[static restrict n], 15
const long double q[static restrict n],

long int * restrict sfptr);

_FloatN scaled_prodsumfN(size_t n,
const _FloatN p[static restrict n],
const _FloatN q[static restrict n], 20
long int * restrict sfptr);

_FloatNx scaled_prodsumfNx(size_t n,
const _FloatNx p[static restrict n],
const _FloatNx q[static restrict n],
long int * restrict sfptr); 25

#endif

#ifdef __STDC_IEC_60559_DFP__

_DecimalN scaled_prodsumdN(size_t n,

const _DecimalN p[static restrict n],
const _DecimalN q[static restrict n], 30
long int * restrict sfptr);

_DecimalNx scaled_prodsumdNx(size_t n,
const _DecimalNx p[static restrict n],
const _DecimalNx q[static restrict n],
long int * restrict sfptr); 35

#endif

Description

The scaled_prodsum functions compute a scaled product pr of the sums of the corresponding
elements of the arrays p and q and a scale factor sf, such that

pr × bsf = ∏ (𝐩[𝑖] + 𝐪[𝑖])𝐧−1
𝑖=0 40

where b is the radix of the type. These functions store the scale factor sf in the object pointed to by
sfptr. If the length n = 0, the functions return the value +1 and store 0 in the object pointed to by
sfptr. If any element of array p or q is a NaN, the functions return a quiet NaN. If any sum is of
infinities with different signs or if any two factors in the product are a zero and an infinity, the
functions return a quiet NaN and raise the “invalid” floating-point exception and a domain error occurs. 45
Otherwise, if any factor in the product is an infinity, the functions return an infinity. Otherwise, if any
factor in the product is a zero, the functions return a zero. Otherwise, if the scale factor is outside the

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 9

range of the long int type, the functions return a quiet NaN and raise the “invalid” floating-point
exception. If a zero, infinity, or NaN is returned, the functions store 0 in the object pointed to by sfptr.

Returns

The scaled_prodsum functions return the computed scaled product pr.

6.7 The scaled_proddiff functions 5

Synopsis

#include <reduc.h>

#ifdef __STDC_IEC_60559_FUNCS_REDUCTION__

#ifdef __STDC_IEC_60559_BFP__ 10
double scaled_proddiff(size_t n,

const double p[static restrict n],

const double q[static restrict n],

long int * restrict sfptr);

float scaled_proddifff(size_t n, 15
const float p[static restrict n],

const float q[static restrict n],

long int * restrict sfptr);

long double scaled_proddiffl(size_t n,

const long double p[static restrict n], 20
const long double q[static restrict n],

long int * restrict sfptr);

_FloatN scaled_proddifffN(size_t n,
const _FloatN p[static restrict n],
const _FloatN q[static restrict n], 25
long int * restrict sfptr);

_FloatNx scaled_proddifffNx(size_t n,
const _FloatNx p[static restrict n],

const _FloatNx q[static restrict n],
long int * restrict sfptr); 30

#endif

#ifdef __STDC_IEC_60559_DFP__

_DecimalN scaled_proddiffdN(size_t n,
const _DecimalN p[static restrict n],
const _DecimalN q[static restrict n], 35
long int * restrict sfptr);

_DecimalNx scaled_proddiffdNx(size_t n,
const _DecimalNx p[static restrict n],

const _DecimalNx q[static restrict n],
long int * restrict sfptr); 40

#endif

Description

The scaled_proddiff functions compute a scaled product pr of the differences of the

corresponding elements of the arrays p and q and a scale factor sf, such that

pr × bsf = ∏ (𝐩[𝑖] − 𝐪[𝑖])𝐧−1
𝑖=0 45

ISO/IEC TS 18661-4:CFP Working Draft

10 © ISO/IEC 2023 – All rights reserved

where b is the radix of the type. These functions store the scale factor sf in the object pointed to by
sfptr. If the length n = 0, the functions return the value +1 and store 0 in the object pointed to by
sfptr. If any element of array p or q is a NaN, the functions return a quiet NaN. If any difference is of
infinities with the same signs or if any two factors in the product are a zero and an infinity, the
functions return a quiet NaN and raise the “invalid” floating-point exception and a domain error occurs. 5
Otherwise, if any factor in the product is an infinity, the functions return an infinity. Otherwise, if any
factor in the product is a zero, the functions return a zero. Otherwise, if the scale factor is outside the
range of the long int type, the functions return a quiet NaN and raise the “invalid” floating-point
exception. If a zero, infinity, or NaN is returned, the functions store 0 in the object pointed to by sfptr.

Returns 10

The scaled_proddiff functions return the computed scaled product pr.

EXAMPLE The scaled reduction functions support computing quantities of modest magnitudes whose
intermediate results might well overflow and underflow. One example is the computation of Clebsch-
Gordan coefficients or Wigner 3-j symbols for quantum physics. Expressions for these quantities
involve quotients of products of factorials, and so are prone to intermediate overflow. As a simplified 15
example, consider computing a fragment of the Clebsch-Gordan calculation.

#include <reduc.h>

#include <math.h>

// compute quot = n1! * n2! / n3! 20

int n1 = 140, n2 = 160, n3 = 200; // factorial magnitudes

 // 1e241, 1e284, 1e374

 // quot magnitude 1e151

 25
// products scaled to avoid overflow

double num1, num2, den;

// scale factors

long int num1e, num2e, dene;

 30
// products scaled again to avoid intermediate overflow

// in final computation

double num1s, num2s, dens;

// scale factors

long int num1es, num2es, denes; 35

// result

double quot;

// arrays { 2, 3, 4, ... } 40
double num1p[n1-1], num2p[n2-1], denp[n3-1];

// n1! scaled to avoid overflow

for (int i = 2; i <= n1; i++) {

 num1p[i-2] = i; 45
}

num1 = scaled_prod(n1-1, num1p, &num1e);

// n2! scaled to avoid overflow

for (int i = 2; i <= n2; i++) { 50
 num2p[i-2] = i;

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 11

}

num2 = scaled_prod(n2-1, num2p, &num2e);

// n3! scaled to avoid overflow

for (int i = 2; i <= n3; i++) { 5
 denp[i-2] = i;

}

den = scaled_prod(n3-1, denp, &dene);

// re-scale to avoid subsequent intermediate overflow 10
num1es = llogb(num1);

num1s = scalbln(num1, -num1es);

num2es = llogb(num2);

num2s = scalbln(num2, -num2es);

denes = llogb(den); 15
dens = scalbln(den, -denes);

// compute result without intermediate overflow

quot = scalbln(num1s * num2s / dens,

 num1e + num2e – dene + num1es + num2es - denes); 20

7 Augmented arithmetic functions <augarith.h>

This clause supports augmented arithmetic, as recommended by IEC 60559 for its binary formats. Each
type and each function in this clause is declared in <augarith.h> if and only if the corresponding
type is an IEC 60559 floating type supported according to C23 Annex F or an interchange or extended
type supported according to C23 Annex H. 25

The types are structures for returning two floating-point values:

struct daug_t { double h; double t; };

struct faug_t { float h; float t; };

struct ldaug_t { long double h; long double t; };

struct _fNaug_t { _FloatN h; _FloatN t; }; 30

struct _fNxaug_t { _FloatNx h; _FloatNx t; };

The functions in this clause use these structures to return a “head” value h and “tail” value t to
represent an extra-precise result value given by h + t . See EXAMPLE in this clause.

The functions in this clause round to nearest with ties toward zero, a rounding direction specified by
IEC 60559 for use by augmented arithmetic operations.2 Thus, results are independent of dynamic and 35
constant rounding direction modes. Like other IEC 60559 operations, rounding is done with gradual
underflow.

For each of the following synopses, an implementation shall declare the functions suffixed with fN or
fNx only if it supports the corresponding binary floating type and the macro
__STDC_WANT_IEC_60559_TYPES_EXT__ is defined at the point in the code where 40
<augarith.h> is first included.

2 [16] shows how to use currently available IEC 60559 operations and to-nearest, ties-to-even rounding to implement the IEC
60559 augmented arithmetic operations with their special to-nearest, ties-toward-zero rounding.

ISO/IEC TS 18661-4:CFP Working Draft

12 © ISO/IEC 2023 – All rights reserved

7.1 The aug_add functions

Synopsis

#include <augarith.h>

struct daug_t aug_add(double x, double y);

struct faug_t aug_addf(float x, float y); 5
struct ldaug_t aug_addl(long double x, long double y);

struct _fNaug_t aug_addfN(_FloatN x, _FloatN y);

struct _fNxaug_t aug_addfNx(_FloatNx x, _FloatNx y);

Description

The aug_add functions compute two result values: 10

h: the sum x + y rounded to the type using round-to-nearest with ties toward zero;

t : the error in h as a computation of x + y.

If h is a non-zero finite number, t has the value x + y – h (which is exactly representable in the type),
where if t is zero its sign is the sign of h. If h is zero, t has the value of h (and both have the same sign).
If h is infinite, t has the value of h. If h is a NaN, t is the same NaN. 15

These functions raise floating-point exceptions like the computation of h, except that under IEC 60559
default exception handling they raise the “inexact” floating-point exception only when the computation
of h overflows.

A range error occurs when the computation of h overflows. A domain error occurs when the arguments
are infinities with different signs. 20

Returns

These functions return the sum and error in a structure.

7.2 The aug_sub functions

Synopsis

#include <augarith.h> 25

struct daug_t aug_sub(double x, double y);

struct faug_t aug_subf(float x, float y);

struct ldaug_t aug_subl(long double x, long double y);

struct _fNaug_t aug_subfN(_FloatN x, _FloatN y);
struct _fNxaug_t aug_subfNx(_FloatNx x, _FloatNx y); 30

Description

The aug_sub functions compute two result values:

h: the difference x − y rounded to the type using round-to-nearest with ties toward zero;

t : the error in h as a computation of x − y.

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 13

If h is a non-zero finite number, t has the value x − y − h (which is exactly representable in the type),
where if t is zero its sign is the sign of h. If h is zero, t has the value of h (and both have the same sign).
If h is infinite, t has the value of h. If h is a NaN, t is the same NaN.

These functions raise floating-point exceptions like the computation of h, except that under IEC 60559
default exception handling they raise the “inexact” floating-point exception only when the computation 5
of h overflows.

A range error occurs when the computation of h overflows. A domain error occurs when the arguments

are infinities with the same sign.

Returns

These functions return the difference and error in a structure. 10

7.3 The aug_mul functions

Synopsis

#include <augarith.h>

struct daug_t aug_mul(double x, double y);

struct faug_t aug_mulf(float x, float y); 15
struct ldaug_t aug_mull(long double x, long double y);

struct _fNaug_t aug_mulfN(_FloatN x, _FloatN y);
struct _fNxaug_t aug_mulfNx(_FloatNx x, _FloatNx y);

Description

The aug_mul functions compute two result values: 20

h: the product x × y rounded to the type using round-to-nearest with ties toward zero;

t : the error in h as a computation of x × y.

If h is a nonzero finite number and x × y – h is exactly representable in the type, t has the value x × y –

h, where if t is zero its sign is the sign of h. If h is a nonzero finite number and x × y – h is not exactly
representable in the type (because the magnitude of its value is too small), t has the value x × y – h 25
rounded to the type using round-to-nearest with ties toward zero. If h is zero, t has the value of h (and
both have the same sign). If h is infinite, t has the value of h. If h is a NaN, t is the same NaN.

These functions raise the “overflow” and “invalid” floating-point exceptions like the computation of h.

They raise the “underflow” floating-point exception like the computation of t. They raise the “inexact”

floating-point exception when and only when the computation of h overflows or the computation of t 30
is inexact.

A range error occurs when the computation of h overflows and may occur when the computation of t
underflows. A domain error occurs when one argument is zero and the other an infinity.

Returns

These functions return the product and error in a structure. 35

ISO/IEC TS 18661-4:CFP Working Draft

14 © ISO/IEC 2023 – All rights reserved

EXAMPLE The augmented arithmetic operations are useful for extending precision, particularly for
implementing "double-double" arithmetic, which provides a faster, though less precise and less
predictable, alternative to IEC 60559 binary128 on systems which lack hardware support for
binary128.

Double-double represents numbers as a pair of doubles, the second no larger in magnitude than the 5
first, and usually much smaller. Ideally, in the pair (h, t), h would equal the correctly rounded result of
computed (h+t), and t would equal the correctly rounded result of h + t – correctly-rounded-computed
(h+t). Performance considerations often compromise this ideal. There is no standard specification for
double-double.

Let the pair (ah, at) represent a double-double value a = ah + at in infinite precision, and (bh, bt) a 10
similar double-double value b. Consider the double-double sum s represented by (sh, st) where s = sh +
st closely approximates a + b = ah + at + bh + bt . The code below uses augmented addition to compute
such a sum.

#include <augarith.h>

 15
// components of double-double values a = 1/3, b = 2/3, and s

double ah = 0x 0.AAAAAAAAAAAAA8p-1, at = 0x0.AAAAAAAAAAAAA8p-55;
double bh = 0x 0.AAAAAAAAAAAAA8p0, bt = 0x0.AAAAAAAAAAAAA8p-54;
double sh, st;

 20
struct daug_t u, v, w, y, z;

// compute components of s = a + b

 // exact sum is ah + at + bh + bt

u = aug_add(ah, bh); // exact sum is u.h + u.t + at + bt 25
v = aug_add(at, bt); // exact sum is u.h + u.t + v.h + v.t

w = aug_add(u.t, v.t); // exact sum is u.h + v.h + w.h + w.t

y = aug_add(v.h, w.h); // exact sum is u.h + y.h + y.t + w.t

z = aug_add(u.h, y.h); // exact sum is z.h + z.t + y.t + w.t

 30
sh = z.h;

st = z.t;

The code gives a good approximation to the ideal result, with absolute error y.t + w.t, and it is
commutative and without conditional branches. 35

The steps for w and y could use regular addition (+) rather than aug_add, because w.t and y.t are
not used in the calculation. The code above gives a name to w.t and y.t for the didactic purpose of the
error formula. It also assures a consistent result regardless of the evaluation method.

The special cases for the code might be no worse than those of any other double-double
implementation fast enough to be useful. Its performance might be acceptable if aug_add is no slower 40

than two adds. There are faster ways to do double-double addition if hardware support for aug_add is
not available.

 ISO/IEC TS 18661-4:CFP Working Draft

© ISO/IEC 2023 – All rights reserved 15

Bibliography

[1] IEEE 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

[2] IEEE 754-2008, IEEE Standard for Floating-Point Arithmetic

[3] IEEE 754-2019, IEEE Standard for Floating-Point Arithmetic

[4] IEEE 854-1987, IEEE Standard for Radix-Independent Floating-Point Arithmetic 5

[5] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems, second edition

[6] ISO/IEC/IEEE 60559:2011, Information technology — Microprocessor Systems — Floating-point
arithmetic

[7] ISO/IEC TR 24732:2009, Information technology — Programming languages, their environments,
and system software interfaces — Extension for the programming language C to support decimal 10
floating-point arithmetic

[8] ISO/IEC TS 18661-1:2014, Information technology — Programming languages, their
environments, and system software interfaces — Floating-point extensions for C — Binary
floating-point arithmetic

[9] ISO/IEC TS 18661-2:2015, Information technology — Programming languages, their 15
environments, and system software interfaces — Floating-point extensions for C — Decimal
floating-point arithmetic, Second edition

[10] ISO/IEC TS 18661-3:2015, Information technology — Programming languages, their
environments, and system software interfaces — Floating-point extensions for C — Interchange
and extended types 20

[11] ISO/IEC TS 18661-4:2015, Information technology — Programming languages, their
environments, and system software interfaces — Floating-point extensions for C —
Supplementary functions

[12] ISO/IEC TS 18661-5:2016, Information technology — Programming languages, their
environments, and system software interfaces — Floating-point extensions for C — 25
Supplementary attributes

[13] ISO/IEC 9899:1999, Information technology — Programming languages — C, Second edition

[14] ISO/IEC 9899:2011/Cor.1:2012, Information technology — Programming languages —
C / Technical Corrigendum 1, Third edition

[15] ISO/IEC 9899:2018, Information technology — Programming languages — C 30

[16] Boldo, S., Lauter, C., Muller, J.-M., Emulating round-to-nearest-ties-to-zero “augmented” floating-
point operations using round-to-nearest-ties-to-even arithmetic. IEEE Transactions on
Computers, 2021, 70 (7), pp.1046 - 1058. Available at: https://hal.science/hal-02137968v4.

https://hal.science/hal-02137968v4

	Foreword
	Introduction
	1 Scope
	2 Conformance
	3 Normative references
	4 Terms and definitions
	4.1

	5 C standard extensions
	5.1 Predefined macros
	5.2 Freestanding implementations
	5.3 Headers
	5.4 Future directions

	6 Reduction functions <reduc.h>
	6.1 The reduc_sum functions
	6.2 The reduc_sumabs functions
	6.3 The reduc_sumsq functions
	6.4 The reduc_sumprod functions
	6.5 The scaled_prod functions
	6.6 The scaled_prodsum functions
	6.7 The scaled_proddiff functions

	7 Augmented arithmetic functions <augarith.h>
	7.1 The aug_add functions
	7.2 The aug_sub functions
	7.3 The aug_mul functions

	Bibliography

