
TS 18661-4,5
REVISIONS

N3165
WG 14 – virtual meeting
October 16 – 20, 2023

C FP group

Latest drafts

• Nnnnn draft ISO/IEC TS 18661-4, 2nd ed
• Nnnnn draft ISO/IEC TS 18661-5, 2nd ed

Background (1)
• C99 was first C to support IEEE 754/IEC 60559.
• 754-2008 was a major revision.
• C17 still based on 754-1985.
• C23 supports 754-2008 and minor revision in 2019,

mostly.

754-
1985

C99

754-
2008

C11 C17

754-
2019

C23

Background (2)
• CFP formed in 2009 to develop a C binding for major

revision IEEE 754-2008 aka IEC 60559:2011.
• Developed ISO/IEC TS 18661, in five parts:

• 1: Binary floating-point arithmetic (2014)
• 2: Decimal floating-point arithmetic (2015)
• 3: Interchange and extended types (2015)
• 4: Supplementary functions (2015)
• 5: Supplementary attributes (2016)

Background (3)
Incorporation into C23

C23TS-1
Binary

TS-2
Decimal

TS-3
Types

TS-4*
Functions

754-
2019**

* Not reduction functions

** Not augmented arithmetic

TS-5
Attributes

annex

TS-4 & TS-5 revisions - purpose

Specify C extensions for IEC 60559 features not in C23.

TS-4 Supplementary functions
• Reduction functions from TS-4 v1
• Augmented arithmetic from IEC 60559: 2020

TS-5 Supplementary attributes
• All of TS-5 v1

Changes from 1st versions
• Written in the style of an annex for C extensions, not as changes to C.
• Based on C23.
• Based on IEC 60559-2020.
• Includes new augmented arithmetic feature from IEC 60559-2020.
• Offers conformance to separate features in the TSes.
• Changes most pragma prefixes from FENV_ to FP_ and headers from
<fenv.h> to <math.h>.

• Includes new evaluation method macros that reflect the effective
evaluation method.

• Includes examples for use of scaled products and augmented
arithmetic.

• Changes scaled product output type from long long int to
long int to work with scalbln.

TS-4 V2
SUPPLEMENTARY FUNCTIONS

TS-4 revision
Two features, with separate feature macros …

1. Reduction functions
• __STDC_IEC_60559_FUNCS_REDUCTION__

• Sum reductions
• Scaled products

2. Augmented arithmetic
• __STDC_IEC_60559_FUNCS_AUGMENTED_ARITHMETIC__

Both are <math.h> extensions, interfaces guarded by
__STDC_WANT_IEC_60559_FUNCS_EXT__

Sum reductions
IEC 60559:2011 specifies and recommends sum reduction
operations on vectors p and q of length n:

sum(p, n) ∑!"#$ pi

dot(p, q, n) ∑!"#$ pi×qi
sumSquare(p, n) ∑!"#$ pi

2

sumAbs(p, n) ∑!"#$ |pi|

Scaled products
IEC 60559 specifies and recommends scaled product
reduction operations: compute without over/underflow

pr = scaled product and sf = scale factor
such that

result product = pr × radixsf

scaledProd(p, n) ∏!"#
$ pi

scaledProdSum(p, q, n) ∏!"#
$ (pi + qi)

scaledProdDiff(p, q, n) ∏!"#
$ (pi – qi)

Reduction function names
IEC 60559 TS 16881-4
sum reduc_sum
dot reduc_sumprod
sumSquare reduc_sumsq
sumAbs reduc_sumabs
scaledProd scaled_prod
scaledProdSum scaled_prodsum
scaledProdDiff scaled_proddiff

Reduction function interfaces
#define __STDC_WANT_IEC_60559_FUNCS_EXT__
#include <math.h>

#ifdef __STDC_IEC_60559_BFP__
#ifdef __STDC_IEC_60559_FUNCS_REDUCTION__
double reduc_sum(size_t n, const double p[static n]);

…
double scaled_prod (size_t n, const double p[static n],

long int * restrict sfptr);

…

Arrays indexed 0 to n - 1

IEC 60559 reductions
• Result values not fully specified like other IEC 60559

operations.
• Implementation can (re)order operations and use extra

range and precision, for speed and accuracy.
• Must avoid over/underflow, except if final result of a sum

reduction deserves over/underflow.
• Scaled products allow computing quotients of huge

products whose numerator and denominator products
would overflow.

Reduction special cases (1)
Follows general principles for special cases, e.g.

reduc_sum(n, p)
• Returns a NaN if any member of array p is a NaN.
• Returns a NaN and raises the “invalid” floating-point exception if

any two members of array p are infinities with different signs.
• Otherwise, returns ±∞ if the members of p include one or more

infinities ±∞ (with the same sign).

Reduction special cases (2)
scaled_prod(n, p, sfptr)

• Returns a NaN if any member of array p is a NaN.
• Returns a NaN and raises the “invalid” floating-point exception if

any two members of array p are a zero and an infinity.
• Otherwise, returns an infinity if any member of array p is an infinity.
• Otherwise, returns a zero if any member of array p is a zero.
• Otherwise, returns a NaN and raises the “invalid” floating-point

exception if the scale factor is outside the range of the long int
type.

TS-4 V2
SUPPLEMENTARY ATTRIBUTES

TS-5 revision (1)
Four features, with separate feature macros …

Evaluation formats
• __STDC_IEC_60559_ATTRIB_EVALUATION_FORMAT__

Optimization controls
• __STDC_IEC_60559_ATTRIB_OPTIMIZATION__

Reproducibility
• __STDC_IEC_60559_ATTRIB_REPRODUCIBLE__

Alternate exception handling
• __STDC_IEC_60559_ATTRIB_ALTERNATE_EXCEPTION_HANDLING__

Interfaces guarded by
__STDC_WANT_IEC_60559_ATTRIBS_EXT__

TS-5 revision (2)
• IEC 60559 recommends that language standards provide

block-scope attributes to control expression evaluation,
value-changing optimizations, reproducibility, and
alternate exception handling.

• TS 18661-5 provides these attributes as standard
pragmas, like existing FP pragmas.

• The attributes are intended to address four problem areas
in FP programming …

Problem area 1
Porting floating-point code between platforms and tool sets,
including debugging ported code
• Program development tools typically provide controls to

manage optimizations and evaluation methods.
• These controls are implementation specific, both in

syntax and semantics, and are often vaguely defined.
• It’s difficult to impossible to map controls on one system

to equivalent ones on another.
• Standard pragmas for evaluation methods and

optimizations are intended to address this problem.

Problem area 2
Balancing performance against precision and reliability
• Current implementation-specific controls are usually

compiler options that apply to the whole translation unit.
• However, many programs need aggressive optimizations

only for relatively small performance-critical blocks.
• Applying value-changing optimizations where they aren’t

needed unnecessarily risks floating-point anomalies.
• Similarly, extra precision might be needed only in

relatively small precision-critical blocks.
• Using extra precision throughout the program might

unnecessarily degrade performance.
• The block-scope semantics of the pragmas address this

problem.

Evaluation methods (1)

The following pragmas provide the preferredWidth
attributes recommended for language standards by IEC
60559:

#pragma STDC FP_FLT_EVAL_METHOD width
• width indicates a supported evaluation method for which

macro FLT_EVAL_METHOD has the value width.
• Requires support for width equal -1 (indeterminable), 0

(evaluate to wider of float and type), and DEFAULT.
• Allows support for other values of width.

Evaluation methods (2)
#pragma STDC FP_DEC_EVAL_METHOD width

• Like FP_FLT_EVAL_METHOD, but for decimal.
• width indicates a supported evaluation method for which macro
DEC_EVAL_METHOD has the value width.

• Requires support for width equal -1 (indeterminant), 1 (evaluate
to wider of _Decimal64 and type), and DEFAULT.

• Allows support for other values of width.

TS-5 also specifies a user definable macro

__STDC_TGMATH_OPERATOR_EVALUATION__
to have tgmath macros follow the evaluation method like
operators do -- to allow wide evaluation that is consistent for all
FP operations.

Evaluation methods (3)

TS-5 clarifies that the macros FLT_EVAL_METHOD and
DEC_EVAL_METHOD

• Characterize the default evaluation methods
• Are not affected by evaluation method pragmas
• Can be used in #if/elif directives

Adds similar macros FLT_EVAL_METHOD_EFFECTIVE and
DEC_EVAL_METHOD_EFFECTIVE that
• Characterize the effective evaluation methods
• Are affected by the evaluation method pragmas
• Cannot be used in #if/elif directives

Optimizations (1)

The following pragmas provide value-changing-optimization attributes
recommended for language standards by IEC 60559:

#pragma STDC FP_ALLOW_ASSOCIATIVE_LAW on-off-switch
• x + (y + z) = (x + y) + z
• x * (y * z) = (x * y) * z

#pragma STDC FP_ALLOW_DISTRIBUTIVE_LAW on-off-switch
• x *(y + z) = (x * y) + (x * z)
• x *(y − z) = (x * y) − (x * z)
• (x + y) / z = (x / z) + (y / z)
• (x − y) / z = (x / z) − (y / z)

Optimizations (2)

#pragma STDC FP_ALLOW_MULTIPLY_BY_RECIPROCAL on-off-
switch
• x / y = x *(1 / y)

#pragma STDC FP_ALLOW_CONTRACT_FMA on-off-switch
• Contract (compute with just one rounding) floating-point multiply and

add or subtract (with the result of the multiply).
• x * y + z x * y − z
• x + y * z x − y * z

#pragma STDC FP_ALLOW_CONTRACT_OPERATION_CONVERSION
on-off-switch
• Contract a floating-point operation and a conversion (of the result of

the operation), e.g., flt_var = dbl_var * dbl_var.

Optimizations (3)

#pragma STDC FP_ALLOW_CONTRACT on-off-switch
• Includes effects of two “contract” pragmas above.
• Equivalent to C’s FP_CONTRACT pragma.

#pragma STDC FP_ALLOW_ZERO_SUBNORMAL on-off-switch
• Replace subnormal operands and results by zero.

#pragma STDC FP_ALLOW_VALUE_CHANGING_OPTIMIZATION on-
off-switch
• Equivalent to all the optimization pragmas above.

Ø Optimization pragmas allow but do not require the optimizations.

Problem area 3
Obtaining reproducible results (on same or different
platforms)
• Some users want results that are the same on different

platforms and that remain the same after tool set updates.
• Variations in floating-point results are usually harmless,

but not always. The cost to determine whether a
difference is the result of insignificant roundoff errors or
the result of a serious instability or bug can be great.

• Potential causes of differences in floating-point results are
many, and difficult for most programmers to avoid.

• A pragma and guidance for reproducible results is
intended to help with this problem.

Reproducibility (1)

The following pragma provides the reproducible-results attribute
recommended for language standards by IEC 60559:

#pragma STDC FP_REPRODUCIBLE on-off-switch
Implies effects of
• #pragma STDC FENV_ACCESS ON
• #pragma STDC FP_ALLOW_VALUE_CHANGING_OPTIMIZATION OFF

and if __STDC_IEC_60559_BFP__ is defined
• #pragma STDC FP_FLT_EVAL_METHOD 0

and if __STDC_IEC_60559_DFP__ is defined
• #pragma STDC FP_DEC_EVAL_METHOD 1

Reproducibility (2)

• Recommends a diagnostic message if the source code
uses a language or library feature whose results may not
be reproducible.

• Includes guidelines for code intended to be reproducible,
e.g.
• The code does not contain any use that may result in undefined behavior.

The code does not depend on any behavior that is unspecified,
implementation-defined, or locale-specific.

• The code does not use the long double type.
• The code does not depend on the payloads (F.10.13) or sign bits of quiet

NaNs.
• The code does not use signaling NaNs.
etc.

Conformance note

ØA low-quality or initial implementation of the features for
evaluation methods, optimizations and reproducibility
could have a conformance mode where only
FLT_EVAL_METHOD equal 0 is supported, optimizations
are disabled, and pragmas are ignored.

Problem area 4
Where default exception handling is not what a user wants
• Floating-point exceptions occur when there is no

generally best result
• IEC 60559 default exception handling:

• recognizes five kinds of exceptions (invalid operation, division by
zero, overflow, underflow, and inexact)

• sets an exception flag
• provides well-defined results
• provides results that are intended to be at least as generally useful

as any others
• does not stop or change the flow of execution

• A pragma for alternate exception handling provides other
ways to handle exceptions

Exceptions

They're called exceptions because no matter what
default you choose, somebody will take exception
to it.

~ W. Kahan

Alternate exception handling (1)
#pragma STDC FENV_EXCEPT except-list action
except-list a comma-separated list of

exception macro names:
FE_DIVBYZERO, FE_INVALID, …

and FE_ALL_EXCEPT

and optional sub-exception designations:
FE_INVALID_ADD +∞ + (−∞)
FE_INVALID_MUL ∞ * 0
FE_INVALID_SNAN signaling NaN operand
FE_DIVBYZERO_LOG log(0)
etc.

Alternate exception handling (2)
action one of

• DEFAULT
IEC 60559 default exception handling.

• NOEXCEPT
like default but no flags set.

• OPTEXCEPT
like default but flags may be set.

• ABRUPT
only for “underflow”, IEC 60559-defined abrupt underflow shall
occur, unlike ALLOW_ZERO_SUBNORMAL where zeroing may occur.

Alternate exception handling (3)
The following actions change flow of control

action one of (cont.)

• BREAK
terminate compound statement associated with pragma, ASAP*.

*ASAP – for performance, the objects, flags, dynamic modes, and
library states that would be changed at any point if the compound
statement ran to completion are indeterminate or unspecified.

Alternate exception handling (4)
action one of (cont.)

These work together
• TRY

A designated exception may be handled (ASAP) by a compound
statement associated with a CATCH action.

• CATCH
Code to handle designated exceptions.

Alternate exception handling (5)
action one of (cont.)

These work together
• DELAYED_TRY

After associated compound statement completes, a designated
exception may be handled by a compound statement associated
with a DELAYED_CATCH action.

• DELAYED_CATCH
Code to handle designated exceptions.

Alternate exception handling (6)
double d[n]; float f[n];
...
#pragma STDC FENV_EXCEPT TRY FE_DIVBYZERO, FE_OVERFLOW
{

for (i=0; i<n; i++) {
f[i] = 1.0 / d[i];

}
}
#pragma STDC FENV_EXCEPT CATCH FE_DIVBYZERO
{

printf(“divide-by-zero\n”); }
}
#pragma STDC FENV_EXCEPT CATCH FE_OVERFLOW
{

printf(“overflow\n”);
}

TS 18661-4,5
REVISIONS

Questions?

TS 18661-4,5
REVISIONS

Thank you!

