
	DE-001

	
	

	
	ge
	The nature of UB should clarified to be consistent with its use in the standard (e.g. Annex L) and to clarify the requirements for observable behavior before UB.
	Adopt the clarification (one note to the definition of UB) from WG 14 N3128.
	Accepted with comment: Substitute “happens after” for “subsequent” and referencing 5.2.1.3 instead of “i.e. . . .”. Also change “shall appear” to “appears”.

	DE-002

	
	

	
	ge
	The clarification of pointer provenance should be integrated into C23.
	Integrated the model in the latest version WG N3005 + editorial corrections.
	Rejected with comment:
See also FR-238.

	US-003

	
	2

	10
	ed
	The Unicode Consortium has provided a correction to this reference.
	Change “Unicode Character Database” in the title to “Unicode Identifier and Pattern Syntax”.
Change the editors to Mark Davis and Robin Leroy.
	Accepted

	US-004

	
	2

	9
	ed
	The Unicode Consortium has provided a correction to this reference.
	Delete “and Laurentiu Iancu” because the latest edition has one less author.
	Accepted

	GB-005

	
	3

	
	te
	Since ISO 2382 defines “negate” to be a logical, not arithmetic operation, we need a definition of arithmetic negation, which then needs to be used in appropriate places.
	After 3.3, add a new subclause defining “arithmetically negate” as “return the negative of a number”, with a Note: “For a floating-point number, this logically negates the sign bit; for an integer, this is equivalent to subtracting from zero.”.
Change “negated” to “arithmetically negated” and “negates” to “arithmetically negates” in the following places: 6.4.4.1 paragraph 8 (three times), 6.4.4.2 paragraph 12 (twice with “negated” and once with “negates”), 7.24.1.5 paragraph 4, 7.24.1.6 paragraph 4, 7.31.4.1.2 paragraph 4, 7.31.4.1.3 paragraph 4.
Note: do not change the Table in F.3, because “negate” there is the name of an operation from IEC 60559, so needs to remain unchanged.
	Accepted with comment: Change “return” to “produce” and use the note from N 3135 in place of the note in this comment.

	US-006

	
	4

	6
	te
	The inclusion of <string.h> in freestanding has exclusions for functions that are difficult to support in freestanding. When investigating supporting this in practice, we were asked to exclude strtok from the list of required interfaces to support. The requirement for it to support “global state” makes it a burden to implement efficiently in all circumstances.
	Add strtok to the list of exceptions in p6.
	Accepted

	US-007

	
	4

	Para 7
	ed
	“ON” in the last sentence should be lower case and not bold, as in all other occurrences in the standard (e.g. 7.3.4 #2).
	Change “ON” to “on”.
	Accepted

	US-008

	
	5.1.2.3

	12
	ed
	“single-precision” was not replaced with “float”, as prescribed in CD NB comment GB-007.
	Change “single-precision” to “float”.
	Accepted with comment: Resolved by GB-009.

	GB-009

	
	5.1.2.3, 5.2.4.2.2

	
	ed
	The terms “single-precision” and “double-precision” are not defined in this document and the definitions in ISO/IEC 2382 (in terms of use of one or two computer words to represent a value) are not appropriate for their uses in this document because there is no guarantee that the types float or double correspond to those definitions. Furthermore, IEC 60559 refers to the formats as binary32 and binary64, not single and double. This was comment GB-007 on CD1, which was accepted as modified in N3082; N3082 said “Agree with first two changes.”, but those first two changes were not applied, only the changes to 6.7.1 from N3082.
	In 5.1.2.3 paragraph 12, change “single-precision” to “float” and “double-precision” to “double” (in both cases formatted as C keywords).
In 5.2.4.2.2 paragraph 29, change “single-precision” to “binary32” and “double-precision” to “binary64”.
Also ensure associated index entries for the “single-precision” and “double-precision” terms are removed.
	Accepted

	GB-010

	
	5.2.1

	3
	te
	CD1 comment US-011 was accepted with a fix to wording alternative 1 from N3046, but the accepted wording has not been applied.
	At end of paragraph, add “The $ character is reserved for use in identifiers as an implementation extension.”.
	Accepted with comment: Wording from N 3145 plus adding “Additionally, implementations may add the character U+0024, DOLLAR SIGN, or $,
 to the set of permitted Start and Continue characters. " immediately before the final sentence of D1 p1.

	GB-011

	
	5.2.1, 5.2.1.1, M.2

	
	ed
	In 5.2.1 footnote 17, and 5.2.1.1, and the entry in M.2 for new characters, the quotes around “Backtick” should be left and right quotes, not vertical quotes.
	Change to left and right quotes (LaTeX `` and ‘’), in all three places.
	Accepted

	GB-012

	
	5.2.1, 5.2.1.1, M.2

	
	ed
	In 5.2.1 footnote 17, and 5.2.1.1, and the entry in M.2 for new characters, the backtick is illustrated with a mark slanting to the right, when it should slant to the left (maybe that mark is a fixed-width version of an opening quote, but it should actually be a spacing grave accent, not an opening quote).
	Change the backtick to an actual spacing grave accent, in all three places.
	Accepted

	US-013

	
	5.2.4.1

	1
	ed
	NB comment GB-012 from [n3019] identifies the issue that the 2011 edition of ISO/IEC 10646
removed eight-digit short identifiers that were present in the 2003 edition (and this removal still

applies as of the 2020 edition) but the CD2 draft supports eight-digit short identifiers but not six-digit short identifiers. See N 3111 for more information.

	change “0000FFFF” to “00FFFF” and change “00010000” to “010000”.
— 31 significant initial characters in an external identifier (each universal character name specifying a short identifier of 0000FFFF or less is considered 6 characters, each universal character name specifying a short identifier of 00010000 or more is considered 10 characters, and each extended source character is considered the same number of characters as the corresponding universal character name, if any)18)
	Accepted

	GB-014

	
	5.2.4.1, 6.4.3

	
	ed
	The 2011 edition of ISO/IEC 10646 removed eight-digit short identifiers that were present in the 2003 edition (and this removal still applies as of the 2020 edition). Thus, the C standard should only use short identifiers with no more than six digits. This was CD1 comment GB-012, which was rejected because WG14 didn’t like the proposed wording rather than because of disagreement with the existence of the editorial issue (use of the term “short identifier” inconsistently with the normative reference defining that term).
	Apply the changes shown in N3111.
	Accepted

	US-015

	
	5.2.4.2.2

	15
	ed
	There is a space or bad line break in front of the comma “,” after the first “DEC_EVAL_METHOD”.
	Remove the space or bad line break in front of the comma “,” after the first “DEC_EVAL_METHOD”.
	Accepted

	US-016

	
	5.2.4.2.2

	18
	ed
	There is a space or bad line break in front of the comma “,” after “FLT_IS_IEC_60559”.
	Remove the space or bad line break in front of the comma “,” after “FLT_IS_IEC_60559”.
	Accepted

	GB-017

	
	5.2.4.2.2

	21
	ed
	As was noted when the N3082 changes for CD1 comments US-075 and GB-279 were discussed in WG14, “must be” should be changed to “is”.
	Change “must be evaluated” to “is evaluated”.
	Accepted

	GB-018

	
	5.2.4.2.2

	21
	ed
	A space is missing after “.”.
	Change “NaN.If” to “NaN. If”.
	Accepted

	US-019

	
	5.2.4.2.2

	21
	ed
	A space is missing before “If an optional …”.
	Insert a space before “If and optional …”.
	Accepted

	US-020

	
	5.2.4.2.2

	29
	ed
	“single-precision” and “double-precision” were not changed to “binary32” and “binary64”, as prescribed in CD NB comment GB-007.
	Change “single-precision” and “double-precision” to “binary32” and “binary64”, respectively.
	Accepted with comment: Resolved by GB-009.

	US-021

	
	5.2.4.2.2

	29
	ed
	The given decimal floating constants are not correct if the evaluation method evaluates float and double constants with extra range or precision. Even with FLT_EVAL_METHOD = 0, they might not yield the correct value when the macro is used within the scope of a FENV_ROUND pragma. The given hexadecimal floating constants do not have these problems.

	Change:
“The following describes floating-point representations that also meet the requirements for binary32 and binary64 numbers in IEC 60559,29) and the appropriate values in a <float.h> header for types float and double:”
to:
“The following describes floating-point representations that also meet the requirements for binary32 and binary64 numbers in IEC 60559,29) and the appropriate values in a <float.h> header for types float and double. Note that the decimal floating constants might not give correct values (and hence are not appropriate values in a <float.h> header) if FLT_EVAL_METHOD is not 0 or if a translation-time rounding mode other than the IEC 60559 default is supported (either as the default or as a constant rounding mode set by an FENV_ROUND pragma). The hexadecimal floating constants are correct in all such cases because their values are exactly representable in the type.”
	Accepted

	CA-022

	
	5.2.4.2.2

	Paragraph 18
	te
	The definition fails to account for the possibility of types with the same p, emin, and emax but a different base (b).

Also, the committee’s intent regarding values other than normalized floating point numbers should be reinforced with a note.
	Edit as follows:
Whether a type has the same <ins>base (b), </ins>precision (p)<ins>,</ins> and exponent range […]

Add a note following the content of paragraph 18:
NOTE Outside of the normalized floating point numbers, the representability of values (e.g., negative zero) of the IEC 60559 format is not implied.
	Accepted with comment: Change “floating point” to “floating-point”.

	GB-023

	
	5.2.4.2.3

	8
	ed
	The “min” and “max” subscripts in the table should not be in italics.
	Change those subscripts out of italics (use LaTeX \min and \max).
	Accepted

	US-024

	
	5.2.4.2.3

	Preferred quantum exponents table
	ed
	The Operation column contains C operations, not mathematical ones. Thus, hyphen in program font should be used instead of minus math symbol, and likewise “+” in program font should be used instead of plus math symbol.
	In the Operation column, in the row “−(x), +(x)”, use hyphen in program font instead of minus math symbol, and use “+” in program font instead of plus math symbol.
	Accepted

	DE-025

	
	6.2

	8
	ed
	The new text for compound literals does not use the terms scope consistently with its definition. Scopes are defined for identifiers or type names but do not exist independently.
	6.2p8 A compound literal (which is an expression that provides access to an anonymous object) is associated with the enclosing scope of the type name used in its definition that corresponds to the placement of the compound literal in the program; that scope is either file scope, function prototype scope, or block scope.
	Accepted

	GB-026

	
	6.2.4

	2
	ed
	There is a missing “.” at the end of the sentence to which footnote 37 is attached. (This was part of comment GB-025 on CD1, which was accepted, but apparently that part of the fix was not applied.)
	Add “.” after “throughout its lifetime”.
	Accepted

	DE-027

	
	6.2.7

	3
	te
	A composite type for structure, unions, and enumerated types should be defined for use in the conditional operator (and elsewhere).
	It is suggested to adopt the wording from WG14 N3122 (changes 1, 2, 3a or 3b).
	Accepted with comment: Wording from N 3141 with “sames” corrected to “same”.

	GB-028

	
	6.2.7

	3
	te
	Composite types are not specified for compatible structure or union or enumerated types; this issue was raised in CD1 comment DE-031, but the wording there was not ready for inclusion.
	Apply the changes given in N3122.
	Accepted with comment: Resolved by DE-027.

	DE-029

	
	6.3.1.8

	1
	te
	The conversions of enumerated type should be clarified.
	It is suggested to adopt the wording from WG14 N3122 (change 4).
	Accepted with comment: Resolved by FR-030

	FR-030

	
	6.3.1.8

	p1
	te
	With the different changes to enumeration types, there is now more confusion how these behave when used in arithmetic. Make the conversion to the underlying type explicit.
	Add the text to “usual arithmetic conversions” as follows (similar to n3122):
 Otherwise, <ins>if any of the two types is an
 enumeration it is converted to its underlying type.
 Then,</ins> the integer promotions are
 performed on both operands. Then the following
 rules are applied to the promoted operands:
	Accepted

	GB-031

	
	6.3.2.4

	1
	ed
	The word “The” should not start with an uppercase letter in the middle of a sentence.
	Change “The result” to “the result”.
	Accepted

	US-032

	
	6.4

	3
	te
	
"N2701: @ and $ in source and execution character set" has some undesirable effects on the specification of universal character names.

	
Proposed changes are in N3124

	Accepted with comment:
Also in 5.2.1p1, change “three or more” to “zero or more and remove the associated footnote. See also GB-010.

	US-033

	
	6.4.3

	4
	ed
	NB comment GB-012 from [N3019] identifies the issue that the 2011 edition of ISO/IEC 10646
removed eight-digit short identifiers that were present in the 2003 edition (and this removal still

applies as of the 2020 edition) but the CD2 draft supports eight-digit short identifiers but not six-digit short identifiers. See N 3111 for more information.

	Replace:
The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier (as specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name \unnnn designates the character whose four-digit short identifier is nnnn (and whose eight-digit short identifier is 0000nnnn).
With:
A universal character name designates the character in ISO/IEC 10646 whose code point is the hexadecimal value represented by the sequence of hexadecimal digits in the universal character name.
[Editor’s note: Remove footnote 80]
	Accepted

	US-034

	
	6.4.4.2

	Para 8
	ed
	The last sentence of 6.4.4.2 #8 says, “All floating constants of the same source form83) shall convert to the same internal format with the same value.”
However, with the FENV_ROUND and FENV_DEC_ROUND pragmas this is no longer true. 7.6.2 #4 for FENV_ROUND says, "Floating constants (6.4.4.2) of a standard floating type that occur in the scope of a constant rounding mode shall be interpreted according to that mode.”
The proposed change is editorial in the sense that it is an implication of the new pragmas.
	Change the last sentence of 6.4.4.2 #8 to, “All floating constants of the same source form83) shall convert to the same internal format and, provided they are subject to the same translation-time rounding direction (either the default or a constant rounding mode set by an FENV_ROUND or FENV_DEC_ROUND pragma), to the same value.”
	Accepted

	GB-035

	
	6.4.4.4

	15
	ed
	The wording “A wchar_t character constant prefixed by the letter L” is redundant and inconsistent with the previous paragraphs which don’t mention the prefix for each kind of character constant.
	Change “A wchar_t character constant prefixed by the letter L” to “A wchar_t character constant”.
	Accepted

	US-036

	
	6.5

	7
	te
	
The aliasing rules Subclause 6.5, paragraph 7 allows “the signed or unsigned type” to alias another object but fails to mention type compatibility. Consequently, it is unclear if a compatible enumeration type can alias such an object. See N 3112 for more information.

	Change:
— a type that is the signed or unsigned type corresponding to the effective type of the object, — a type that is the signed or unsigned type corresponding to a qualified version of the effective type of the object,
to:
— the signed or unsigned type compatible with the underlying type of the effective type of the object, — the signed or unsigned type compatible with a qualified version of the underlying type of the effective type of the object,
	Accepted

	GB-037

	
	6.5.15

	
	te
	CD1 comment DE-117 pointed out an issue with semantics for conditional expressions where one argument has variably modified type and the other is a null pointer constant or has type nullptr_t, which can result in the type of the conditional expression depending on a VLA size expression that is not evaluated. That case should be explicitly undefined behavior, similar to the case of a composite type involving a size expression that is not evaluated; unlike that other changes that were proposed in that (rejected) CD1 comment, addressing this does not involve other tricky semantic issues.
	After paragraph 7, insert a new paragraph: “If one operand is a pointer to a variably modified type and the other operand is a null pointer constant or has type nullptr_t, the behavior is undefined if the type depends on an array size expression that is not evaluated.”.
	Accepted

	GB-038

	
	6.5.16.1

	footnote 127
	ed
	This footnote is no longer correct and should be removed. See the January minutes under “US 9-034 and other nullptr comments”, where “removing footnote 126” (as it was then) was approved (despite that approval, it seems the footnote removal didn’t get into the disposition of comments document).
	Remove this footnote.
	Accepted

	GB-039

	
	6.5.2.5

	4
	ed
	A cross-reference is shown as “??”.
	Change “??” to “6.2.1” (as an appropriate internal link).
	Accepted

	GB-040

	
	6.5.2.5

	5
	ed
	Some accepted changes from N3090 were not applied to this paragraph.
	After “provides”, insert “access to”. Before “and other properties”, insert “initializer,”.
	Accepted

	GB-041

	
	6.5.2.5

	5
	ed
	The first sentence could be clearer that the “function prototype scope” part qualifies everything that follows. In the discussion of N3090 at the January meeting, Aaron Ballman requested this be changed editorially to use bullet points for that reason, although that didn’t make the draft minutes.
	Change the first sentence to use bullet points:
“For a compound literal associated with function prototype scope:
* the type is determined as if in block scope and no object is created;
* if it is a compound literal constant it is evaluated at translation time;
* if it is not a compound literal constant, neither the compound literal as a whole nor any of the initializers are evaluated.”
	Accepted

	GB-042

	
	6.5.2.5

	5
	ed
	A space is missing between “a” and “compound literal”.
	Change “acompound literal” to “a compound literal”.
	Accepted

	GB-043

	
	6.5.2.5, 6.7, 6.7.1, 6.7.6.3

	
	ed
	“storage class specifier” should be “storage-class specifier” (with a hyphen) for consistency.
	Change “storage class specifier” to “storage-class specifier” in the following places: 6.5.2.5 paragraph 4, 6.7 Forward references, 6.7.1 paragraph 4, 6.7.6.3 paragraph 12.
	Accepted

	GB-044

	
	6.5.9

	4
	ed
	There is no “.” at the end of the sentence to which footnote 121 is attached. (This was CD1 comment GB-072, which was accepted, but apparently that fix was not applied.)
	Add a “.” before the footnote number.
	Accepted

	US-045

	
	6.6

	14
	te
	
The changes introduced by N2713 do not match existing implementation practice in many areas and is a breaking change for some implementations. Please see N3125 for details.

	
Proposed changes are in N3125

	Accepted with comment: Wording from N 3138 with “, depending on whether (int)+1.0 is an extended integer constant expression.” appended to the footnote.

	DE-046

	
	6.7

	
	te
	VLA types can not be used anymore for arguments in some specific cases, which is a problem for code transitioning to C23 and also prevents size annotations to be added to legacy APIs.
	Forward parameter declarations should be added as described in WG14 N3121.
	Rejected with comment: We would like to pursue something along these lines for a future edition of the standard.
(See also FR-073.)

	DE-047

	
	6.7

	2
	te
	The meaning of the phrase a “declaration declares identifiers” is not clear (cf. WG14 N3070).
	See WG14 N3123 for suggested changes (the type name special case may sbe needed for compound literals).
	Accepted with comment: Resolved by GB-048.
(See also GB-048, DE-049, GB-050, GB-069, GB-072.)

	GB-048

	
	6.7

	2
	te
	As discussed in N3070, this paragraph leaves it unclear exactly what is meant by a declaration declaring a declarator, tag of members of an enumeration.
	The direction previously given by WG14 was to disallow questionable cases. Replace this paragraph by the following to do so:
“If a declaration other than a static_assert or attribute declaration does not include an init declarator list, its declaration specifiers shall include one of the following:
* a struct or union specifier or enum specifier that includes a tag, with the declaration being of a form specified in 6.7.2.3 to declare that tag;
* an enum specifier that includes an enumerator list.”
Also add the following Example:
The following are invalid, because the declared tag or enumeration constants are in a nested construct, rather than a declaration specifier of the declaration being of one of the given forms.
struct { struct s2 { int x2a; } x2b; };
typeof (struct s3 { int x3; });
alignas (struct s4 { int x4; }) int;
typeof (struct s5 *);
typeof (enum { E6 });
struct { void (*p)(struct s7 *); };
[Example ends here.]
(Note that N3123 gives alternative wording intended to address this issue. It does not seem clear that the N3123 version covers the case of a enumeration constant declared within a nested construct. Providing examples seems appropriate whatever change is made to normative text.)
	Accepted

	DE-049

	
	6.7

	5
	te
	The new constraint for auto breaks existing code that might transition from __auto_type to auto (which was intended to implement existing practice) and prevents useful coding patterns. The constraint was introduced to avoid problems for auto return types, but is not required for C23. Examples that should be allowed:
// works with __auto_type
auto x = (struct foo { int x; }){ };
// works as in C++
constexpr struct { double PI; double E; } constants = { .. };
// works with tag compatibility
#define NEW(T) (T*)malloc(sizeof(T))
auto x = NEW(struct bar { int y; });
// works with ({ }) extension
auto y = ({ goto end; end: 0; });
	The constraint should be removed completely or modified as suggested in n3123 (change 3).
	Accepted with comment: Wording from N 3144.

	GB-050

	
	6.7

	5
	te
	As discussed in N3070, this paragraph leaves it unclear exactly what is meant by “declared identifiers”.
	The direction previously given by WG14 (for the N3070 issues in general, except for case 4 where the requirement in question has been removed) was to disallow questionable cases. The following does that (N3123 provides alternative wording that allows more cases but has the problem that it leaves this paragraph not actually imposing any requirements because the definition of “declared” there wouldn’t allow any case where other kinds of identifiers are declared; the N3123 changes would also invalidate the Note in 6.7.9 paragraph 3 but do not include corresponding changes to that Note).
Change “all declared identifiers” to “all identifiers declared by the declaration or anywhere within the sequence of tokens making up the declaration”. At the end of the Note in 6.7.9 paragraph 3, add: “The following is also invalid.” plus the example:
auto alignas (struct s *) x = 0;
At the end of 6.7.1, add “Because declarations using constexpr are underspecified, the following is invalid because tokens within the declaration declare s which is not an ordinary identifier.” plus the example:
constexpr typeof (struct s *) x = 0;
	Accepted with comment: Resolved by DE-049.

	GB-051

	
	6.7.1

	
	ed
	The accepted changes for CD1 comment GB-081 / N3071 were the entirety of the wording given under “About N3071” in N3082. Most of those were applied, but the lengthy Example given under “About N3071” in N3082 is missing.
	Add that Example (shown as Example 4 in N3082).
	Accepted

	GB-052

	
	6.7.1

	17
	ed
	In “initializer of small”, “small” should be in a fixed-width font.
	Change “small” to a fixed-width font.
	Accepted

	GB-053

	
	6.7.1

	7
	ed
	The example from CD1 comment GB-079 was accepted but doesn’t appear to have been added.
	Add a new Example:
constexpr int *p = {}; // Default initialization with a null pointer
	Accepted

	GB-054

	
	6.7.1

	7
	ed
	Example 1 should not have been added in the given form; what was accepted for CD1 comment GB-080 was the N3078 wording, plus the text change suggested in GB-080 but without the example suggested in GB-080 because that example did not reflect the changes made in N3078 (specifically, the example from GB-080 assumes explicit initializers that are null but not null pointer comments are invalid, which is no longer the case).
	Replace the example with that given as Example 1’ in N3078 under GB-080. (The actual code is the same in the two examples. However, the explanation for why the code is valid differs and the wording for the explanation in N3078 is now more appropriate.)
	Accepted with comment: Duplicate of GB-052.

	GB-055

	
	6.7.1

	footnote 141
	ed
	In “other constexpr declarations”, “constexpr” should be in a fixed-width font.
	Change “constexpr” to a fixed-width font.
	Accepted with comment: Duplicate of GB-051.

	US-056

	
	6.7.1

	Para 17
	ed
	In the last sentence, “small” should be in program font.
	In the last sentence, put “small” in program font.
	Accepted

	US-057

	
	6.7.1

	Para 21
	ed
	One of the changes to CD1 proposed in N3082 to address N3071 was to insert an example “After 6.7.1 #17 (EXAMPLE 3)” (referring to CD1). The proposed example is missing.

	Insert the example proposed in N3082, after 6.7.1 #21 (EXAMPLE 5), as #22 EXAMPLE 6.

	Accepted

	GB-058

	
	6.7.12.7

	3
	ed
	In “such a annotated function”, “annotated” should be removed (see CD1 comment GB-092, which seems to have been only partially applied). Failing that, “a” should be “an”.
	Remove “annotated”.
	Accepted

	GB-059

	
	6.7.12.7

	4
	ed
	“account as” seems unidiomatic: the last part of the changes for CD1 comment GB-093 has not been applied despite being accepted.
	Change “account as store operations” to “are considered as store operations, for the purposes of these attributes”.
	Accepted

	GB-060

	
	6.7.12.7.2

	4
	ed
	“property if” seems unidiomatic. (This was CD1 comment GB-096, apparently accepted but not applied.)
	Change “property if” to “property of whether”.
	Accepted

	GB-061

	
	6.7.12.7.2

	8
	ed
	“is in generally” is ungrammatical.
	Change “is in generally” to “is in general”.
	Accepted

	GB-062

	
	6.7.2.2

	12
	ed
	“a” should not appear before “bool”.
	Change “a bool” to “bool”.
	Accepted

	GB-063

	
	6.7.2.2

	12
	ed
	The changes from CD1 comment GB-099 do not seem to have been fully applied, although accepted: a comma should be “or” to make the text clearer.
	Change “char, a” to “char or a”.
	Accepted

	GB-064

	
	6.7.2.2

	15
	ed
	There is a missing space between sentences.
	Change “arithmetic.Conversion” to “arithmetic. Conversion”.
	Accepted

	GB-065

	
	6.7.2.2

	7
	te
	There appears to be no Constraint that would explicitly disallow declaring an enum with a fixed underlying type and then defining it without one.
enum e : int;
enum e { A };
(This was CD1 comment GB-105, which was accepted, but the changes don’t seem to have been applied.)
	At the end of the Constraints in 6.7.2.2, add a new paragraph (after paragraph 7): “An enumeration with a fixed underlying type shall be defined with an enum type specifier. No enum specifier for an enumeration without a fixed underlying type shall include an enum type specifier.".
	Accepted

	DE-066

	
	6.7.2.3

	8, Example 2
	ed
	The last example in Example 2 redefining a enumeration constant is a valid example in a list of examples for invalid uses.
	The last example redefining a enumeration constant should be removed or moved to Example 1 (duplicating the second-to last line which should remain in Example 2).
	Accepted with comment: Move the last line to example 1 and copy the second-to-last line with it.

	GB-067

	
	6.7.2.5

	5
	ed
	Some words from CD1 comment GB-108 are missing here but would make the wording clearer.
	Change “non-atomic unqualified type” to “non-atomic unqualified version of the type”.
	Accepted

	GB-068

	
	6.7.2.5

	footnote 161
	ed
	“type-name” should not be in a fixed-width font. This was CD1 comment GB-111, accepted but apparently not applied.
	Change “type-name” in the footnote out of a fixed-width font.
	Accepted

	GB-069

	
	6.7.4

	3
	te
	Similar to the cases discussed in N3070 (although this case isn’t discussed there), this paragraph leaves it unclear exactly what is covered by “contain” (in particular, when the tokens are outside the function body).
	Twice in this paragraph, change “contain” to “contain, anywhere in the tokens making up the function definition”. After paragraph 11, add the following example:
“The following inline definitions are invalid.
static int a;
typeof (a) inline f() { return 0; }
typeof ((int) { 0 }) inline g() { return 0; }
”
	Accepted

	US-070

	
	6.7.6

	Para 7
	ed
	There is extra space in “typedef s”.
	Remove the extra space.
	Accepted

	GB-071

	
	6.7.6.1

	3
	ed
	“variable” should not have been changed to “object” here.
	Change “object” to “variable” (twice, in this paragraph, before the example code); “an object” should become “a variable”. Use of “object” after the example code is correct and should not be changed.
	Accepted

	GB-072

	
	6.7.6.2

	4
	te
	As discussed in N3070, this paragraph leaves it unclear what cases are covered by the function prototype scope restriction on [*] declarators. The intended direction disallowing questionable cases was provided in C99 DR#341.
	Apply the changes listed under “Change 4 (Case 3 in N3070)” in N3123, *but*, instead of the wording “as part of a parameter declaration”, say “as part of the nested sequence of declarators or abstract declarators for a parameter declaration, not including anything inside an array size expression in one of those declarators”. In addition, add a new Example after Example 4 in this subclause:
The following is invalid, because the use of [*] is inside an array size expression rather than directly part of the nested sequence of abstract declarators for a parameter declaration:
void f(int (*)[sizeof(int (*)[*])]);
	Accepted

	FR-073

	
	6.7.6.3

	p3
	te
	The removal of function definitions with identifier list had the effect that some parameter declarations of VLA type cannot be expressed within C23 as currently proposed. The important use case here is that declarations of integer parameters come after the declaration of the VLA in question. We don’t need new syntax to handle this.
	Prefix the paragraph with the following sentence:
 If an undeclared identifier ID is evaluated in the
 declaration of a function parameter P of a
 function definition, ID shall
 be declared later in the same parameter list as
 having integer type; the type of P is incomplete
 until the declaration of ID is completed.
Alternatively, force the type to be size_t:
 If an undeclared identifier ID is evaluated in the
 declaration of a function parameter P of a
 function definition, ID shall
 be declared later in the same parameter list as
 having type size_t; the type of P is incomplete
 until the declaration of ID is completed.

	Rejected with comment: We would like to pursue something along these lines for a future edition of the standard. See also DE-046.

	GB-074

	
	6.7.7

	3
	ed
	The text after item (h) should be part of that item, rather than being outside the itemized list.
	Move “that has type unsigned int and an unspecified number of other parameters, returning an int.” up into item (h).
	Accepted

	GB-075

	
	6.7.9

	footnote 178
	ed
	“IS” should not be included in the reference to ISO/IEC 14882.
	Change “ISO/IEC IS 14882” to “ISO/IEC 14882”.
	Accepted

	GB-076

	
	6.7.9

	footnote 178
	ed
	“commended” should be “recommended”.
	Change “commended” to “recommended”.
	Accepted

	US-077

	
	6.9

	3
	te
	A _Generic selection expression whose result is an integer constant is missing from the bulleted list.
	Add a bullet before the final bullet:
- part of the operand of a _Generic operator whose result is an integer constant;
	Accepted with comment: Wording from N 3143, adding “part of” before sizeof or alignof operator in p5.

	US-078

	
	6.9

	5
	te
	_Generic selection expressions are also missing from this paragraph.
	Modify the paragraph by inserting _Generic in the serial list.
	Accepted with comment: Resolved by US-077.

	DE-079

	
	6.9.1

	10
	te
	There is another missing case where evaluation of typeof should be required by the standard to conform to existing practice. See here for an example: https://godbolt.org/z/5hbdce3s3
	On entry to the function, the size expressions of each variably modified parameter and typeof operators used in declarations of parameters are evaluated and the value of each argument expression is converted to the type of the corresponding parameter as if by assignment.
	Accepted

	GB-080

	
	6.9.2

	2
	ed
	Before the bullet points, “with the composite type as of the end of the translation unit,” should be removed (that part of CD1 comment GB-127 was not properly applied).
	Remove “with the composite type as of the end of the translation unit,” before “with an empty initializer”.
	Accepted

	GB-081

	
	6.10.1

	7
	ed
	Part of the change for N3074 item 4 (CD1 comment FR-130) was not applied.
	Change “The has_embed expression evaluates to” to “The has_embed expression evaluates to the same value as the following predefined macros (6.10.9.1)”. (Note that saying “predefined” instead of the originally suggested “mandatory” was accepted at the January meeting.)
	Accepted

	GB-082

	
	6.10.1

	8
	ed
	“to be evaluate” should be “to be evaluated” (this part of CD1 comment GB-129 was not properly applied).
	Change “to be evaluate” to “to be evaluated”.
	Accepted

	GB-083

	
	6.10.3.1

	18
	ed
	“valid if i.dat produces 1 value,” should be present for both embeddings of i.dat, not just the first one (proper application of CD1 GB-134 was supposed to be adding it to the first one without removing from the second one).
	Add “valid if i.dat produces 1 value,” to the comment on the second embedding of i.dat, without removing from the first one.
	Accepted

	GB-084

	
	6.10.3.1

	18
	ed
	The exponent in the comment on the first #embed directive is badly formatted.
	Change to copy the formatting (or rather lack thereof) in the comment on the second #embed directive.
	Accepted

	GB-085

	
	6.10.4.5

	8
	ed
	In the example of valid redefinitions, the redefinition of FUNC_LIKE isn’t actually valid, because the first and second definitions lack white space separation present in the third one. This appears to be a previously unnoticed mistake introduced by the conversion to LaTeX for C17. This was submitted and accepted as CD1 comment GB-139. However, rather than that fix being applied in CD2, an additional second definition was added without any of the other changes listed being applied.
	Remove the second definition that was added in CD2. Then, apply the changes listed for CD1 comment GB-139 (where “first”, “third” and “fourth” refer to positions after the spurious second definition has been removed, so first, fourth and fifth in CD2):
Restore presence and absence of white space to the state it had in C11, for both the valid and the invalid definitions, as follows. Inside the replacement lists for the first, third and fourth FUNC_LIKE definitions, insert a space after ‘(‘ and one before ‘)’. Additionally, in the second FUNC_LIKE definition, insert a space after ‘(‘ and before ‘)’ in the listing of parameter names (not the replacement list), to illustrate, as in C11, that variation in the presence of space there is OK.
	Accepted

	GB-086

	
	6.10.4.5

	9
	ed
	“and”, in the argument to showlist, should be in the same colour as the rest of that argument, since it’s not being used in any way as a standard macro. (An attempt was made in CD2 to fix the issue of it being in bold, which was reported in CD1 comment GB-140, but the colour still doesn’t match.)
	Arrange for “and” to be shown in the same colour as the rest of that argument.
	Rejected with comment: Not applicable to C23, but saved as a Gitlab issue for the next revision of the standard.

	US-087

	
	6.10.7

	1
	ed
	It is not clear what the word “ignore” means when discussing pragmas. In practice, compilers provide flags such as -Wunknown-pragmas which diagnoses unknown pragmas. This flag is used to catch defects resulting from misspelling the pragma name.
	Replace:
Any such pragma that is not recognized by the implementation is ignored.
with:
Each such pragma is a conditional feature that implementations need not support.
Recommended practice
Unrecognized pragmas should be diagnosed at translation time.
	Accepted with comment: Wording from N 3135.

	DE-088

	
	6.11.5

	1
	te
	As discussed before, the intention is that auto becomes a type specifier. This should be made clear to implementors.

	Add “Future standardization may change the auto storage-class specifier to a type specifier.“
	Accepted

	DE-089

	
	6.11.X

	
	te
	The dangerous use of integers as null pointers should be discouraged. (otherwise, why have nullptr_t?)
	Add a new item: “Null pointer constants of integer type are an obsolescent feature.“ Also add this exact text as a footnote to the first part of 6.3.2.3p3.
	Rejected

	GB-090

	
	7.1.2

	1
	ed
	The rule about types not including type qualifiers, in the final sentence of this paragraph, should apply to Annex H as well as to Annex K. (CD1 comment GB-147, which was accepted, would also have referred to Annexes F and G there, but those Annexes don’t actually define typedef names so there is a reasonable argument for not mentioning them in that sentence. But Annex H does define typedef names so definitely needs to be mentioned there.)
	Change “here or in Annex K” to “here or in Annexes H or K” (using proper internal links for both Annex references).
	Accepted

	GB-091

	
	7.1.2

	1
	ed
	The references to Annexes F, G, H and K in this paragraph, except for the last reference to Annex K, are not internal links as they should be (the Annex label is hardcoded in the LaTeX source instead of being a proper cross-reference).
	Change those references into internal links.
	Accepted

	US-092

	
	7.1.2

	1
	ed
	The last proposed change from CD NB comment GB-147 was not made.
	Change “here or in Annex K” to “here or in Annexes F, G, H, or K”.
	Accepted with comment: Resolved by GB-090.

	US-093

	
	7.1.2

	1
	ed
	There is a space or bad line break in front of the comma “,” after “__STD_IEC_559__”.
	Remove the space or bad line break in front of the comma “,” after “__STD_IEC_559__”.
	Accepted

	DE-094

	
	7.1.4

	1
	te
	There are two function-like macros that take a type name as one of the arguments (va_arg and offsetof). Type names may contain size expressions or typeof operators. In existing practice those are evaluated.
	Add another item to the list:

- Size expressions and typeof operators in type names which are passed as arguments to function-like macros are evaluated exactly once.
	Rejected

	GB-095

	
	7.2

	3
	ed
	“do not agree” should be “does not agree” (this editorial fix was noted in the discussion of CD1 comment CA-148 at the February meeting).
	Change “do not agree” to “does not agree”.
	Accepted

	GB-096

	
	7.2

	3
	ed
	“NDEBUG” should be in a fixed-width font.
	Change “NDEBUG” into a fixed-width font.
	Accepted

	GB-097

	
	7.2

	4
	ed
	Paragraph 4 is a duplicate of paragraph 2.
	Remove paragraph 4.
	Accepted

	FR-098

	
	7.2

	p1
	te
	As formulated, the assert macro still leads to confusion to know whether or not under NDEBUG a call has to be syntactically correct, i.e. has exactly one argument after translation phase 4.
	Replace the phrase (and adjacent code)
 If NDEBUG is defined as a macro name at the
 point in the source file where <assert.h> is
 included, the assert macro is defined simply as
 #define assert(...) ((void)0)
by
 If NDEBUG is defined as a macro name at the
 point in the source file where <assert.h> is
 included, an invocation of the assert macro has
 no effect.

	Rejected

	FR-099

	
	7.2

	p3
	ed
	This note could be clarified by indicating where the prototype in question could be found.
	Remove the “1” from “Note 1”.
Replace “by the given prototype” by “by the prototype as given below”
	Accepted

	FR-100

	
	7.2

	p4
	ed
	This paragraph is a duplicate of p2
	remove p4
	Accepted

	GB-101

	
	7.3.1

	5, 6
	ed
	“a arithmetic” should be “an arithmetic”.
	Change “a arithmetic” to “an arithmetic” (in both paragraphs).
	Accepted

	GB-102

	
	7.3.9.3

	footnote 247
	ed
	“are equivalent expressions.” should not be in a fixed-width font.
	Change “are equivalent expressions.”, at the end of this footnote, out of a fixed-width font.
	Accepted

	GB-103

	
	7.3.9.6

	footnote 248
	ed
	This footnote should be the same as footnote 247 (CD1 comment GB-151 requested a change be made to the footnotes for both creal and cimag, N3082 provided wording that was accepted, but the change has only been applied to cimag and not to creal).
	Replace footnote 248 by a copy of footnote 247 (after the fix requested for that footnote in another comment has been applied).
	Accepted with comment: Resolved by US-104.

	US-104

	
	7.3.9.6

	Para 2, Fn 248
	ed
	
The change in N3082 to address CD NB comment GB-151 was to be applied to two footnotes, in 7.3.9.2 and 7.2.9.6. It was applied in 7.3.9.2, but not 7.3.9.6.

	Change footnote 248 to “For a complex variable z, z and CMPLX(creal(z), cimag(z)) are equivalent expressions. If imaginary types are supported, z and creal(z) + cimag(z)*I are equivalent expressions.”
	Accepted

	US-105

	
	7.6.2

	Para 3-5
	ed
	An FENV_ROUND pragma with direction FE_DYNAMIC doesn’t establish a constant rounding mode, but in a few places the specification implies or suggests it does. For example, 7.6.2 #3 has, “ … or the specified constant rounding mode is FE_DYNAMIC”.
	In 7.6.2 #3, change :
“direction shall be one of the names of the supported rounding direction macros for operations for standard floating types (7.6), or FE_DYNAMIC. If any other value is specified, the behavior is undefined. If no FENV_ROUND pragma is in effect, or the specified constant rounding mode is FE_DYNAMIC, rounding is according to the mode specified by the dynamic floating-point environment, …”
to:
“direction shall be: one of the names of the supported rounding direction macros for operations for standard floating types (7.6), to specify a constant rounding mode; or, FE_DYNAMIC, to specify dynamic rounding. If any other value is specified, the behavior is undefined. If no FENV_ROUND pragma is in effect, or the specified direction is FE_DYNAMIC, rounding is according to the mode specified by the dynamic floating-point environment, …”
and, in the last sentence, change:
“If the FE_DYNAMIC mode is specified and …”
to:
“If the direction FE_DYNAMIC is specified and …”.
In 7.6.2 #4, change:
 “Within the scope of an FENV_ROUND pragma establishing a mode other than FE_DYNAMIC, …”
to:
“Within the scope of an FENV_ROUND pragma establishing a constant rounding, …”
In 7.6.2 #5, delete “(other than FE_DYNAMIC)”.
	Accepted with comment: Change “establishing a constant rounding” to “establishing a constant rounding mode”.

	US-106

	
	7.6.2

	Para 5
	ed
	NOTE 1 in 7.6.2 says that constant rounding modes could be implemented using dynamic rounding modes as illustrated in the code segment in the note. However, this isn’t entirely true now, because dynamic rounding modes do not affect floating constants while constant rounding modes do.
The proposed change is editorial in the sense that it is an implication of the new FENV_ROUND and FENV_DEC_ROUND pragmas.
	In NOTE 1, in the first sentence, change “… as illustrated in the following example:” to “… as illustrated in the following example, except that this method does not interpret inexact floating constants according to the constant rounding mode as required.”
	Accepted

	FR-107

	
	7.8

	p1
	ed
	There now are also changes to <inttypes.h> so this also needs a VERSION macro.
	Add the __STDC_VERSION_INTTYPES_H__ macro to the start section of <inttypes.h> and to the appropriate section of Annex B.
	Accepted

	GB-108

	
	7.8.1

	1
	te
	For C23, we specified explicitly (N2562) for printf functions that formats such as %hhu that they behave as if using va_arg with a type determined by the default argument promotions and then convert to the type specified by the format (this defines what happens if the argument to %hhu isn't representable in unsigned char but is in the promoted type, for example). However, this relation remains unclear for the PRI* macros in <inttypes.h>: “suitable for use within the format argument of a formatted input/output function when converting the corresponding integer type” doesn't say anything about what type is used with va_arg or what conversions might occur, so doesn't make clear if there are defined semantics for using PRIu8 with a value outside the range of uint8_t, for example.
	At the end of the paragraph, add the following wording: “The functions in the fprintf and fwprintf families shall behave as if they use va_arg with a type argument naming the type resulting from applying the default argument promotions to the type corresponding to the macro and then convert the result of the va_arg expansion to the type corresponding to the macro.”.
	Accepted

	GB-109

	
	7.8.1

	3, 4, 5
	ed
	The PRIb, PRIB and SCNb macros are shown in a different colour from the corresponding macros for other format conversion specifiers.
	Change the formatting to be consistent.
	Rejected with comment: Not applicable to C23, but saved as a Gitlab issue for the next revision of the standard.

	GB-110

	
	7.8.1

	4
	ed
	The cross-reference for %B for fwprintf is shown as “??”
	Change “??” to “7.31.2.1” (as an appropriate internal link).
	Accepted

	GB-111

	
	7.8.1

	5
	ed
	%b is an unsigned format, so the SCNb macros should be in the list of unsigned formats (paragraph 6 instead of paragraph 5). (The editing instructions in N3072 said to add them to paragraph 5, but that meant the paragraph 5 in CD1, which is now paragraph 6 after a new paragraph 4 was added with the PRIB macros.)
	Move the SCNb macros from paragraph 5 to paragraph 6.
	Accepted

	GB-112

	
	7.12

	6, 7, 8, 9, 10
	ed
	“a arithmetic” should be “an arithmetic”.
	Change “a arithmetic” to “an arithmetic” (in all five paragraphs).
	Accepted

	US-113

	
	7.12

	Para 3
	te
	The definition of the *_t types refers to a type being at least as wide as another type. This terminology might suffice for numbers in the floating-point model (5.2.4.2.2), but does not imply inclusion for all the values that might be in a type (e.g. NaNs and infinities), as intended. The proposed specification (similar to that in 6.2.5 for the standard floating types) address this problem.
	Change:
“The types
float_t
double_t
are floating types at least as wide as float and double, respectively, and such that double_t is at least as wide as float_t.”
to:
“The types
float_t
double_t
are floating types such that the values of float and double are subsets of the values of float_t and double_t, respectively, and such that the values of float_t are a subset of the values of double_t.”
	Accepted with comment:
See also US-115 (duplicate).

	US-114

	
	7.12

	Para 3
	te
	The float_t and double_t are not required to be real floating types. Thus, they might not have features defined for real floating types, e.g. they might not be usable as arguments for classification and comparison macros. The proposed solution, for the case where one of these types is not a real floating type, makes the behavior implementation-defend instead of implicitly unspecified. The alternative of requiring these types to be real floating types would seem to risk invalidating reasonable implementations.
	To the paragraph, append the sentence: “If they are not real floating types, the behavior is implementation-defined.”
	Accepted with comment:
See also US-116 (duplicate).

	US-115

	
	7.12

	Para 3
	te
	The definition of the *_t types refers to a type being at least as wide as another type. This terminology might suffice for numbers in the floating-point model (5.2.4.2.2), but does not imply inclusion for all the values that might be in a type (e.g. NaNs and infinities), as intended. The proposed specification (similar to that in 6.2.5 for the standard floating types) address this problem.
	Change:
“The types
float_t
double_t
are floating types at least as wide as float and double, respectively, and such that double_t is at least as wide as float_t.”
to:
“The types
float_t
double_t
are floating types such that the values of float and double are subsets of the values of float_t and double_t, respectively, and such that the values of float_t are a subset of the values of double_t.”
	Accepted with comment: Resolved by US-113.

	US-116

	
	7.12

	Para 3
	te
	The float_t and double_t are not required to be real floating types. Thus, they might not have features defined for real floating types, e.g. they might not be usable as arguments for classification and comparison macros. The proposed solution, for the case where one of these types is not a real floating type, makes the behavior implementation-defend instead of implicitly unspecified. The alternative of requiring these types to be real floating types would seem to risk invalidating reasonable implementations.
	To the paragraph, append the sentence: “If they are not real floating types, the behavior is implementation-defined.”
	Accepted with comment: Resolved by US-114.

	US-117

	
	7.12.1

	Para 5
	ed
	Applying the change to address CD NB comment GB-164 prescribed in N3082 resulted in “If a floating result overflows, default rounding is in effect and the integer expression math_errhandling & MATH_ERRNO is nonzero, the integer expression errno acquires the value ERANGE.” The punctuation makes reading awkard.
	Insert a comma “, “ after “default rounding is in effect”.
	Accepted with comment: Wording from N 3135.

	GB-118

	
	7.12.6.2

	2
	ed
	The change from CD1 comment GB-173, to make byte order for various functions follow __STDC_ENDIAN_NATIVE__, was not applied here.
	Change “The order of bytes in the array is implementation-defined.” to “The order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).”.
	Accepted with comment: Apply to 7.12.16.2 instead of 7.12.6.2.

	GB-119

	
	7.12.7.2, 7.12.7.6, 7.12.7.8, 7.12.9.10, 7.12.9.11

	
	ed
	The function synopses for the compoundn, pown, rootn, fromfp, ufromfp, fromfpx, ufromfpx functions include <stdint.h>, because those functions used to have prototypes using intmax_t or uintmax_t. Those types are no longer used in the prototypes, so the include should be removed from the synopses.
	Remove the include of <stdint.h> from the listed function synopses.
	Accepted

	US-120

	
	7.12.10.03

	Para 2
	te
	The second sentence in the description of the remquo functions is, “In the object pointed to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2^n to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer greater than or equal to 3.” This requirement for the sign (and the absence of -0 in integer types) means that 0 cannot be stored when the integral quotient is equivalent mod 2^n to 0 but the sign of x/y is negative. This restriction is not needed and is contrary to common practice.
	Change the sentence to “In the object pointed to by quo they store a value whose magnitude is congruent modulo 2^n to the magnitude of the integral quotient of x/y, where n is an implementation-defined integer greater than or equal to 3. If the value stored is not zero, its sign is the sign of x/y.”
	Accepted

	US-121

	
	7.12.14
7.12.14.01, 7.12.14.2, 7.12.14.3, 7.12.14.4, 7.12.14.5, 7.12.14.6

	
	ed
	The specification of functions that round to narrower type (7.12.14) uses inconsistent terminology and its use of “format” might be confusing since non-Annex F implementations are allowed to return function results with extra range and precision. The proposed change is intended to use consistent terminology in the subclauses, and to avoid the use of “format”.

	In 7.12.14 #1, change:
“The functions in this subclause round their results to a type typically narrower301) than the parameter types.”
to:
“The functions in this subclause round their results to the return type, which is typically narrower301) than the parameter types.”
In 7.12.14.1 #2, change:
“These functions compute the sum of x + y, rounded to the type of the function. They compute the sum (as if) to infinite precision and round once to the result format, …”
to:
“These functions compute the sum of x + y, rounded to the type of the function. They compute the sum (as if) to infinite precision and round once to the return type, …”
In 7.12.14.2 #2, change:
“These functions compute the difference of x − y, rounded to the type of the function. They compute the difference (as if) to infinite precision and round once to the result format, …”
to:
“These functions compute the difference of x − y, rounded to the type of the function. They compute the difference (as if) to infinite precision and round once to the return type, …”
In 7.12.14.3 #2, change:
“These functions compute the product x×y, rounded to the return type of the function. They compute the product (as if) to infinite precision and round once to the result format, …”
to:
“These functions compute the product x×y, rounded to the type of the function. They compute the product (as if) to infinite precision and round once to the return type, …”
In 7.12.14.3 #3, change:
“These functions return the product of x × y, rounded to the return type of the function.”
to:
“These functions return the product of x × y, rounded to the type of the function.”
In 7.12.14.4 #2, change:
“These functions compute the quotient x ÷ y, rounded to the return type of the function. They compute the quotient (as if) to infinite precision and round once to the result format, …”
to:
“These functions compute the quotient x ÷ y, rounded to the type of the function. They compute the quotient (as if) to infinite precision and round once to the return type, …”
In 7.12.14.5 #2, change:
“These functions compute (x × y) + z (as if) to infinite precision and round once to the result format (the return type), …”
to:
“These functions compute (x × y) + z (as if) to infinite precision and round once to the return type, …”
In 7.12.14.5 #3, change:
“These functions return (x × y) + z, rounded to the return type of the function.”
to:
“These functions return (x × y) + z, rounded to the type of the function.”
In 7.12.14.6 #2, change:
“These functions compute the square root of x, rounded to the type of the function. They compute the square root (as if) to infinite precision and round once to the result format, …”
to:
“These functions compute the square root of x, rounded to the type of the function. They compute the square root (as if) to infinite precision and round once to the return type, …”
In 7.12.14.6 #3, change:
“These functions return the nonnegative square root of x, rounded to the return type of the function.”
to:
“These functions return the nonnegative square root of x, rounded to the type of the function.”

	Accepted

	US-122

	
	7.12.16.02

	2
	ed
	One of the changes proposed in CD NB comment GB-173 was to be made in several sections. It was made in all the sections except 7.12.16.2.
	Change “The order of bytes in the array is implementation-defined.” to “The order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).”.
	Accepted with comment: Resolved by GB-118.

	US-123

	
	7.12.17

	
	ed
	Pages 279-280: Many places have “(x)op (y)” so the formatting is strange.
	Either add a space before “op” or remove space after “op”.
	Accepted with comment: Resolved by GB-124.

	GB-124

	
	7.12.17.01, 7.12.17.2, 7.12.17.3, 7.12.17.4, 7.12.17.5

	
	ed
	Various expressions have unusual formatting, with a space after a binary operator but not before that operator.
	In all these subclauses, insert a space before all uses of the binary operators “<”, “<=”, “>”, “>=” and “||” that are followed by a space.
	Accepted

	US-125

	
	7.12.17.06

	Para 2
	te
	7.12.17, footnote 304 says, “Whether an argument represented in a format wider than its semantic type is converted to the semantic type is unspecified.” 7.12.17.6 #2 says, “The isunordered macro determines whether its arguments are unordered. It raises no floating-point exceptions if neither argument is a signaling NaN.” This disallows floating-point exceptions other than “invalid” from comparison with a quiet NaN. This seems to contradict the footnote, because conversion of arguments to semantic type might raise other floating-point exceptions, e.g. “overflow”. The other comparison macros don’t disallow exceptions other than “invalid” from comparison with a quiet NaN. The proposed change avoids this problem by using the same specification for exceptions for isunordered as for the other comparison macros.
	In 7.12.17.6, change “It raises no floating-point exceptions if neither argument is a signaling NaN” to “It does not raise the "invalid" floating-point exception when x and y are unordered and neither is a signaling NaN”.
	Accepted

	DE-126

	
	7.16.1.1

	2
	te
	There is UB based on a specific syntactic construction of a pointer type. This is an anachronism which serves no useful purpose with typeof.
	The parameter type shall be a type name specified such that the type of a pointer to an object that has the specified type can be obtained simply by postfixing a * to type.“
	Accepted with comment: Change “a type name” to “an object type name”.

	US-127

	
	7.16.1.1

	2
	te
	
Type compatibility is also an issue with the va_arg macro. See N 3112 for more information.

	Add text in green:
— one type is compatible with a signed integer type, the other type is compatible with the corresponding unsigned integer type, and the value is representable in both types;
	Accepted

	GB-128

	
	7.16.1.4

	4
	te
	The rule that “Only the first argument passed to va_start is evaluated.” leaves unclear what might be done with arguments that do not expand to tokens, or that expand to unbalanced parentheses, which affects what implementation approaches might be valid for diagnostics following the recommended practice; the recommended practice refers to expansion in “unspecified contexts”, but that still needs to be consistent with the normative text. Undefined behavior in those limited cases seems appropriate to avoid constraining implementation approaches regarding whether and how they expand such preprocessing tokens.
	At the end of this paragraph, add “If any additional arguments expand to include unbalanced parentheses, or a preprocessing token that does not convert to a token, the behavior is undefined.”.
	Accepted with comment: Also add this to the undefined behavior list.

	GB-129

	
	7.17.2

	1
	ed
	“Explicit, default initialization” is incorrect; explicit and default initialization are different things, and the sentence should apply to both of them, but the comma suggests it applies to a single kind of initialization that is both explicit and default. The change from “Explicit or default” to “Explicit, default” in commit 0fa7570f721e9367b10a6a3dbca26cfc40164000 “NB Comments 015-054” appears incorrect and not related to any of those comments.
	Change “Explicit, default” to “Explicit or default”.
	Accepted

	GB-130

	
	7.17.7.5

	1
	ed
	This paragraph needs to allow for the possibility that atomic_bool is different from _Atomic bool. (See CD1 comment GB-197; the particular form of the fix adopted for CD1 comment GB-195 means that an atomic_bool alternative needs to be included here.)
	Insert “, atomic_bool,” before “or”.
	Accepted

	FR-131

	
	7.18

	
	te
	The [[unsequenced]] attribute and the <stdbit.h> utilities have been introduced in parallel, and so their introduction has not been coordinated, yet. Since these bit functions are typical examples of pure functions (in the CS sense) we should provide all optimization hints available to us for their interfaces.
	Add the [[unsequenced]] attribute to all function and type-generic function interfaces in <stdbit.h>

	Accepted

	FR-132

	
	7.18.8 and 7.18.14

	
	ed
	It seems that these two sets of interfaces describe exactly the same functions, namely resulting in 0 if x is 0 and otherwise
 1 + ⌊ log₂ x ⌋
	Remove one of the two sections and the listing of the corresponding prototypes in Annex B.
	Rejected with comment: Insufficient consensus to adopt this change.

	FR-133

	
	7.18.9 and 7.18.6

	
	ed
	It seems that these two sets of interfaces describe the same functions, and deviate only for the special case of 0.
	Remove one of the two sections and the listing of the corresponding prototypes in Annex B.
	Rejected

	FR-134

	
	7.18.10 and 7.18.05

	
	ed
	It seems that these two sets of interfaces describe the same functions, and deviate only for the special case of 0.
	Remove one of the two sections and the listing of the corresponding prototypes in Annex B.
	Rejected

	FR-135

	
	7.18.16

	p2 and p3
	te
	The bit ceiling family of functions is the only one in the new header <stdbit.h> that has undefined behavior if the mathematical result does not fit the target type. We found no rationale for that in the corresponding documents, so this probably has just been overlooked. The function has indeed a natural continuation in that situation, namely 0, which will not occur in other situations.
	In p2 change
 … the behavior is undefined.
to
 … return 0.
In p3 append to the first sentence
 … or 0 if such a value is not representable in the
 return type.

	Accepted

	GB-136

	
	7.20.1

	3
	ed
	The quotes around “plain”, twice in this paragraph, should be proper left and right quotes, not straight quotes.
	Change those quotes to left and right quotes (``plain’’ in LaTeX).
	Accepted

	DE-137

	
	7.21

	4
	te
	It is undefined if the first argument of offset of defines a new type. But with typeof it is possible to wrap a type name with additional brackets, so this should be made more specific.
offsetof(typeof(struct { int i, j; }), i);
	If the specified type name contains a comma not between matching parentheses defines a new type or if the specified member is a bit-field, the behavior is undefined”
	Accepted

	GB-138

	
	7.22.5

	1
	ed
	A word from the resolution of CD1 comment GB-208 is missing.
	Insert “converted” before “according”.
	Accepted

	GB-139

	
	7.23.5.3

	5
	ed
	“teh” should be “the”.
	Change “teh” to “the”.
	Accepted

	GB-140

	
	7.23.5.3

	6
	ed
	“of increment” should be “of incrementing”.
	Change “of increment” to “of incrementing”.
	Accepted

	GB-141

	
	7.23.6.1

	8
	te
	AG Reference Bug 1647 (https://austingroupbugs.net/view.php?id=1647)
=======
Currently printf("%lc", L'\0') is required to output no bytes. This is because 7.23.6.1 para 8 (c conversion) says "If an l length modifier is present, the wint_t argument is converted as if by an ls conversion specification with no precision and an argument that points to storage suitably sized for at least two wchar_t elements, the first element containing the wint_t argument to the lc conversion specification and the second a null wide character." This behavior is inconsistent with the related calls
printf("%c", '\0'), wprintf("%lc", L'\0'), and wprintf("%c", '\0') which all output a NUL. It appears that most libc implementations have chosen to make all four consistent by having printf("%lc", L'\0') output a NUL; we are only aware of one (musl) that obeys a strict reading of the C standard. The Austin Group would like to require printf("%lc", L'\0') to output a NUL in the next POSIX revision (which will necessitate that it does not defer to C17 on this) but only if the C committee indicates that it will at least allow this behavior in C23.
	Option 1 (require a NUL) - change the text to:
If an l length modifier is present, the wint_t argument is converted as if by a call to the wcrtomb function with a pointer to storage of at least MB_CUR_MAX bytes, the wint_t argument converted to wchar_t, and an initial shift state.

Option 2 (allow either behavior) - replace the period at the end of the current text with:
, except that if the wint_t argument is a null wide character it is unspecified whether it is converted to no bytes or to a null byte.

The Austin Group would prefer option 1.
	Accepted with comment: Option 1.

	GB-142

	
	7.23.6.1, 7.31.2.1

	
	ed
	The changes to recommended practice from N3072 item 15 to define ‘B’ as an optional normative feature were not fully applied.
	In 7.23.6.1 paragraph 14, last sentence, replace all text after “implement it” by “as an option as described above.”. Likewise in 7.31.2.1 paragraph 14.
	Accepted

	GB-143

	
	7.23.6.1, 7.31.2.1

	
	ed
	It’s peculiar that the wording “The macro PRIBPTR from <inttypes.h> shall only be defined if the implementation follows the specification as given here.” refers to that specific macro. The statement would be true for any of the PRIB macros, but since uintptr_t is optional and missing uintptr_t support would be another reason for PRIBPTR not being defined, that’s not a particularly good one for a user to test to determine whether the %B feature is supported.
	In 7.23.6.1 paragraph 8 and 7.31.2.1 paragraph 8, change “macro PRIBPTR” to “PRIB macros”.
	Accepted

	GB-144

	
	7.23.6.1, 7.31.2.1

	
	te
	The 0 flag should be ignored with precision by printf %b and %B, just as it is for other integer formats.
	In 7.23.6.1 paragraph 6 and 7.31.2.1 paragraph 6, change “For d, i, o, u, x, and X conversions” to “For b, B, d, i, o, u, x, and X conversions”.
	Accepted

	GB-145

	
	7.23.6.1, 7.31.2.1

	
	ed
	The formatting of references to conversion specifiers and their output is inconsistent. Some inconsistencies were fixed for CD1 comment GB-221, but CD2 also adds colour, meaning new inconsistencies are visible.
	In 7.23.6.1 paragraph 6, ‘#’ flag, colour ‘b’ and ‘B’ the same as other conversion specifiers. In paragraph 7, each integer length modifier, colour ‘n’ the same as other conversion specifiers. In paragraph 13, use same colour for ‘e’ as for other conversion specifiers. Likewise in the same paragraphs in 7.31.2.1 (fwprintf).
	Rejected with comment: Not applicable to C23, but saved as a Gitlab issue for the next revision of the standard.

	GB-146

	
	7.23.6.1, 7.31.2.1

	
	ed
	Now that printf %B is normatively defined rather than just recommended practice, all the lists of formats that include %b should explicitly include %B as well.
	Change “b” to “b, B” in lists of integer formats in the following places, in both 7.23.6.1 and 7.31.2.1: paragraph 4 (formats for precision), paragraph 6 (0 flag), paragraph 7 (hh, h, l, ll, j, z, t, wN, wfN length modifiers).
	Accepted

	GB-147

	
	7.23.6.2, 7.31.2.2

	
	ed
	“No null wide character is added.” (for %lc) is now a separate paragraph, presumably as a result of changes applied for CD1 comment GB-222. But it should be part of the previous paragraph, since it only makes sense in the context of “If an l length modifier is present”; it’s not something applying to %c in general, only the specific %lc sub-case, so should be in the paragraph for that sub-case.
	Move that sentence back into the previous paragraph, while avoiding the previous problem of no space between the ‘.’ ending the previous sentence and the start of this sentence.
	Accepted

	GB-148

	
	7.23.7.2, 7.31.3.2

	
	te
	The description of fgets is unclear about the semantics when n is zero or negative, when “reads at most one less than the number of characters specified by n” would mean reading a negative number of characters. The same issue applies to fgetws. This was CD1 comment GB-224, which was accepted, but the accepted change doesn’t seem to have been applied.
	Add “If n is negative or zero, the behavior is undefined.” to the end of 7.23.7.2 paragraph 2 and 7.31.3.2 paragraph 2 (this was the agreed resolution for the CD1 comment). Also add this to the list of undefined behavior in Annex J (the need for that was noted in the discussion of the CD1 comment).
	Accepted

	GB-149

	
	7.24.1.5

	11
	ed
	This paragraph has three paragraphs, each of which should have its own number. (This is part of CD1 comment GB-231, accepted but not fully fixed.)
	Give all three paragraphs their own numbers.
	Accepted

	US-150

	
	7.24.1.6

	Para 3
	ed
	The second bullet ends in a period “.”, unlike the other bullets.
	Remove the period “.” from the end of the second bullet.
	Accepted

	US-151

	
	7.24.1.6

	Para 4
	ed
	The second “s” in the last sentence should be italicized.
	Italicize the second “s” in the last sentence.
	Accepted

	GB-152

	
	7.24.1.6, 7.31.4.1.3

	
	te
	The wording “may first round to M significant hexadecimal digits according to the applicable rounding direction mode” is unclear as to whether the applicable mode is the decimal mode (because this is a function for a decimal type), or the binary mode (because it’s a conversion between two hexadecimal strings). Using the decimal mode seems better; otherwise these functions would need to be affected by both FENV_ROUND and FENV_DEC_ROUND, including the possibility of one mode being dynamic and one being constant, if the implementation chooses to have a finite M.
	Change “rounding direction mode” to “decimal rounding direction mode”, in both places.
	Accepted

	GB-153

	
	7.24.1.6, 7.31.4.1.3

	
	ed
	“else s is set to 1” (paragraph 4 of both subclauses) should have “s” in italics.
	Change “s” to italics (LaTeX s) in both places.
	Accepted

	GB-154

	
	7.24.7

	2
	ed
	The wording “It is implementation-defined whether these functions avoid data races with other calls to the same function.” should have been appended to paragraph 1, not paragraph 2.
	Move that wording from the end of paragraph 2 to the end of paragraph 1.
	Accepted

	GB-155

	
	7.29.1

	5
	ed
	“The semantics of the other member and its normal range is expressed in the comments.”, about struct tm, should be restored to the wording it had in CD1; there have been incorrect changes to the wording apparently resulting from the tv_nsec sentence being wrongly mixed into this paragraph.
	Change “The semantics of the other member and its normal range is expressed in the comments.” to “The semantics of the members and their normal ranges are expressed in the comments.”.
	Accepted

	GB-156

	
	7.29.1

	5
	ed
	The description of tv_nsec should be immediately after the display of members of struct timespec, not mixed into the description of struct tm.
	Move the sentence about the type of tv_nsec before the sentence “The tm structure shall contain at least the following members, in any order.”. The latter sentence should then start a new paragraph, with its own number.
	Accepted

	GB-157

	
	7.29.2.1

	3
	ed
	“(clock_t)(-1)” should all be in a fixed-width font (as was fixed in many other places in CD2, but not here).
	Change it to a fixed-width font.
	Accepted

	GB-158

	
	7.29.2.3

	3
	ed
	“(time_t)(-1)” should all be in a fixed-width font (as was fixed in many other places in CD2, but not here).
	Change it to a fixed-width font.
	Accepted

	GB-159

	
	7.29.2.3

	3
	te
	AG Reference Bug 1614 (https://austingroupbugs.net/view.php?id=1614)
========

Further discussion in the Austin Group identified two additional problems with the mktime function.

1. When the tm components are range-corrected this can result in a tm_year value that is not representable as an int. The standard is silent about what happens in this case and therefore this is undefined behavior. All implementations we have tested either handle this in the same way as the return value not being representable, i.e. return (time_t)(-1), or don't detect the problem and return the calculated calendar time but with a bogus tm_year value. It would be good if returning (time_t)(-1) could be required, instead of the onus being on applications to avoid undefined behavior by ensuring tm_year will not overflow before they call mktime.

2. It is possible for the calendar time to be returned to have the value (time_t)(-1) and the standard does not provide any way for applications to distinguish a successful return of this value from the return-value-is-not-representable case. There is some existing practice where application code sets tm_wday to an out-of-range sentinel value and checks whether it was changed by mktime, and we are not aware of any implementation where this does not work. It would be good for this method to be required to work.

	Under "Returns" in 7.29.2.3 para 3, change:

If the calendar time cannot be represented in the time_t encoding used for the return value, the function returns the value (time_t)(-1).

to:

If the calendar time cannot be represented in the time_t encoding used for the return value or the value to be returned in the tm_year component of the structure pointed to by timeptr cannot be represented as an int, the function returns the value (time_t)(-1) and does not change the value of the tm_wday component of the structure.

and in the example code change:

if (mktime(&time_str) == (time_t)(-1))
 time_str.tm_wday = 7;

to:

time_str.tm_wday = 7;
mktime(&time_str);

	Accepted with comment: Wording from N 3147.

	GB-160

	
	7.29.2.5

	3
	ed
	“(time_t)(-1)” should all be in a fixed-width font (as was fixed in many other places in CD2, but not here).
	Change it to a fixed-width font.
	Accepted

	GB-161

	
	7.29.3

	2
	ed
	“the following functions” should be “they” (to make it clear it’s just the two functions described in this paragraph, not any of the other following functions). This was part of the wording from N3072 item 9, but not marked there as an edit to the previous wording.
	Change “the following functions” to “they”.
	Accepted

	GB-162

	
	7.29.3.5

	3
	ed
	In the %F description, the duplicate “%F” at the start of the description should be removed, and “%Pm” should be “%m” (there’s no such strftime format as “%Pm”). (“%Pm” was introduced in commit 43b6f1d540cd87cb6019e406c5d448ce8916628f, probably accidentally.)
	Remove the duplicate “%F” in “%F is equivalent” and change “%Pm” to “%m”.
	Accepted

	GB-163

	
	7.31.3.3

	3
	te
	 AG Reference Bug 1022 (https://austingroupbugs.net/view.php?id=1022)
=========
The fgetwc() function was changed in C17 to require the error indicator for the stream to be set in the case of an encoding error. However, the equivalent requirement for fputwc() is not present, though POSIX requires it and does not mark it as an extension to C99. Since POSIX defers to C, and we are not aware of any implementations that do not set the error indicator, this should be aligned.
	Change:
"If an encoding error occurs, the value of the macro EILSEQ is stored in errno and fputwc returns WEOF."
 to:
"If an encoding error occurs, the error indicator for the stream is set and the value of the macro EILSEQ is stored in errno and fputwc returns WEOF."
	Accepted

	GB-164

	
	7.31.4.1.2

	5, 11
	ed
	Paragraph 5 has two paragraphs, each of which should have its own number, and paragraph 11 has three paragraphs, each of which should have its own number. (This is part of CD1 comment GB-231, accepted but not fully fixed.)
	Give these paragraphs their own numbers.
	Accepted

	GB-165

	
	7.31.4.1.3

	1
	ed
	The third parameter of the functions should have type wchar_t ** restrict, not char ** restrict.
	For all three functions, change “char” to “wchar_t” in the third parameter.
	Accepted

	GB-166

	
	7.31.4.1.3

	3
	ed
	The bullet point for hexadecimal numbers should say “wide character” not “character” for the decimal point.
	Change “decimal-point character” to “decimal-point wide character”.
	Accepted

	GB-167

	
	A.2.3

	
	ed
	Stray strings “[-6ex]” appear in four places. (This is CD1 comment GB-253, accepted but not fixed.)
	Remove those strings.
	Accepted

	GB-168

	
	A.4.1

	
	ed
	“n-char-sequence:” should be shifted left. (The related cases of n-wchar-sequence and d-wchar-sequence were fixed following CD1 comments US-250 and US-251; the formatting of n-char-sequence in this Annex wasn’t mentioned in a CD1 comment, but is now clearly the odd one out.)
	Shift “n-char-sequence:” left.
	Accepted

	US-169

	
	A.4.1

	
	ed
	Page 470: "n-char-sequence:" is too far to right
	Shift it left (like the others).
	Accepted with comment: Resolved by GB-168.

	GB-170

	
	Annexes C, E, I

	
	ed
	In Annexes not divided into clauses, the page footer shows a clause number from the previous Annex (for example, B.31 on page 498 for Annex C). This was CD1 comment GB-259, accepted but not fixed.
	Fix the footers.
	Accepted

	GB-171

	
	B.12

	
	ed
	The entry for __STDC_VERSION_SETJMP_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	GB-172

	
	B.16

	
	ed
	The entry for __STDC_VERSION_STDATOMIC_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	GB-173

	
	B.19

	
	ed
	The summary for stdckdint.h is missing all content other than __STDC_VERSION_STDCKDINT_H__; instead they are misplaced under stdnoreturn.h (B.24)
	Move the rest of the header content from B.24.
	Accepted

	FR-174

	
	B.19

	
	ed
	no type-generic function is listed
	list the type-generic functions
	Accepted

	GB-175

	
	B.23

	
	ed
	The stdlib.h summary is missing strtod32, strtod64, strtod128.
	Add those to the summary (alongside the corresponding strfromdN functions, i.e. conditional on DFP support).
	Accepted

	GB-176

	
	B.23

	
	ed
	The stdlib.h summary is missing once_flag, ONCE_FLAG_INIT and call_once. This was CD1 comment GB-262 (though that omitted to note the absence of ONCE_FLAG_INIT from the summary), accepted but not fixed.
	Add those to the summary.
	Accepted

	GB-177

	
	B.23

	
	ed
	The entry for __STDC_VERSION_STDLIB_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	FR-178

	
	B.23

	
	ed
	The strtodN functions are missing.
	Add their synopsis to the conditional section concerning DFP.
	Accepted with comment: Resolved by GB-175.

	GB-179

	
	B.26

	
	ed
	The entry for __STDC_VERSION_TGMATH_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	GB-180

	
	B.29

	
	ed
	The entry for __STDC_VERSION_UCHAR_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	GB-181

	
	B.30

	
	ed
	The wchar.h summary is missing wcstod32, wcstod64, wcstod128.
	Add those to the summary (conditional on DFP support).
	Accepted with comment: Use the proposed change plus wording from N 3135 with wcstol -> wcstold.

	GB-182

	
	B.5

	
	ed
	This summary does not mention __STDC_VERSION_FENV_H__.
	Add __STDC_VERSION_FENV_H__ to this summary.
	Accepted

	GB-183

	
	B.7

	
	ed
	This summary does not mention the new macros for %b or the optional %B.
	Add those macros to the summary.
	Accepted

	FR-184

	
	B.7

	
	ed
	Some macros are missing in the listing.
	Add the mandatory macros for the b format specifiers.
Create a new paragraph for optional specifiers and list the new B format specifiers, there.

	Accepted

	GB-185

	
	B.9

	
	ed
	The entry for __STDC_VERSION_LIMITS_H__ is badly formatted (overlaps other parts of the summary).
	Fix the formatting.
	Accepted

	US-186

	
	F.10.13

	Para 1
	ed
	It might not be clear that NaN payloads do not need to be considered in determining whether the values of one type include the values of another type
	To:
“The payload is intended for implementation-defined diagnostic information about the NaN, such as where or how the NaN was created.”
attach the footnote:
“*) For purposes of determining value inclusion (as in 6.2.5, 7.12 and H.11), quiet NaN representations can be regarded as having the same value, regardless of payloads.”
	Accepted

	US-187

	
	F.10.13

	Para 2
	ed
	Wording has not been updated to accommodate decimal floating types.
	Change:
“… details of IEC 60559 formats that might not be supported if __STDC_IEC_60559_BFP__ is not defined.”
to:
“… details of IEC 60559 formats that might not be supported if the relevant feature test macro, __STDC_IEC_60559_BFP__ or __STDC_IEC_60559_DFP__, is not defined.”

	Accepted

	GB-188

	
	F.10.3.7

	4
	ed
	“isinfinite” should be “isfinite” (the fix for CD1 comment GB-268 was applied incorrectly).
	Change “ininfinite” to “isfinite”.
	Accepted with comment: Change “isinfinite” to “isfinite”.

	US-189

	
	F.10.3.7

	Para 1, 4
	ed
	F.10.3.7 uses “exp” while 7.12.6.7 uses “p” for the same argument for the same function, frexp. This is confusing because the code in F.10.3.7 para 4 is said to be a possible body for the frexp function whose prototype is given in 7.12.6.7.
	Change all (8) instances of “exp” in F.10.3.7 to “p”.
	Accepted

	GB-190

	
	F.10.4.2

	1
	ed
	In the last two compoundn bullet points, “±” should be “+” (the fix for CD1 comment GB-269 was applied incorrectly).
	Change “±” to “+” (in both those bullet points).
	Accepted

	US-191

	
	F.10.4.2

	Para 1
	ed
	In the last two bullets, the first argument should be “+∞” not “±∞”. Ref. CD NB comment GB-269.
	In the last two bullets, change the first argument from “±∞” to “+∞”.
	Accepted with comment: Resolved by GB-190.

	GB-192

	
	F.10.4.6

	1
	ed
	“signalling” should be “signaling” for consistency with spelling used elsewhere in the document.
	Change “signalling” to “signaling”.
	Accepted

	GB-193

	
	F.10.6.8

	1
	ed
	The changes made here to address CD1 comments US-272 / GB-273 leave the text stylistically inconsistent with all the other function specifications here.
	Change the bullet points back to the form they had in CD1, removing the “roundeven returns” text above the two bullet points. Address those CD1 comments by changing \pnum to \inum in the LaTeX source instead, as for other such subclauses that start with a bulleted list.
	Accepted

	GB-194

	
	F.10.8.7

	1
	ed
	In “The canonicalize functions”, “canonicalize” should be in a fixed-width font.
	Change “canonicalize” into a fixed-width font.
	Accepted

	US-195

	
	F.2

	Para 1, Fn 441
	te
	Since Annex F allows long double to have a non-IEC format, the question might arise, is such a long double type required to have signed zeros and signed infinites? The following change clarifies that the answer is, yes. This comment does not suggest a similar change for implementations that do not conform to Annex F because the behavior of signed and unsigned zeros and infinities is so loosely specified for such implementations that the way those values are regarded for determining whether the values of one type are included in the values of another type can be left to the implementation.
	In F.2 #1, footnote 441 (ref N3095), change:
“A non-IEC 60559 long double type is required to provide infinity and NaNs, as its values include all double values.”
to:
“A non-IEC 60559 long double type is required to provide signed infinities, signed zeros, and NaNs, as its values must include all double values.”

	Accepted

	GB-196

	
	F.8.4

	3
	ed
	“initialization” should be “initializations”, as shown in the CD1 GB-279 changes in N3082.
	Change “initialization” to “initializations”.
	Accepted

	GB-197

	
	F.8.5

	1
	te
	As in the accepted changes for CD1 GB-279 in N3082, constexpr initializations should be included here with static and thread storage duration.
	After “static or thread storage duration” insert “or that are declared with storage-class specifier constexpr”.
	Accepted

	GB-198

	
	F.8.5

	3
	ed
	“conversions is” should be “conversion is”.
	Change “conversions is” to “conversion is”.
	Accepted

	US-199

	
	F.8.5

	Para 1
	ed
	
The change in this section proposed in N3082 to address CD NB comment GB-151 was not made. (All the other changes for this comment were made.)

	In F.8.5 #1 insert after “of objects that have static or thread storage duration” the words “or that are declared with storage-class specifier constexpr”.
	Accepted with comment: Resolved by GB-197.

	US
-200

	
	F.9.1

	3
	ed
	Page 516: Wrong place for action.
	"between function calls" -> "between sequence
points"
	Rejected with comment: Clarify as shown in N 3135 instead of the proposed change.

	US-201

	
	G.4.3

	2
	ed
	Page 536: Missing mention of signaling NaN.
	"discarded" -> "discarded (even if it is a
signaling NaN)"
	Rejected

	GB-202

	
	G.5.2

	2
	ed
	In the top left cell of this table, “+” and “-” represent C operators (as illustrated by the previous tables for “*” and “/”) so should be in a fixed-width font
	Change that “+” and “-” (only the ones in the top left cell, not any of the others elsewhere in the table) into a fixed-width font.
	Accepted

	US-203

	
	H.11

	Para 6
	te
	The definitions of the long_double_t, _FloatN_t, and _DecimalN_t types refer to one type as having at least the range and precision of another type. This does not imply inclusion for all the values (e.g. NaNs and infinities) in the second type. The proposed specification (similar to that in 6.2.5 for the standard floating types) addresses this problem.
	Change:
“These are floating types, such that:
— each of the types has at least the range and precision of the corresponding real floating type;
— long_double_t has at least the range and precision of double_t;
— _FloatN_t has at least the range and precision of _FloatM_t if N > M;
— _DecimalN_t has at least the range and precision of _DecimalM_t if N > M.”
to:
“These are floating types, such that:
— the values of long double are a subset of the values long_double_t;
— the values of _FloatN are a subset of the values _FloatN_t;
— the values of _DecimalN are a subset of the values _DecimalN_t;
— the values of double_t are a subset of the values of long_double_t;
— the values of _FloatM_t are a subset of the values of _FloatN_t if M < N;
— the values of _DecimalM_t are a subset of the values of _DecimalN_t if M < N.”
	Accepted

	US-204

	
	H.12.2

	Para 4
	ed
	The EXAMPLE has a locale dependency that is not mentioned. In particular, determination of the value of MAXSIZE assumes the decimal-point is just one byte.

	Change:
#define MAXSIZE 41 // > intermediate hex string length
to:
#define MAXSIZE 41 // > intermediate hex string length for “C” locale
and change:
“The array s for the output of strfromencf128 need have no greater size than 41, ...”
to:
“Assuming a single-byte decimal-point character as in the “C” locale, the array s for the output of strfromencf128 need have no greater size than 41, ...”
	Accepted

	GB-205

	
	H.12.3.1, H.12.3.2, H.12.4.1, H.12.4.3, H.12.4.4

	
	ed
	“in the arrays” should be “in the array” , in each of these subclauses, because only a single array with byte order considerations is used by these functions (see CD1 comment GB-173). There is also a missing space after “arrays” in H.12.4.1.
	In each of these five places, change “in the arrays” to “in the array”, also adding the missing space in H.12.4.1.
	Accepted

	US-206

	
	H.12.3.1, H.12.4.1

	2
	ed
	In these sections, “order of bytes in the arrays” should be changed to “order of bytes in the array”, as prescribed in CD NB comment GB-173.
	Change “order of bytes in the arrays” to “order of bytes in the array”.
	Accepted with comment: Resolved by GB-205.

	GB-207

	
	H.12.4

	1
	ed
	“both” should be removed now there are four function families listed here not two.
	Remove “both”.
	Accepted

	US-208

	
	H.12.4.1

	2
	ed
	A space is missing in “arraysfollows”.
	Change “arraysfollows” to “arrays follows”.
	Accepted

	US-209

	
	H.12.4.4

	1
	ed
	
The parameters nptr and endptr in both functions in the Synopsis do not have wide character types as prescribed in N3105. I.e., they use char instead of wchar_t. Do not change the first parameter encptr which correctly uses char.

	Change:
void wcstoencdecdN(unsigned char encptr[restrict static N/8], const char * restrict nptr, char ** restrict endptr);
void wcstoencbindN(unsigned char encptr[restrict static N/8], const char * restrict nptr, char ** restrict endptr);
to:
void wcstoencdecdN(unsigned char encptr[restrict static N/8], const wchar_t * restrict nptr, wchar_t ** restrict endptr);
void wcstoencbindN(unsigned char encptr[restrict static N/8], const wchar_t * restrict nptr, wchar_t ** restrict endptr);
	Accepted

	GB-210

	
	H.13

	6
	ed
	“undefined type is undefined” should just be “undefined”; the extra words don’t seem meaningful or helpful.
	Change “undefined type is undefined” to “undefined”.
	Accepted

	GB-211

	
	H.3

	7
	ed
	In the TRUE_MIN description, “min” should not be in italics. (This is the remaining unfixed part of CD1 comment GB-300; the other parts were fixed.)
	Change “min” out of italics (LaTeX \min).
	Accepted

	US-212

	
	Index

	
	ed
	Page 725: Extra entry
	Remove “MAX identifier suffix, 140”
	Accepted

	US-213

	
	Index

	
	ed
	Page 715: Extra entry
	Remove “MAX, 140”
	Accepted

	US-214

	
	Index

	
	ed
	Page 715: Missing entries
	Add to identifier suffix:
 _DECIMAL_DIG
 _DIG
 _EPSILON
 _H__
 _MANT_DIG
 _MAX_10_EXP
 _MAX_EXP
 _MIN_10_EXP
 _MIN_EXP
 _SNAN
 _TRUE_MIN
 _r
	Accepted

	US-215

	
	Index

	
	ed
	Page 714: Wrong classification of entries
	Move from identifier prefix to identifier suffix
 _DECIMAL_DIG
 _H__
 _r
	Accepted

	US-216

	
	Index

	
	ed
	Page 697: Duplicate entry
	Merge the two “IEC 60559” entries
	Accepted

	US-217

	
	Index

	
	ed
	Page 690: Extra entry
	Remove all __suffix__ entries
	Accepted

	US-218

	
	Index

	
	ed
	Page 690: Extra entry
	Remove all __prefix__ entries
	Accepted

	US-219

	
	Index

	
	ed
	Page 679: _r entry wrong
	_r identifier prefix -> _r identifier suffix
	Accepted

	US-220

	
	Index

	
	ed
	Page 679: Extra entry
	Remove all __suffix__ entries
	Accepted with comment: Also remove the index entry for page 610.

	US-221

	
	Index

	
	ed
	Page 679: Extra entry
	Remove all __prefix__ entries
	Accepted with comment: Also remove the index entry for page 610.

	US-222

	
	Index

	
	ed
	Page 678: _H__ entry wrong
	_H__ identifier prefix -> _H__ identifier suffix
	Accepted

	US-223

	
	Index

	
	ed
	Page 678: _DECIMAL_DIG entry wrong
	_DECIMAL_DIG identifier prefix -> _DECIMAL_DIG identifier suffix
	Accepted

	US-224

	
	Index

	
	ed
	Page 610: Extra entry (only mentioned in J.6.1)
	Remove all references to __suffix__
	Accepted

	US-225

	
	Index

	
	ed
	Page 610: Extra entry (only mentioned in J.6.1)
	Remove all references to __prefix__
	Accepted

	US-226

	
	Index

	
	ed
	Page 609: Extra entry
	“_Float” should be removed.
	Accepted

	US-227

	
	Index

	
	ed
	Page 609: Extra entry
	"_EXT__" should be removed.
	Accepted

	US-228

	
	Index

	
	ed
	Page 609: Extra entry
	“_Decimal” should be removed.
	Accepted

	GB-229

	
	J.2

	
	ed
	Commit 23cd2a52f91117370ddbf4885294f945278403a4 removed an undefined behavior entry, “The initializer for a structure or union object that has automatic storage duration is neither an initializer list nor a single expression that has compatible structure or union type (6.7.10).”. But the requirement concerned here is still in Semantics, not Syntax or Constraints, so violating it is still undefined behavior and should be listed as such. All that was requested in CD1 comment GB-083 (accepted) was to remove “that has automatic storage duration” from the wording of that item, not to remove that item completely.
	Between the present items 80 and 81, restore the previous item 81, minus the words that should have been removed: “The initializer for a structure or union object is neither an initializer list nor a single expression that has compatible structure or union type (6.7.10).”.
	Accepted

	GB-230

	
	J.2

	
	ed
	Item 80 needs updating for empty initializers.
	In item 80, change “neither a single expression” to “neither a single expression, an empty initializer,”.
	Accepted

	GB-231

	
	J.2

	
	ed
	Item 54 does not reflect changes to the definition of constant expressions. This was CD1 comment GB-314, accepted but not applied.
	Change “enumeration constants” to “named and compound literal constants of arithmetic type”.
	Accepted

	US-232

	
	J.2

	1
	ed
	Freeing a null pointer is unconditionally allowed in 7.24.3.3 The free function, but this is not correctly depicted in the UB description in J.2
	Replace:

(181) The pointer argument to the free or realloc function does not match a pointer earlier returned by a memory management function, or the
space has been deallocated by a call to free or realloc (7.24.3.3, 7.24.3.7).

with:

(181) The pointer argument to the free or realloc function is unequal to a null pointer and does not match a pointer earlier returned by a
memory management function, or the space has been deallocated by a call to free or realloc (7.24.3.3, 7.24.3.7).

	Accepted

	GB-233

	
	J.3.12

	1
	ed
	Item 14 (“The byte order of decimal floating type encodings (7.12.16).”) should be removed, as per CD1 comment GB-173, now that the functions referenced are defined to use the __STDC_ENDIAN_NATIVE__ ordering.
	Remove item 14.
	Accepted

	GB-234

	
	K.3.9.2.2.1

	3
	ed
	CD1 comment US-328 reported “Bad line break and inconsistent use of space in front of operator parentheses.”, and was accepted but no change seems to have been applied.
	The requested / accepted change was: Remove space after “sizeof”, which should fix the bad line break there.
	Accepted

	GB-235

	
	M.1

	2
	ed
	“may use this table know” is ungrammatical.
	Change “may use this table know” to “may use this table to know”.
	Accepted

	GB-236

	
	M.1

	Table Annex M.1
	ed
	The noreturn attribute was introduced with value 202202L, not 202002L.
	Change “202002L” to “202202L” in the first noreturn row.
	Accepted

	GB-237

	
	M.1

	Table Annex M.1
	ed
	The word “Annex” should not appear in the numbering of a table; it should be Table M.1 not Table Annex M.1. (See the ISO/IEC Directives, Part 2, 20.4 Numbering and subdivision.)
	Change “Table Annex M.1” to “Table M.1”.
	Accepted

	FR-238

	
	overall

	
	te
	ISO has recently rejected TS 6010 claiming “content not appropriate for an ISO deliverable”. Since the votes on this subject had been conditioned under the premise that such a TS would be possible, the vote should be redone. Also at least two years have passed now since we have publicly announced to the C community that we would like to go in that direction. The texts concerning this are available in WG14 documents even longer. The premature ballot procedure that we already had in March only found one little glitch in the proposed text itself.
	Integrate the text of N3057 Annex C into C23, amended by one additional change corresponding to the last line of N3117.
	Rejected with comment:
See also DE-002.

	GB-239

	
	throughout

	
	ed
	The formatting of footnote references is inconsistent throughout the draft; sometimes the footnote number appears before punctuation, sometimes after, sometimes preceded by a space, sometimes not. This was CD1 comment GB-338, which was accepted; some instances have been fixed, but certainly not all. Footnote 5 is the first example in CD2 of a footnote where the footnote number is preceded by a space. Footnote 10 is the first example where punctuation follows the footnote number.
	Change to follow usual practice consistently: no space before the footnote number, and, if adjacent to punctuation, coming after rather than before that punctuation.
	Accepted

	WG 14 N 3148 / CD2 9899 Final disposition of comments
	Date:2023-06-20
	Document:
	Project:

	MB/
NC1
	Line number
	Clause/
Subclause
	Paragraph/
Figure/Table
	Type of comment2
	Comments
	Proposed change
	Disposition

1	MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2	Type of comment:	ge = general	te = technical	ed = editorial
Page 1 of 1
ISO_IEC CD 9899.2_AFNOR.doc: Collation successful
ISO_IEC CD 9899.2_ANSI.docx: Collation successful
ISO_IEC CD 9899.2_BSI.doc: Collation successful
ISO_IEC CD 9899.2_DIN.docx: Collation successful
ISO_IEC CD 9899.2_SCC.docx: Collation successful
Collation of files was successful. Number of collated files: 5
SELECTED (number of files): 5
PASSED TEST (number of files conformed to CCT table model): 5
FAILED TEST (number of files conformed to CCT table model): 0
CCT - Version 2021.1

image2.emf
ISO-IECJTC1-SC22-W G14_N2701_The__and__in_source_and_execution_character_set.htm

ISO-IECJTC1-SC22-WG14_N2701_The__and__in_source_and_execution_character_set.htm

 N 2701: @ and $ in source and execution character set

 Submitter: Philipp Klaus Krause

 Submission Date: 2021-03-28

Summary:

@ and $ in source and execution character set

This adds @ and $ to the source and execution character set.

Justification:

The basic source character and execution character set are currently only required to contain the basic character set, which currently consists of the characters of the invariable subset of EBCDIC and ASCII, and other characters (even if their position is different in different EBCDIC code pages) that are used as C syntax. The character @ is present both in ASCII and in many EBCDIC code pages. In different EBCDIC code pages it has different positions. It even moved position in ASCII in the 1965 and 1967 updates of ASCII. Today, @ is commonly used in C source code, in particular in email adresses in both comments and string literals. Practically, C users expect this to work. With @ present in both ASCII and EBCDIC, this should be easy to support for implementations (and as witnessed by the widespread use of @ in C source, current implementations already support it). While there are EBCDIC codepages where @ is missing, such as 322, those are code pages that are missing many other characters from the current basic source character set anyway.

$, while not as widely used as @, is somewhat similar. It, too is present in both ASCII and EBCDIC, and has different positions in different EBCDIC code pages. `, is used less commonly in comments than $, but more often in string literals (since it is used in Markdown syntax) and also present in both ASCII and EBCDIC

By requiring @ and $ in the source and execution character set we, reach the goal of making them useable in comments and string literals. By not adding them to the basic source character set, we protect the freedom of implementations of allowing or disallowing them in identifiers, and avoid inconsistency or incompability regarding the use of universal character names (currently the use of universal character names for characters in the basic source character set is not allowed, so adding characters to the basic source character set without lifting that restriction could break existing code).

Do we want to add @ and $ to the source and execution character set as single byte each?

Proposed change: In N2596, §5.2.1.2: Replace "The basic character set shall be present and each character shall be encoded as a single byte." by "The basic character set, @ and $ shall be present and each character shall be encoded as a single byte.".

Do we want to add @ and $ to the source and execution character set without requiring them to be single bytes?

Proposed change: In N2596, §5.2.1.2: Replace "The presence, meaning, and representation of any additional members is locale-specific." by "The meaning, and representation of any additional members is locale-specific. -The characters @ and $ shall be present. The presence of any additional members is locale-specific.".

Do we also want to add ` in the same way as @ and $?

Proposed change: In N2596, §5.2.1.2, as modified by the previous questions, replace "@ and $" by "@, $ and `".

image3.emf
ISO-IEC JTC 1-SC 22-WG 14_N3124_Aligning Universal Character Names Constraints with C++.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3124_Aligning Universal Character Names Constraints with C++.pdf
Proposal for C2x
WG14 N3124

Aligning Universal Character Names
Constraints with C++

Reply-to: Corentin Jabot (corentinjabot@gmail.com)
Document No: N3124
Date: 2024-22-04

Problem

Both C and C++ recently added $, @, and " to the list of characters whose support in source file
is mandated.
C++ added it to the basic character set

C instead mandates these characters must be supported, without extending the basic character
set. This was done this way because

e C does not allow UCNs to designate basic character elements in string literals.

e "\u0024" sometimes appear in source code

This poses a few issues

e Implementations do not really support UCNs outside of identifiers, a stray \u0040 in a
program for example will be diagnosed as an invalid identifier by most implementations,
so the C standard here is supporting something that compilers have no good way to
support.

e Not allowing elements of the basic character set to be formed by a UCN outside of string
literals makes a lot of sense, as doing so would force implementers to support parsing
UCNs as punctuators and worse, if we were to allow basic characters elements as
UCNSs, keywords may contain UCNs. SG22 previously discussed how this would add
complexity for preprocessor directive and macros like defined, and contextual
keywords, and that going down that road would be a significant effort for little benefit. On
the flip side, there is no reason to impose any restrictions on string literals

e Some implementations - GCC and compatible implementations, do support $ in
identifiers. This makes int \u@024 = 0; valid on those implementations in C but not
in C++.

e C++ may decide in the future to use $, @ or " if there is a pressing need for more
punctuators. Supporting these as UCNs outside of strings would be an impediment to
that.

The best way to fix this divergence between the two languages, is for C to adopt the same rules
as C++ by:

e Allowing any UCNs in strings and characters constants
e Not allowing UCNs designating elements of the basic character set anywhere else.

Breaking change?

The proposed wording doesn't exactly allow \u0024 as an extension to support $.
I haven't found a single use of \u0024 outside of identifiers outside of GCC's test suite.

Wording

5.2 Environmental considerations

5.2.1 Character sets

Both the basic source and basic execution character sets shall have the following members:

The 26 uppercase letters of the Latin alphabet
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

The 26 lowercase letters of the Latin alphabet
abcdefghijklm
nopqrstuvwxyz

The 10 decimal digits
0123456789

The following 29 32 graphic characters
"#%& ()" +,-.1/:
y<=>2\ " _{]}~

@$”

the space character, and control characters representing horizontal tab, vertical tab, and form
feed. The representation of each member of the source and execution basic character sets shall
fit in a byte. In both the source and execution basic character sets, the value of each character
after 0 in the above list of decimal digits shall be one greater than the value of the previous. In
source files, there shall be some way of indicating the end of each line of text; this document
treats such an end-of-line indicator as if it were a single new-line character. In the basic
execution character set, there shall be control characters representing alert, backspace,
carriage return, and new line. If any other characters are encountered in a source file (except in
an identifier, a character constant, a string literal, a header name, a comment, or a
preprocessing token that is never converted to a token), the behavior is undefined.

4 A letter is an uppercase letter or a lowercase letter as defined above; in this document the
term does not include other characters that are letters in other alphabets.

5 The universal character name construct provides a way to name other characters.

5.2.1.1 Multibyte characters

1 The source character set may contain multibyte characters, used to represent members of the
extended character set. The execution character set may also contain multibyte characters,
which need not have the same encoding as for the source character set. For both character
sets, the following shall hold:

— The basic character set;+@& C6 3 —S-tk ane
Grave-Aececent—Baektick™-shall be present and each character shall be encoded as a single
byte.

— The presence, meaning, and representation of any additional members is locale-specific.
— A multibyte character set may have a state-dependent encoding, wherein each sequence of
multibyte characters begins in an initial shift state and enters other locale-specific shift states
when specific multibyte characters are encountered in the sequence. While in the initial shift
state, all single-byte characters retain their usual interpretation and do not alter the shift state.
The interpretation for subsequent bytes in the sequence is a function of the current shift state.
— A byte with all bits zero shall be interpreted as a null character independent of shift state.
Such a byte shall not occur as part of any other multibyte character.

6.4.3 Universal character names

Syntax

1. universal-character-name:
\u hex-quad
\U hex-quad hex-quad
hex-quad.
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

Constraints

2. A universal character name shall not designate a code point where the hexadecimal value is:

— greater than 10FFFF

A universal-character-name outside the c-char-sequence of a character constant, or the

s-char-sequence of a string-literal shall not designate a control character or a character in the
basic character set.

Description

3. Universal character names may be used in identifiers, character constants, and string literals
to designate characters that are not in the basic character set.

Semantics

4 The universal character name \Unnnnnnnn designates the character whose eight-digit short
identifier (as specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name
\unnnn designates the character whose four-digit short identifier is nnnn (and whose eight-digit
short identifier is 0000nnnn).

Acknowledgments

Thanks to Aaron Ballman and Robert C. Seacord for their feedback on this paper!

Reference

Steve Downey - P2558R0 Add @, $, and " to the basic character set
Philipp Klaus Krause - N2701: @ and $ in source and execution character set

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2558r0.html

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2701.htm

image4.emf
ISO-IECJTC1-SC22-W G14_N3019_Introduce the nullptr constant v6.htm

ISO-IECJTC1-SC22-WG14_N3019_Introduce the nullptr constant v6.htm

Introduce the nullptr constant

Jens Gustedt (INRIA France)

JeanHeyd Meneide (https://thephd.dev)

2022-07-06

		Abstract

		Summary of Changes

		Introduction

		Rationale

		Why do we need a specific nullptr constant?

		Why do we need a specific nullptr_t type different from void*?

		Design choices

		A null pointer constant of its own right

		A complete object type with fixed representation

		Enable nullptr in “Boolean” contexts

		Impact

		Prior art

		Proposed wording

		Types (6.2.5)

		Boolean type (6.3.1.2)

		Pointers (6.3.2.3)

		nullptr_t (6.3.2.4, new clause)

		Keywords (6.4.1)

		Predefined constants (6.4.4.5)

		Cast operators (6.5.5)

		Equality operators (6.5.9)

		Contexts that interpret an expression as Boolean

		Conditional operator (6.5.15)

		Simple assignment (6.5.16.1)

		The nullptr_t type (7.19.x)

		The va_arg macro (7.16.1.1)

		Editorial changes

		Questions to WG14

		Acknowledgements

		org:

		ISO/IEC JCT1/SC22/WG14

		document:

		N3019

		

		

		… WG21 C and C++ liaison

		

		P2312

		

		target:

		IS 9899:2023

		version:

		6

		

		date:

		2022-07-06

		license:

		CC BY

		

Abstract

Since more than a decade C++ has already replaced the problematic definition of NULL which might be either of integer type or void*. By using a new constant nullptr, they achieve a more constrained specification, that allows much better diagnosis of user code. We propose to integrate this concept into C as far as possible by imposing only minimal ABI additions.

Summary of Changes

		v6

		Add an explicit clause that treats conversions from and to nullptr_t

		Add a constraint that forbids casts from and to nullptr_t in most cases.

		Suggest to the editors to introduce the term “default initialization”.

		v5 Add nullptr_t to the scalar types. Now most of the desired features follow directly.

		v4/R2: Build back for simplicity

		have nullptr_t as a complete object type that has the same representation as void* and char* but only one value, nullptr

		for “Boolean” use cases of nullptr_t only explicitly formulate conversion to bool and test for equality

		add nullptr_t to all places that do “Boolean” evaluation, they are currently formulated as comparison to 0

		add nullptr_t to the set of possible argument types of ... lists, and make them compatible with void* and char* interpretation by va_arg.

		v3/R1: integrating feedback from different sources

		make the type of nullptr incomplete and incompletable

		move most of the type information to nullptr itself and insist that it has as type that is different from any other standard type or type that could be defined by users code

		since nullptr does not have a scalar type, add it explicitly to contexts such as or similar that so far only had scalars

		change the adjustment rules to result in int of value 0 and 1 for contexts where logical evaluation still has that type

		insist that the first operand of a ternary or comma expression is evaluated

		insist that primary expressions such as () or _Generic also are constant expressions or null pointer constants if the respective operands are

		add nullptr to generic selection

		don’t allow nullptr as the last parameter before a ...

		only allow nullptr parameters without names

		v2/R0: a complete rewrite as a proper language feature instead of a shallow macro solution

Introduction

The macro NULL, that goes back quite early, was meant to provide a tool to specify a null pointer constant such that it is easily visible and such that it makes the intention of the programmer to specifier a pointer value clear. Unfortunately, the definition as it is given in the standard misses that goal, because the constant that is hidden behind the macro can be of very different nature.

A null pointer constant can be any integer constant of value 0 or such a constant converted to void*. Thereby several types are possible for NULL. Commonly used are 0 with int, 0L with long and (void*)0 with void*.

		This may lead to surprises when invoking a type-generic macro with an NULL argument.

		Conditional expressions such as (true ? 0 : NULL) and (true ? 1 : NULL) have different status depending how NULL is defined. Whereas the first is always defined, the second is a constraint violation if NULL has type void*, and defined otherwise. In particular, the second happens to work in C++ but most of the times not in C.

		A NULL argument that is passed as a sentinel to a ... function that expects a pointer can have severe consequences. On many architectures nowadays int and void* have different sizes, and so if NULL is just 0, a wrongly sized argument is passed to the function.

		In particular, C++ can’t have NULL as (void*)0 because void* does not implicitly convert to other pointer types. Thus it is usually an integer constant of value zero. On the C side (e.g by printf) such a passed integer constant is then interpreted as void* or char*; such a re-interpretation has undefined behavior.

Rationale

Why do we need a specific nullptr constant?

Null pointer constants in C are a feature that is somewhat defined orthogonal to the type system. They are based on the concept of “integer constant expressions” and may in fact have any integer type (even bool, enumerations, character constants or expressions such as x-x are possible) as long as the value can be determined at translation time and happens to be zero. On top of that ambiguity concerning integer types, it is even permitted to use an explicit cast to void* and to still obtain null pointer constant.

The standard macro NULL inherits from these confusing definitions and has no standardized type and no standardized behavior in contexts that are different from simple conversion to a pointer type. For example a use of NULL as an argument to a ... function is not guaranteed to work.

		If NULL has integer type but different alignment or size than void* any access with va_arg that interprets such an argument could crash the program.

		If NULL has integer type and null pointers are not represented as all-bit zero, such a transferred integer cannot be reinterpreted as a pointer value that would be a null pointer.

		If NULL has integer type (and not void*) and if even the integer type, say long, has the correct size and alignment, an interpretation of that past-in integer in the form

char* a = va_arg(ap, char*);

has undefined behavior. As an exception va_arg allows the reinterpretation between void* and char*, for example, but not from integer type to pointer type.

Also, it is not easy to detect if an argument to a function or even macro is a null pointer constant or only an arbitrary null pointer value. In C, compile time code distinction is usually done in the preprocessor or by _Generic. The preprocessor doesn’t work with NULL because it might not even be a preprocessor constant. _Generic is difficult to use because it is based on types and not values, although there are ways to abuse properties of conditional expressions, integer constant expressions, null pointer constants and _Generic to do so.

Another reason to strengthen the definition of null pointer constants in C is the common confusion between a null pointer and a pointer that points to the zero address in the OS, as is suggested by using integer literals such as 0 to express null pointer constants. Also, the fact that on some architectures a null pointer is not necessarily represented with a all-zero bit-pattern always needs special attention when teaching C and is quite surprising for beginners. If it were that these sophistic distinctions would be necessary for the expressiveness of the language, that could perhaps be acceptable, but here it clearly is a random burden that is imposed on generations of teachers and students that is only rooted in history and has no reason d’être as of today; all other programming languages that have concepts similar to pointers in C do quite well without this ambiguity between numbers and pointers.

The idea of nullptr is to end this ambiguity and to provide a keyword with a value and a portable type that can be used anywhere where a null pointer constant is needed.

The nullptr feature presented in this paper has the following properties.

		It has a complete object type.

		It does not have scalar type, so it is forbidden in arithmetic.

		It converts to any pointer type.

		It converts to bool by always evaluating to false.

		In memory, nullptr is represented with the same bit-pattern as a null pointer constant of type void*.

		nullptr is permitted in all “Boolean” contexts such as && operators or if statements.

		nullptr is permitted as argument to ..., as long as the function interprets it as pointer to void or character type.

The aim is that this feature has exactly the same behavior as the corresponding feature in C++.

Why do we need a specific nullptr_t type different from void*?

The secondary feature proposed in this paper is the the type nullptr_t with the intent to allow better diagnostics for functions that possibly receive a null pointer argument and to potentially optimize the case where a null pointer constant is received.

Consider a function func that receives a pointer parameter that can either be valid or a null pointer to indicate a default choice.

// header "func.h"

void func_general(toto*);

// define a default action

// no parameter name, parameter is never read

inline void func_default(nullptr_t) {

 ...

}

#define func(P) \

 _Generic((P), \

 nullptr_t: func_default, \

 default: func_general)(P)

// one translation unit

#include "func.h"

// emit an external definition

extern void func_default(nullptr_t);

// define the general action

void func_general(toto* p) {

 // p may still have value null

 if (!p) func_default(nullptr); // may only be called with nullptr

 else {

 ...

 }

}

Here, a function func_default is defined that receives a nullptr. The function needs no access to the parameter, since that parameter can only hold one specific value. A type-generic macro func then chooses this function or the general function func_general. The translation unit that defines func_general may then emit an external definition of func_default and also use it within the definition for the case that func_general receives a parameter value that is null without being recognized as such at translation time of the call.

#include "func.h"

...

 func(0); // ok, but uses the general function and may issue a diagnostic

 func((void*)0); // ok, but uses the general function, no diagnostic

 func(NULL); // ok, but uses the general function, diagnostic or not

 func((toto*)0); // ok, but uses the general function, no diagnostic

 func(nullptr); // uses default action directly

The use of the macro with a null pointer constant of integer type then uses the general function and sets the parameter to null; implementations that chose to diagnose the use of null pointer constants of integer type may do so for this call.

In contrast to that, a call that uses nullptr as an argument directly resolves to func_default, may or may not inline the corresponding action, and will not trigger such a diagnosis.

The emission of a diagnosis can be forced by restricting the admissible type as shown in the definition of func_strict.

#define func_strict(P) \

 _Generic((P), \

 nullptr_t: func_default, \

 toto*: func_general)(P)

...

 func_strict(0); // invalid, int argument is not a valid choice, constraint violation

 func_strict((void*)0); // invalid, void* argument is not a valid choice, constraint violation

 func_strict(NULL); // invalid, void* or integer argument is not a valid choice, constraint violation

 func_strict((toto*)0); // ok, but uses the general function, no diagnostic

 func_strict(nullptr); // uses default action directly

Design choices

After WG14 refused a specification for a simple macro with value (void*)0, as well as a sophisticated version with an incomplete type and with a rewriting approach for many contexts, this new version tries a middle ground.

A null pointer constant of its own right

The principal property of nullptr is that it is a null pointer constant. But it is one of its own right, not deduced from a property of any other feature. From the existing text it then basically follows that it can be used everywhere where a pointer is to be initialized or assigned to a null pointer value.

It has a type that is different from all other null pointer constants, in particular the type is neither an integer nor a pointer type. So in any context where type plays a role, it cannot be confused with an expression with a type of any of these.

A complete object type with fixed representation

Other than in previous versions of this paper, we now have nullptr_t as a new scalar type, one that is different from all pointer and all arithmetic types.

The type of nullptr is a complete object type that not an array, or arithmetic and has exactly one value, namely nullptr. For C, this directly disallows the use of the type (and thus nullptr) in most other expressions, in particular in arithmetic.

Because we want to be able to use this type also for parameters, as members of unions (for type punning), and as argument to ... functions, we have to prescribe a representation that makes it admissible to these sorts of contexts. The only possible choice for this is to have the same alignment, size and representation as void* and to force the representation of nullptr to the same bit-pattern as null pointers of type void*.

To enable the use for ... functions, we then just add another exception for va_arg, namely that the behavior is well-defined if an object of nullptr_t is re-interpreted as void* or char*, for example. Because of our choice for the representation, this is easily possible.

Enable nullptr in “Boolean” contexts

Pointers are often used in contexts that have a “Boolean” interpretation, such as if statements, ternary expressions or conversions to bool. In C++ this is also possible for nullptr so we enable this feature for all contexts that have such a “Boolean” interpretation. Note that for C++ this is a bit easier, because there these context are all handled by implicit conversion to bool.

Here, for C, we have to do a little bit more work and have to define conversion to bool and equality comparison separately.

Impact

Since nullptr and nullptr_t are new features, there is no impact for existing code that does not use them.

Code that starts using nullptr_t for interfaces (either as function parameters or via _Generic) will not encounter direct incompatibilities with existing code, because the type didn’t exist before.

Using nullptr itself for the assignment or initialization of variables or as arguments to pointer parameters will work seamlessly; nullptr converts implicitly to any pointer type, much as NULL or any of the current null pointer constants. Eventually, changing the use of NULL for nullptr might detect the misuse of that feature in a context where an integer is expected. This is intended and considered to be an improvement.

Using nullptr for calls into macros that implement type-generic interfaces may encounter incompatibilities. In particular, for interfaces that perform type inspection by means of _Generic the new type nullptr_t of the constant may not fit any of the choices. But, in general this means that the code was not robust when presented with null pointer constants of varying type (integer type, void*) before. In general these problems will result in constraint violations, and thereby give the opportunity to improve the code receiving the nullptr argument with respect to these aspects. This is consistent with the Charter, which states that if there are to be changes, they should strive to be diagnosed rather than perform silent changes in behavior.

Using nullptr for calls into functions with ... will improve situations that had been undefined before. In particular, nullptr can be used as a sentinel for a list of pointers to void or character type, which is not portable when using NULL.

C library implementors would have to add the type nullptr_t to their <stddef.h> header. This can be achieved similar to the following, where 2023MML is the __STDC_VERSION__ number chosen for C23.

#if __STDC_VERSION__ >= 2023MML

typedef typeof(nullptr) nullptr_t; // C23 supports typeof and nullptr

define __STDC_VERSION_STDDEF_H__ 2023MML

#endif

Prior art

The concept to present a null pointer constant as a keyword that is tightly integrated into the language as is proposed here is present in most other programming languages that have the concept of pointers, for example Pascal, Lisp, Smalltalk, Ruby, Objective-C, Lua, Scala, or Go, often with other spellings such as nil, NIL, None, null or Null. The fact that C still does express this concept with other language features is a rare exception in this picture and only a historic artifact and not a necessity.

The nullptr feature together with nullptr_t is present in C++ since C++11 and has extensive implementation and application experience in that framework. This feature is also given under a different name in the Plan 9 C compiler, named nil. It approximates some of the features provided below, but not all of them.

C users often shift between using literal 0 versus (void*)0 for a library-deployed, macro-based definition. There are various trade-offs for doing this (discussed as part of the design decisions above) that can make this have undesirable behaviors and qualities. Recently, users have tried to move away from their own personal definitions for portability and correctness reasons.

Proposed wording

Changes are proposed against the wording in C23 draft n2912. Green and underlined text is new text.

Types (6.2.5)

The nullptr_t type is added to the set of scalar types and thereby inherits all the properties that C has for these

24 Arithmetic types, and pointer types and the nullptr_t type are collectively called scalar types. Array and structure types are collectively called aggregate types.51)

Boolean type (6.3.1.2)

Modify p1

When any scalar value is converted to bool, the result is false if the value is a zero (for arithmetic types), or null (for pointer types) or the scalar has type nullptr_t; otherwise, the result is true.

Pointers (6.3.2.3)

Change p3

3 An integer constant expression with the value 0, or such an expression cast to type void*, or the predefined constant nullptr, is calledare a null pointer constant.68) If a null pointer constant or a value of type nullptr_t (which is necessarily the value nullptr) is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

nullptr_t (6.3.2.4, new clause)

1 The type nullptr_t may be converted to bool or to a pointer type. The result is false or a null pointer value, respectively.

2 The type nullptr_t may be converted to itself.

Keywords (6.4.1)

Add nullptr to the lists in p1.

Predefined constants (6.4.4.5)

Add nullptr to the list of predefined constants and a new paragraph to the description

The keyword nullptr represents a null pointer constant. Details of its type are described in 7.19.x.

Cast operators (6.5.5)

4 A pointer type shall not be converted to any floating type. A floating type shall not be converted to any pointer type. The type nullptr_t shall not be converted to any type other than bool or a pointer type. No type other than nullptr_t shall be converted to nullptr_t.

Equality operators (6.5.9)

Add two items to the list of constraints in p2

– both operands have type nullptr_t;

– one operand has type nullptr_t and the other is a null pointer constant;

Add to the end of p5

If both operands have type nullptr_t or one operand has type nullptr_t and the other is a null pointer constant, they compare equal.

By that a comparison of values of type nullptr_t to 0 (similar as for pointers seen as null pointer constant) is always well defined.

Contexts that interpret an expression as Boolean

To be easily compatible to current uses of NULL , nullptr_t can be used in all contexts that traditionally allow to interpret a pointer as a Boolean value. The particular result for using nullptr or an lvalue of type nullptr_t (that might not be a null pointer constant but just a null pointer) can then be deduced from the equality operators much as this is done for pointer types.

Other than in previous versions of this paper, the addition of nullptr_t to the scalars avoids us to make any changes from the text, here.

Conditional operator (6.5.15)

With this version, we don’t have to change how nullptr_t behaves as the controlling expression of a conditional operand. Nevertheless we have to describe the behavior for the case that it appears in second and/or third position.

3 One of the following shall hold for the second and third operands:FNT1)

		both operands have arithmetic type;

		both operands have the same structure or union type;

		both operands have void type

		both operands are pointers to qualified or unqualified versions of compatible types;

		

both operands have nullptr_t type

		one operand is a pointer and the other is a null pointer constant or has type nullptr_t; or

		one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified version of void.

FNT1) If a second or third operand of type nullptr_t is used that is not a null pointer constant and the other operand is not a pointer or does not have itself nullptr_t, a constraint is violated even if that other operand is a null pointer constant such as 0.

…

7 If both the second and third operands are pointers or one is a null pointer constant and the other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types referenced by both operands. ; if one is a null pointer constant (other than a pointer) or has type nullptr_t and the other is a pointer, the result type is the pointer type; if both the second and third operands have nullptr_t type, the result also has that type. Furthermore, if both operands are pointers to compatible types or to differently qualified versions of compatible types, the result type is a pointer to an appropriately qualified version of the composite type; if one operand is a null pointer constant, the result has the type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void, in which case the result type is a pointer to an appropriately qualified version of void.

Simple assignment (6.5.16.1)

Add an item to the list of permissible types and a footnote in the constraints p1:

– the left operand has an atomic, qualified, or unqualified version of the nullptr_t type and the type of the right is nullptr_t;FNT2)

FNT2) The assignment of an object of type nullptr_t with a value of another type, even if the value is a null pointer constant, is a constraint violation.

The nullptr_t type (7.19.x)

Add to 7.19 p2

nullptr_t

which is the type of the nullptr predefined constant, see below;

And add a new clause 7.19.x to the <stddef.h> header

7.19.x The nullptr_t type

Description

1 The nullptr_t type is the type of the nullptr predefined constant. It has only a very limited use in contexts where this type is needed to distinguish nullptr from other expression types. It is an unqualified complete scalar type that is different from all pointer or arithmetic types and is neither an atomic or array type and has exactly one value, nullptr. Default initialization of an object of this type is equivalent to an initialization by nullptr.

2 The size and alignment of nullptr_t is the same as for a pointer to character type. An object representation of the value nullptr is the same as the object representation of a null pointer value of type void*. An lvalue conversion of an object of type nullptr_t with such an object representation has the value nullptr; if the object representation is different, the behavior is undefined.FNT0)

FNT0) Thus, during the whole program execution an object of type nullptr_t evaluates to the assumed value nullptr.

3 NOTE Because it is considered to be a scalar type, nullptr_t may appear in many context where (void*)0 would be valid, for example,

		as the operand of alignas, sizeof or typeof operators,

		as the operand of an implicit or explicit conversion to a pointer type,

		as the assignment expression in an assignment or initialization of an object of type nullptr_t,

		as an argument to a parameter of type nullptr_t or in a variable argument list,

		as a void expression,

		as the operand of an implicit or explicit conversion to bool,

		as an operand of a _Generic primary expression,

		as an operand of the !, &&, || or conditional operators, or

		as the controlling expression of an if or iteration statement.

The va_arg macro (7.16.1.1)

Modify the end of p2

If type is not compatible with the type of the actual next argument (as promoted according to the default argument promotions), the behavior is undefined, except for the following cases:

– both types are pointers to qualified or unqualified versions of compatible types;

– one type is a signed integer type, the other type is the corresponding unsigned integer type, and the value is representable in both types;

– one type is pointer to qualified or unqualified void and the other is a pointer to a qualified or unqualified character type.;

– the type of the next argument is nullptr_t and type is a pointer type that has the same representation and alignment requirements as a pointer to a character type.FNT1)

FNT1) Such types are in particular pointers to qualified or unqualified versions of void.

Note to the editors: The readability of 7.16.1.1 could gain by renaming the macro parameter type to something like T.

Editorial changes

There are several other editorial changes that can be done in that context. We leave them discretion of the editors.

Default initialization

Although this term is used in the C standard (for atomics) and found in the index, this term is actually never defined explicitly. This could be changed non-normatively by changing phrase of 6.7.9 p11 that introduces the item list

If an object that has static or thread storage duration is not initialized explicitly, or is initialized with an empty initializer, then default initialization is applied:

Usage of NULL

There are several usages of the macro NULL throughout the library clause of the form (char**)NULL which would probably better be replaced by nullptr without cast.

Forward references

For several of the places where this document proposes changes, forward references to 7.19.x either directly in the text or as separate paragraph at the end of the respective clause could be needed.

Undefined behavior – Annex J

		Using a null pointer constant in form of an integer expression as argument to a ... function and then interpret it as void* or char* is undefined behavior. This could be added to Annex J as entry for va_arg (7.16.1.1)

		A specific entry for nullptr_t (7.19.x) could be made that stipulates that arbitrarily changing or copying from a non-null pointer value into a nullptr_t object and then reading that object has UB.

Feature test macro

This paper proposes a change to the <stddef.h> header, so this header now needs a test macro __STDC_VERSION_STDDEF_H__. During the transition to C23, this would help users to determine if the nullptr_t type is available for their current version of the C library:

#include <stddef.h>

#if __STDC_VERSION_STDDEF_H__ > 0

/* all is fine, we should also have have nullptr */

#elif __STDC_VERSION__ > 202300L

typedef typeof(nullptr) nullptr_t; // C23 supports typeof and nullptr

#else

error "nullptr_t is missing"

#endif

Questions to WG14

Does WG14 want to integrate the changes of N3019 into C23?

Acknowledgements

Many thanks to Joseph Myers for the very detailed review and feedback.

image5.emf
ISO-IEC JTC 1-SC 22-WG 14_N3111_Six versus eight-digit short identifiers v2.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3111_Six versus eight-digit short identifiers v2.pdf
Proposal for C23

WG14 N 3111

Title: Six versus eight-digit short identifiers v2

Author, affiliation: Robert C. Seacord, Woven Planet

Date: 2023-2-13

Proposal category: Defect

Target audience: Implementers

Abstract: Six versus eight-digit short identifiers for universal character names

Prior art: C

Six versus eight-digit short identifiers v2

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3111

Reference Document: N 3019

Date: 2023-9-2

Change Log
2023-2-13:

e |Initial version
2023-2-19:

e Changed “hexadecimal number” to “hexadecimal value.”
e Changed “0000FFFF” to “O0FFFF” and change “00010000” to “010000.”

1.0 Introduction and Rationale

NB comment GB-012 from [n3019] identifies the issue that the 2011 edition of ISO/IEC 10646
removed eight-digit short identifiers that were present in the 2003 edition (and this removal still
applies as of the 2020 edition) but the current C23 draft supports eight-digit short identifiers but not
six-digit short identifiers.

SC 22 N 5777, Subclause 6.4.3, “Universal character names” paragraph 4 states that:

The universal character name \Unnnnnnnn designates the character whose eight-
digit short identifier (as specified by ISO/IEC 10646) is nnnnnnnn.80) Similarly, the
universal character name \unnnn designates the character whose four-digit short
identifier is nnnn (and whose eight-digit short identifier is 0000nnnn).

Ideally, the C standard would only use short identifiers with no more than six digits. However, this
would break backwards compatibility.

2.0 Proposed Solution

This solution is largely editorial. It does not change any syntax or semantics, but simply eliminates or
corrects any incorrect references to short identifiers.

3.0 Wording
Replace Subclause 6.4.3, “Universal character names”, paragraph 4:

The universal character name \Unnnnnnnn designates the character whose eight-digit short
identifier (as specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name
\unnnn designates the character whose four-digit short identifier is nnnn (and whose eight-digit
short identifier is 0000nnnn).

with

A universal character name designates the character in ISO/IEC 10646 whose code point is the
hexadecimal value represented by the sequence of hexadecimal digits in the universal character

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3091.doc

name.

[Editor’s note: Remove footnote 80]

In Subclause 5.2.4.1 paragraph 1, change “O0000FFFF” to “O0FFFF” and change “00010000” to
“010000”.

— 31 significant initial characters in an external identifier (each universal character name specifying
a short identifier of 0000FFFF or less is considered 6 characters, each universal character name
specifying a short identifier of 00010000 or more is considered 10 characters, and each extended
source character is considered the same number of characters as the corresponding universal
character name, if any)*®

4.0 Acknowledgements

| would like to recognize the following people for their help with this work: Corentin Jabot, Aaron
Ballman, Steve Downey, Peter Bindels, Jens Gustedt, and Joseph Myers.

5.0 References

[n2785] Corentin Jabot, Aaron Ballman. Delimited escapes sequences. https://www.open-
std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

[n3019] Keaton, David. CD1 9899 ballot comments with progress from first week of ballot resolution.

[P2071R0] Tom Honermann and Peter Bindels. P2071R0: Named universal character escapes.
https://wg21.link/p2071r0, 1 2020.

[P2290R3] Corentin Jabot. P2290R3: Delimited escape sequences. https://wg21.link/p2290r1, 6
2021.

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3091.doc

image6.emf
ISO-IEC JTC 1-SC 22-WG 14_N3112_Compatible Types.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3112_Compatible Types.pdf
Proposal for C23

WG14 N 3112

Title: Compatible Types

Author, affiliation: Robert C. Seacord, Woven Planet
Date: 2023-2-13

Proposal category: Defect

Target audience: Implementers

Abstract: Compatible types

Prior art: C

Compatible Types

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3112

Reference Document: N 3019

Date: 2023-2-17

Change Log
2023-2-17:
e Initial version

1.0 Introduction and Rationale

The aliasing rules Subclause 6.5, paragraph 7 allows “the signed or unsigned type” to alias another
object but fails to mention type compatibility. Consequently, it is unclear if a compatible
enumeration type can alias such an object.

2.0 Proposed Solution

The proposed solution is to allow compatible types to alias in all cases.
3.0 Wording

Subclause 6.5, “Expressions”, paragraph 7:

Change:

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

to:

— the signed or unsigned type compatible with the underlying type of the effective type of the

object,

— the signed or unsigned type compatible with a qualified version of the underlying type of the
effective type of the object,

Make the following changes to subclause 7.16.1.1, “The va_arg macro”, paragraph 2:

— one type is compatible with a signed integer type, the other type is compatible with the
corresponding unsigned integer type, and the value is representable in both types;

4.0 Acknowledgements

| would like to recognize the following people for their help with this work: Martin Uecker, Jens
Gustedt, and Joseph Myers.

5.0 References

None.

image7.emf
ISO-IECJTC1-SC22-W G14_N2713_Integer_Constant_Expression.htm

ISO-IECJTC1-SC22-WG14_N2713_Integer_Constant_Expression.htm

 Submitter:Fred J. Tydeman

 Submission Date: 2021-04-18

 Document: WG14 N2713

 Title: N2713: Integer Constant Expression

 Reference Documents: C99 DR 312, C11 DR 489, N2596

 Summary

 Based upon my testing, implementations differ on their

 treatment of what is or is not an integer constant expression,

 and hence, what is or is not a VLA (variable length array).

 Defect Report (DR) 312 against C99 has, as part of the

 committee discussion:

 Even if an implementation accepts other forms of constant

 expressions, paragraph 6.6#10 does not change the definition of

 an integer constant expression given by paragraph 6.6#6, and

 int[(int)+1.0] is still a VLA.

 However, those words have never been added to C.

 Proposal

 Change 6.6 Constant expressions, paragraph 10:

 An implementation may accept other forms of constant

 expressions.

 to

 An implementation may accept other forms of constant

 expressions, however, they are not an integer constant

 expression.

image8.emf
ISO-IEC JTC 1-SC 22-WG 14_N3125_ Rebuttal to N2713 Integer Constant Expressions.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3125_ Rebuttal to N2713 Integer Constant Expressions.pdf
Proposal for C2x

WG14 N3125

Title: Rebuttal to N2713 Integer Constant Expressions

Author, affiliation: Aaron Ballman, Intel

Date: 2023-04-23

Proposal category: Issue

Abstract: The original paper makes it invalid to accept other forms of integer constant

expressions, but this diverges from existing practice and breaks code.

Rebuttal to N2713 Integer Constant
Expressions

Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N3125
Date: 2023-04-18

Summary of Changes

N3125
e Original proposal

Introduction and Rationale

WG14 N2713 took the committee resolution of DR312 and added its wording to the C2x draft standard,
which proscribes implementations from accepting other forms of integer constant expressions. This was
done because of concerns that extended integer constant expressions may form a constant array type in
one implementation and a variable-length array type in another.

We would like N2713 (https://www.open-std.org/jtcl/sc22/wgl4/www/docs/n2713.htm) removed from
C2x because it deviates from existing implementation practice in too many areas and the result of the
changes potentially introduces surprising, breaking effects on existing user code. We agree that the paper
is trying to solve an important problem, but as we investigated the changes we'd need to make to our
implementation, it appears to be sufficiently disruptive that we might not implement it in Clang due to
these concerns.

Below are several examples of where this change diverges from existing implementation practice. While
these examples may appear contrived, the problems are not limited to use of Static assert norto
such simple constant expressions in real world code. (Note, the ICC "failures" in the Compiler Explorer
links below are sometimes due to printing the tool's deprecation warning and are unrelated to the
example; you can expand the compilers to see their exact output.)

_Static assert(Generic(l, int : 1), "");

https://godbolt.org/z/5z2TYcMYMb (All tested compilers accept)

(_Generic is perhaps not allowed in an ICE — the associations for the expression are operands that don’t
match the ones listed in 6.6p8.)

_Static assert(Generic(l, int : 1, float : 1.0f), "");
https://godbolt.org/z/b4MPbbrff (All tested compilers accept)

(Assuming that association operands are fine, this use of _Generic has an association which includes a
floating-point constant which is not allowed in an ICE.)

_Static_assert((int) (float)1.0f, "");

https://godbolt.org/z/59Tf3Egx1 (GCC and Clang correctly diagnose while accepting the code, other
implementations silently accept it)

(Cast operations are only allowed to convert an arithmetic type to an integer type, so the intermediate cast
is not allowed in an ICE even though it has no effect.)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2713.htm

https://godbolt.org/z/5zTYcMYMb

https://godbolt.org/z/b4MPbbrff

https://godbolt.org/z/5qTf3Eqx1

_Static assert((int) (0 2 1.0f : 1), "");

https://godbolt.org/z/\WdglYddee (GCC and Clang correctly diagnose while accepting the code, other
implementations silently accept it)

(The float operand is not allowed in a constant expression despite the branch not being executed and the
expression result being cast to int.)

_Static assert(l 2: 1, "");

(GCC, Clang, and ICC all implement this extension and do not diagnose it as being invalid in an ICE, but
it's not clear if this is "another form™ of constant expression or not. If it is a valid ICE, then consider
_Static assert(builtin strlen("test"), ""); --does the use of "test" prevent this from
being an integer constant expression? What about the use of a function call operator? The second example
is also accepted by GCC and Clang, but is diagnosed by ICC.)

We believe more examples exist and we are reasonably sure that more implementations exist with
different behaviors. DR312 made it clear that the committee's intent was that implementations cannot add
additional forms of integer constant expressions. However, the standard’s unambiguous wording allowing
arbitrary extensions to constant expressions was present since at least ANSI C and had not changed in
30+ years until adopting N2713. That’s a long time for implementations to build up considerable uses of
extensions to integer constant expressions they support and removing those extensions will change the
meaning of user code. Hopefully this is sufficiently compelling to the committee to warrant reconsidering
N2713 in light of the current implementation landscape and implementer concerns with the changes. The
paper, while admirable in its goals and faithful to the committee’s intent in 2006, has the potential to do
more harm than good and we believe more work is needed in this area, especially to avoid silently
converting constant arrays into variable length arrays, and that work is better suited to a future revision of
C given where we are in the release schedule.

Proposed Straw Poll
Does WG14 want to adopt the proposed wording from N3125?

Proposed Wording

All proposed wording in this document is a diff from WG14 N3096. text is new text, while red text
is deleted text.

Modify 6.6p14:

An implementation may accept other forms of constant expressions;-hewever-they-are-not-an-integer

Remove Footnote 135.

https://godbolt.org/z/Wdq1Yddee

image9.emf
ISO-IEC JTC 1-SC 22-WG 14_N3125_ Rebuttal to N2713 Integer Constant Expressions.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3125_ Rebuttal to N2713 Integer Constant Expressions.pdf
Proposal for C2x

WG14 N3125

Title: Rebuttal to N2713 Integer Constant Expressions

Author, affiliation: Aaron Ballman, Intel

Date: 2023-04-23

Proposal category: Issue

Abstract: The original paper makes it invalid to accept other forms of integer constant

expressions, but this diverges from existing practice and breaks code.

Rebuttal to N2713 Integer Constant
Expressions

Reply-to: Aaron Ballman (aaron@aaronballman.com)
Document No: N3125
Date: 2023-04-18

Summary of Changes

N3125
e Original proposal

Introduction and Rationale

WG14 N2713 took the committee resolution of DR312 and added its wording to the C2x draft standard,
which proscribes implementations from accepting other forms of integer constant expressions. This was
done because of concerns that extended integer constant expressions may form a constant array type in
one implementation and a variable-length array type in another.

We would like N2713 (https://www.open-std.org/jtcl/sc22/wgl4/www/docs/n2713.htm) removed from
C2x because it deviates from existing implementation practice in too many areas and the result of the
changes potentially introduces surprising, breaking effects on existing user code. We agree that the paper
is trying to solve an important problem, but as we investigated the changes we'd need to make to our
implementation, it appears to be sufficiently disruptive that we might not implement it in Clang due to
these concerns.

Below are several examples of where this change diverges from existing implementation practice. While
these examples may appear contrived, the problems are not limited to use of Static assert norto
such simple constant expressions in real world code. (Note, the ICC "failures" in the Compiler Explorer
links below are sometimes due to printing the tool's deprecation warning and are unrelated to the
example; you can expand the compilers to see their exact output.)

_Static assert(Generic(l, int : 1), "");

https://godbolt.org/z/5z2TYcMYMb (All tested compilers accept)

(_Generic is perhaps not allowed in an ICE — the associations for the expression are operands that don’t
match the ones listed in 6.6p8.)

_Static assert(Generic(l, int : 1, float : 1.0f), "");
https://godbolt.org/z/b4MPbbrff (All tested compilers accept)

(Assuming that association operands are fine, this use of _Generic has an association which includes a
floating-point constant which is not allowed in an ICE.)

_Static_assert((int) (float)1.0f, "");

https://godbolt.org/z/59Tf3Egx1 (GCC and Clang correctly diagnose while accepting the code, other
implementations silently accept it)

(Cast operations are only allowed to convert an arithmetic type to an integer type, so the intermediate cast
is not allowed in an ICE even though it has no effect.)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2713.htm

https://godbolt.org/z/5zTYcMYMb

https://godbolt.org/z/b4MPbbrff

https://godbolt.org/z/5qTf3Eqx1

_Static assert((int) (0 2 1.0f : 1), "");

https://godbolt.org/z/\WdglYddee (GCC and Clang correctly diagnose while accepting the code, other
implementations silently accept it)

(The float operand is not allowed in a constant expression despite the branch not being executed and the
expression result being cast to int.)

_Static assert(l 2: 1, "");

(GCC, Clang, and ICC all implement this extension and do not diagnose it as being invalid in an ICE, but
it's not clear if this is "another form™ of constant expression or not. If it is a valid ICE, then consider
_Static assert(builtin strlen("test"), ""); --does the use of "test" prevent this from
being an integer constant expression? What about the use of a function call operator? The second example
is also accepted by GCC and Clang, but is diagnosed by ICC.)

We believe more examples exist and we are reasonably sure that more implementations exist with
different behaviors. DR312 made it clear that the committee's intent was that implementations cannot add
additional forms of integer constant expressions. However, the standard’s unambiguous wording allowing
arbitrary extensions to constant expressions was present since at least ANSI C and had not changed in
30+ years until adopting N2713. That’s a long time for implementations to build up considerable uses of
extensions to integer constant expressions they support and removing those extensions will change the
meaning of user code. Hopefully this is sufficiently compelling to the committee to warrant reconsidering
N2713 in light of the current implementation landscape and implementer concerns with the changes. The
paper, while admirable in its goals and faithful to the committee’s intent in 2006, has the potential to do
more harm than good and we believe more work is needed in this area, especially to avoid silently
converting constant arrays into variable length arrays, and that work is better suited to a future revision of
C given where we are in the release schedule.

Proposed Straw Poll
Does WG14 want to adopt the proposed wording from N3125?

Proposed Wording

All proposed wording in this document is a diff from WG14 N3096. text is new text, while red text
is deleted text.

Modify 6.6p14:

An implementation may accept other forms of constant expressions;-hewever-they-are-not-an-integer

Remove Footnote 135.

https://godbolt.org/z/Wdq1Yddee

image10.emf
ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf
WG14 N3082

Title: CFP response to NB comments and N3071 - update
Author, affiliation: C FP group

Date: 2023-01-19

Reference: N3054,N3067,N3071,N3073, N3081

This document updates N3081, “CFP response to NB comments and N3071". It includes: (1) response to
N3073, “Updated SCC Comments for ISO/IEC CD 9899, C”, (2) changes intended to address WG14 email
comments, and (3) clarifications. Changes from N3081 are highlighted.

Below are the comments CFP has reviewed and our suggested response. (Editorial comments seen as clear
and uncontroversial are not listed.) Also, at the end, are suggested responses to the issues raised in N3071.

Agree. Accept proposed change.

US 5-018

US 6-023

GB-063

GB-127

GB-147

GB-149

GB-152

US 39-155

GB-156

GB-157

GB-163

US 40-166

GB-173

US 56-187

US 57-189

GB-220 and duplicate US 63-216
GB-229

GB-230

GB-267

GB-268 Note also F.10.3.7 uses exp while 7.12.6.7 uses p for the same argument.
GB-269

GB-271 Wording more style-consistent than similar US 68-270.
GB-276

US 67-278

Disagree. No change needed.

GB-153
If imaginary types are not supported the formula gives Inf + (0,1)*zero = Inf + (zero,zero) = (Inf, zero). The
normative formula defines proj when z has an infinite part.

GB-164
The qualification for default rounding in C18 was intended to apply to returning HUGE_VAL, not to reporting
an error. If overflow returns a finite number, it's even more important to report it. Change not desired.

However, if preserving the default rounding qualification is deemed too valuable, the qualification could be
restored for errno but not floating-point exceptions, as follows:

In 7.12.1 #5, insert before “and the integer expressionmath_errhandling & MATH_ ERRNO is nonzero”
the words “and default rounding is in effect”.

The corresponding change for MATHERR EXCEPT should not be made. Not raising an “overflow” floating-
point exception when overflow occurs because a non-default rounding direction is in effect would be
inconsistent with IEC 60559. In this regard, the following clarification should be made (if the change above is
made):

In 7.12.1 #5, insert at the end of the paragraph, after “the ‘overflow’ floating-point exception is raised” the
parenthetical remark “(regardless of whether default rounding is in effect)”.

US 43-170

Both footnotes are implied by the Description (“return the maximum/minimum numeric value of their
argument”), so are not normative. No change needed.

CA-N3073-006
Recommend no change.

The primary objection raised with the CD specification is that it requires some current implementations with
double-double formats for long double to change macro values. This requirement comes from the CD’s
clarification that all normalized numbers, i.e. all numbers with a given precision (p) within a given exponent
range (emin through emax), must be represented.

The last Proposed Technical Corrigendum (April 2017, too late for C18) for DR #467 included a change to
clarify that a type must be able to represent all normalized numbers. This property is important for users,
and, we believe, has been generally assumed. For example, users might reasonably expect that

#include <float.h>

#ifdef LDBL_MANT DIG >= 105

long double x = 0x1.1234567890123456789012345Fp0L;
#endif

would store the exact value of its initializer in x.

The change proposed in CA-N3073-006 qualifies the definition of the * MANT DIG (and other) macros with
“in relation to implementation-defined model parameters not subject to the restriction that the floating type
is able to represent all normalized floating-point numbers”. This change would invalidate the code (above),
and the general assumption about the macros.

The change proposed in CA-N3073-006 also introduces new macros that are equivalent to the ones in the CD
now. This would be a cost to users in needing to understand more specification, the differences between old
and new macros, and which ones they should use. We expect almost all users would want the ones in the CD
and (with the proposed change) they would need to modify their code to get them.

We appreciate the general concern that there might be unknown user consequences of interface changes, that
existing program might get different results. Here, an implementation would need to change its macro

definitions only if (1) the values are not currently consistent with respect to some fixed p, emax, and emin, or
(2) the implementation doesn’t represent all normalized numbers for its chosen p, emax, and emin. We are
not aware of meaningful use of the macros that the required implementation changes would break.

CA-N3073-006 proposes changes and new macros for the * MANT DIGand* EPSILON macros. But other
macros are similarly dependent on the representability of normalized numbers. The proposed change (if
generally accepted) would need to be expanded.

Generally agree. Modify /complete proposed change.

GB-007

Agree with first two changes. In 6.7.1 change “single precision” to “£loat” and change “32-bit single-
precision IEC 60559” to “IEC 60559 binary32”.

US 26-075
In 6.7.1 #5 after the second sentence, insert “An initializer of floating type shall be evaluated with the
translation-time floating-point environment.”

In the comment example the fesetround call would not affect the initialization of h.

GB-151

Change both footnotes to: “For a complex variable z, z and CMPLX (creal (z) , cimag(z)) are equivalent
expressions. If imaginary types are supported, z and creal (z) + cimag(z) *I are equivalent
expressions.”

US 42-169
Add the Returns paragraph as suggested. Similar 7.24.1.3 has a Returns section.

US 71-275
Delete the entire line. It was a holdover from earlier version of IEC 60559.

GB-279

CFP response (above) to US-75 makes constexpr initialization done with the translation-time floating-
point environment, like for static and thread storage duration. It would be independent of the FENV_ACCESS
pragma but would be affected by the FENV_ROUND and FENV_DEC_ROUND pragmas.

In F.8.4 #1 insert after “for an object that has static or thread storage duration” the words “or that is declared
with storage-class specifier constexpr”.

In F.8.4 #2 in the example before “float w[] =..”insert“constexpr double v = 0.0/0.0; //
does not raise an exception”.

In F.8.4 #3 change “For the static initialization” to “For the static and constexpr initializations”.

In F.8.5 #1 insert after “of objects that have static or thread storage duration” the words “or that are declared
with storage-class specifier constexpr”.

In F.8.5 #2 in the example before “float u[] =..”insert“constexpr float t = (float)l.le75;
// does not raise an exception”.

In F.8.5 #3 change “The static initialization of v raises no (execution-time) floating-point exceptions because
its computation is done at translation time” to “The constexpr initialization of t and the static initialization
of v raise no (execution-time) floating-point exceptions because their computation is done at translation
time”.

A related problem is that the CD specification for initialization with signaling NaN macros doesn’t cover
constexpr. This could be fixed with the following change:

In 5.2.4.2.2 #21 replace “If an optional unary + or - operator followed by a signaling NaN macro is used as the
initializer for initializing an object of the same type that has static or thread storage duration ...” with “If an
optional unary + or - operator followed by a signaling NaN macro is used as an initializer that must be
evaluated at translation time ...".

GB-286

The strto£fN functions are not like the strfrom£N functions whose wide character versions can easily be
obtained from other functions (as shown in an example). Rather than add them at this late date ...

In 7.33.20 after paragraph 1 add: “Functions with potentially reserved identifiers westofN and westodN
are intended to be wide character analogs of the strtofN and strtodN functions.”

GB-287
The suggested change seems too large to do now. Instead ...

In 7.24.1.6#4 change the bullet “It is not a hexadecimal floating number” to “Whether the subject sequence
may be a hexadecimal floating number is implementation-defined.”

In 7.24.1.6, before the Returns section, insert:

Recommended practice
Rounding for hexadecimal input should follow the method in H.12.2.

In 7.24.1.6#4, in the "0x1 . 8p+4" example, before “(+1, 0, 0), ...” insert “If hexadecimal input is accepted, (+1,
24, 0). If hexadecimal input is not accepted, ”

GB-288

To H.12.2 #3 append: “The preferred quantum exponent for the result is 0 if the hexadecimal number is
exactly represented in the decimal type; the preferred quantum exponent for the result is the least possible if
the hexadecimal number is not exactly represented in the decimal type.”

About N3071

The following proposed changes are intended to address the missing (or ambiguous) specification pointed
outin N3071.

To 6.7.1 #5, append: “If the object declared has real floating type, the initializer shall have integer or real
floating type. If the object declared has imaginary type, the initializer shall have imaginary type. If the
initializer has decimal floating type, the object declared shall have decimal floating type and the conversion
shall preserve the quantum of the initializer. If the initializer has real type and a signaling NaN value, the
unqualified versions of the type of the initializer and the corresponding real type of the object declared shall
be compatible.”

After 6.7.1 #17 (EXAMPLE 3), insert

EXAMPLE 4 This example illustrates constexpr initializations involving different type domains,
decimal and non-decimal floating types, NaNs and infinities, and quanta in decimal floating types.

#include <float.h>
#include <complex.h>

constexpr float _Complex fcl = 1.0; // ok

constexpr float _Complex fc2 = 0.1; // constraint violation, unless double
// has the same precision as float
// and is evaluated with the same
// precision

constexpr float _Complex fc3 = 3*I; // ok

constexpr double dl = (double _Complex)1.0; // constraint violation

constexpr double d2 = (double _Imaginary)0.0; // constraint violation

constexpr float f1 = (long double) INFINITY; // ok

constexpr float £2 = (long double)NAN; // ok, quiet NaNs in real floating
// types are considered the same
// value, regardless of payloads

constexpr double d3 = DBL_SNAN; // ok

constexpr double d4 = FLT SNAN; // constraint violation, even if float
// and double have the same format

constexpr double _Complex dcl = DBL SNAN; // ok

constexpr double _Complex dc2 = CMPLX(DBL_SNAN, 0.); // ok

constexpr double _Complex dc3 = CMPLX(0., DBL_SNAN) ; // ok

constexpr _Decimal32 d321 = 1.0; // ok

constexpr _Decimal32 d322 = 1; // ok

constexpr _Decimal32 d323 = INFINITY; // ok

constexpr _Decimal32 d324 = NAN; // ok

constexpr _Decimal64 dé41 = DEC64_SNAN; // ok

constexpr _Decimal64 d642 = DEC32_SNAN; // constraint violation

constexpr float £3 = 1.DF; // constraint violation

constexpr float f4 = DEC_INFINITY; // constraint violation

constexpr double d5 = DEC_NAN; // constraint violation

constexpr _Decimal32 d325 = DEC64_TRUE _MIN * 0; // constraint violation, quantum not
// preserved

#ifdef _ STDC_IEC_ 60559 COMPLEX _

constexpr double d6é = (double _Imaginary)0.0; // constraint violation

constexpr double _Imaginary dil = 0.0*I; // ok

constexpr double _Imaginary di2 = 0.0; // constraint violation

#endif

The following is an additional editorial comment, with a proposal:

6.7.1 #14 (NOTE 2) uses “mantissa” which is used nowhere else in the document. Suggest changing “a
diagnostic is required if a truncation of the mantissa occurs” to “a diagnostic is required if a truncation of the
excess precision changes the value”.

image11.emf
ISO-IEC JTC 1-SC 22-WG 14_N3071_Conversions in constexpr initializers (C2x CD UK comment).pdf

ISO-IEC JTC 1-SC 22-WG 14_N3071_Conversions in constexpr initializers (C2x CD UK comment).pdf
N3071 Conversions in constexpr initializers
(C2x CD UK comment)

Joseph Myers

All subclause and paragraph references here are to the C2x CD, SC22 N5777. Throughout, it is supposed
that Annex F is in effect for binary floating-point arithmetic, so f Lloat and doub le have the IEC 60559
binary32 and binary64 formats.

6.7.1 paragraph 5 says, regarding initializers for constexpr objects, says:

The value of any constant expressions or of any character in a string literal of the initializer
shall be exactly representable in the corresponding target type; no change of value shall be
applied.

with a footnote saying

In the context of arithmetic conversions, 6.3.1 describes the details of changes of value that
occur if values of arithmetic expressions are stored in the objects that for example have a
different signedness, excess precision or quantum exponent. Whenever such a change of value
is necessary, the constraint is violated.

6.3.1 does not define the concepts of “exactly representable” or “change of value”. To some extent, it uses
those concepts (without a precise definition). However, various ambiguities arise in the interpretation of
those concepts for constexpr initializers of objects of (real or complex) floating type, that do not arise
in 6.3.1, at least when 6.3.1 is taken together with the more detailed semantics in Annex F. Subclause
6.3.1 (plus Annex F) only has to define what the result of a conversion is; it doesn’t have to define
whether values in one type are considered the same as values in another type.

In particular, the concept of “represented exactly” as used in 6.3.1.5 is considered as one of a group of
cases with “in the range of values that can be represented but cannot be represented exactly” and “outside
the range of values that can be represented”. This does not cover the cases of NaNs (not ordered, so not
part of any range), or of additional information beyond that determined by the ordering (sign of zero,
quantum exponent). Furthermore, the rules for conversions between real and complex types in 6.3.1.7
never need to say whether a value is considered exactly representable in another type; they simply say
what the result of a conversion is.

Thus, consider the following specific questions and examples. In each case, WG14 needs to decide what
the desired semantics are, and ensure that normative text (not just footnotes and examples) is sufficient to
make those semantics clear. This should probably be done based on recommendations from the C
floating-point group, and much of the normative text might reasonably go in Annex F (maybe F.8.5) and
Annex G; I have previously suggested that defining a term “constexpr-representable” might be helpful.
For some of the questions, the answers might be different in different sub-cases; the examples try to
illustrate the main possible sub-cases.

Real to complex

Question 1: Suppose a constexpr object of complex type is initialized with an expression of real type
(including the case of integer type), and that value is exactly representable (whatever that means) in the
corresponding real type. Does this count as exactly representable in the complex type, or is (x, 0)
considered as a different value from the real number x (one has an imaginary part (of 0), the other

doesn’t), so resulting in a constraint violation?

constexpr _Complex double x1 = 1.0;

Complex to real

Question 2: Suppose a constexpr object of real floating type is initialized with an expression of
complex type, and the real part of the expression is exactly representable (whatever that means) in the
type of the object being initialized, and the imaginary part is the same (positive or unsigned) zero that
results from a conversion from real to complex type. Does this count as exactly representable in the real
type, or is (x, 0) considered as a different value from the real number x, so resulting in a constraint
violation?

constexpr double x2 = (_Complex double) 1.0;

Question 3: If the example in Question 2 is valid, what about if the zero is a different one from that
resulting from conversion from real to complex (for example, if it is a negative zero)? Is this valid or a
constraint violation?

#include <complex.h>

constexpr double x3 = CMPLX (1.0, -0.0);

Quiet NaNs

Question 4: Is a quiet NaN of one standard floating type considered exactly representable in another
standard floating type? Or is this only guaranteed in some cases, depending on whether the payload can
be presented in both types? Does it depend in some way on how the implementation defines conversions
between NaNs in different types?

#include <float.h>

constexpr double x4a = NAN;

constexpr long double x4b = NAN;
constexpr float x4c = (double) NAN;
constexpr float x4d (long double) NAN;

Signaling NaNs

Question 5: Is a signaling NaN of one standard floating type considered exactly representable in another
standard floating type? There is a strong argument that it should not be valid as an initializer if the two
types are of different formats, because the implicit conversion would produce a quiet NaN. If the two
types are of the same format, does validity depend on whether the conversion is a convertFormat or copy
operation?

#include <float.h>

constexpr double x5a = FLT_SNAN;

// Does validity of these examples depend on whether double and long
// double have the same format, and, if they do, whether the

// conversion is a convertFormat or copy operation?

constexpr long double x5b = DBL_SNAN;

constexpr double x5c = LDBL_SNAN;

Standard, binary or integer to decimal

Question 6: Suppose a constexpr object of decimal floating type is initialized with an expression of

standard or binary floating type, and that the value represented by that expression at IEEE Level 2
(“Floating-point data”) can also be represented in the decimal floating type. Is this valid, or is it a
constraint violation because of differences at IEEE Level 3 (which represents quantum exponents, which
don’t exist in binary types)? Does it make any difference if the value is an infinity or (quiet) NaN (no
quantum exponents)? And what about integer values?

#include <float.h>

constexpr _Decimal32 x6a 1.0;
constexpr _Decimal32 x6b INFINITY;
constexpr _Decimall28 x6c = NAN;
constexpr _Decimal32 x6d = 1;

Decimal to standard or binary

Question 7: Suppose a constexpr object of standard or binary floating type is initialized with an
expression of decimal floating type, and that the value represented by that expression at IEEE Level 2
(“Floating-point data”) can also be represented in the standard or binary floating type. Is this valid, or is it
a constraint violation because of differences at IEEE Level 3 (which represents quantum exponents,
which don’t exist in binary types)? Does it make any difference if the value is an infinity or (quiet) NaN
(no quantum exponents)? For finite values, does it make any difference whether the quantum exponent is
the one that would result from a conversion in the reverse direction?

#include <float.h>

constexpr float x7a
constexpr float x7b 1.00DF;
constexpr float x7c DEC_INFINITY;
constexpr double x7d = DEC_NAN;

1.DF;

Decimal quantum exponents

Question 8: Suppose both the constexpr object and the expression initializing it have decimal floating
type, and the real number represented by the expression is representable in the type of the object, but the
quantum exponent is not representable. Is this valid? The example in 6.7.1 paragraph 14 (Note 2) is
commented to say not, but it is not clear this follows from any normative text.

#include <float.h>

constexpr _Decimal32 x8 = DEC64_TRUE_MIN * 0;

		N3071 Conversions in constexpr initializers (C2x CD UK comment)

		Joseph Myers

		Real to complex

		Complex to real

		Quiet NaNs

		Signaling NaNs

		Standard, binary or integer to decimal

		Decimal to standard or binary

		Decimal quantum exponents

image12.emf
ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf
WG14 N3082

Title: CFP response to NB comments and N3071 - update
Author, affiliation: C FP group

Date: 2023-01-19

Reference: N3054,N3067,N3071,N3073, N3081

This document updates N3081, “CFP response to NB comments and N3071". It includes: (1) response to
N3073, “Updated SCC Comments for ISO/IEC CD 9899, C”, (2) changes intended to address WG14 email
comments, and (3) clarifications. Changes from N3081 are highlighted.

Below are the comments CFP has reviewed and our suggested response. (Editorial comments seen as clear
and uncontroversial are not listed.) Also, at the end, are suggested responses to the issues raised in N3071.

Agree. Accept proposed change.

US 5-018

US 6-023

GB-063

GB-127

GB-147

GB-149

GB-152

US 39-155

GB-156

GB-157

GB-163

US 40-166

GB-173

US 56-187

US 57-189

GB-220 and duplicate US 63-216
GB-229

GB-230

GB-267

GB-268 Note also F.10.3.7 uses exp while 7.12.6.7 uses p for the same argument.
GB-269

GB-271 Wording more style-consistent than similar US 68-270.
GB-276

US 67-278

Disagree. No change needed.

GB-153
If imaginary types are not supported the formula gives Inf + (0,1)*zero = Inf + (zero,zero) = (Inf, zero). The
normative formula defines proj when z has an infinite part.

GB-164
The qualification for default rounding in C18 was intended to apply to returning HUGE_VAL, not to reporting
an error. If overflow returns a finite number, it's even more important to report it. Change not desired.

However, if preserving the default rounding qualification is deemed too valuable, the qualification could be
restored for errno but not floating-point exceptions, as follows:

In 7.12.1 #5, insert before “and the integer expressionmath_errhandling & MATH_ ERRNO is nonzero”
the words “and default rounding is in effect”.

The corresponding change for MATHERR EXCEPT should not be made. Not raising an “overflow” floating-
point exception when overflow occurs because a non-default rounding direction is in effect would be
inconsistent with IEC 60559. In this regard, the following clarification should be made (if the change above is
made):

In 7.12.1 #5, insert at the end of the paragraph, after “the ‘overflow’ floating-point exception is raised” the
parenthetical remark “(regardless of whether default rounding is in effect)”.

US 43-170

Both footnotes are implied by the Description (“return the maximum/minimum numeric value of their
argument”), so are not normative. No change needed.

CA-N3073-006
Recommend no change.

The primary objection raised with the CD specification is that it requires some current implementations with
double-double formats for long double to change macro values. This requirement comes from the CD’s
clarification that all normalized numbers, i.e. all numbers with a given precision (p) within a given exponent
range (emin through emax), must be represented.

The last Proposed Technical Corrigendum (April 2017, too late for C18) for DR #467 included a change to
clarify that a type must be able to represent all normalized numbers. This property is important for users,
and, we believe, has been generally assumed. For example, users might reasonably expect that

#include <float.h>

#ifdef LDBL_MANT DIG >= 105

long double x = 0x1.1234567890123456789012345Fp0L;
#endif

would store the exact value of its initializer in x.

The change proposed in CA-N3073-006 qualifies the definition of the * MANT DIG (and other) macros with
“in relation to implementation-defined model parameters not subject to the restriction that the floating type
is able to represent all normalized floating-point numbers”. This change would invalidate the code (above),
and the general assumption about the macros.

The change proposed in CA-N3073-006 also introduces new macros that are equivalent to the ones in the CD
now. This would be a cost to users in needing to understand more specification, the differences between old
and new macros, and which ones they should use. We expect almost all users would want the ones in the CD
and (with the proposed change) they would need to modify their code to get them.

We appreciate the general concern that there might be unknown user consequences of interface changes, that
existing program might get different results. Here, an implementation would need to change its macro

definitions only if (1) the values are not currently consistent with respect to some fixed p, emax, and emin, or
(2) the implementation doesn’t represent all normalized numbers for its chosen p, emax, and emin. We are
not aware of meaningful use of the macros that the required implementation changes would break.

CA-N3073-006 proposes changes and new macros for the * MANT DIGand* EPSILON macros. But other
macros are similarly dependent on the representability of normalized numbers. The proposed change (if
generally accepted) would need to be expanded.

Generally agree. Modify /complete proposed change.

GB-007

Agree with first two changes. In 6.7.1 change “single precision” to “£loat” and change “32-bit single-
precision IEC 60559” to “IEC 60559 binary32”.

US 26-075
In 6.7.1 #5 after the second sentence, insert “An initializer of floating type shall be evaluated with the
translation-time floating-point environment.”

In the comment example the fesetround call would not affect the initialization of h.

GB-151

Change both footnotes to: “For a complex variable z, z and CMPLX (creal (z) , cimag(z)) are equivalent
expressions. If imaginary types are supported, z and creal (z) + cimag(z) *I are equivalent
expressions.”

US 42-169
Add the Returns paragraph as suggested. Similar 7.24.1.3 has a Returns section.

US 71-275
Delete the entire line. It was a holdover from earlier version of IEC 60559.

GB-279

CFP response (above) to US-75 makes constexpr initialization done with the translation-time floating-
point environment, like for static and thread storage duration. It would be independent of the FENV_ACCESS
pragma but would be affected by the FENV_ROUND and FENV_DEC_ROUND pragmas.

In F.8.4 #1 insert after “for an object that has static or thread storage duration” the words “or that is declared
with storage-class specifier constexpr”.

In F.8.4 #2 in the example before “float w[] =..”insert“constexpr double v = 0.0/0.0; //
does not raise an exception”.

In F.8.4 #3 change “For the static initialization” to “For the static and constexpr initializations”.

In F.8.5 #1 insert after “of objects that have static or thread storage duration” the words “or that are declared
with storage-class specifier constexpr”.

In F.8.5 #2 in the example before “float u[] =..”insert“constexpr float t = (float)l.le75;
// does not raise an exception”.

In F.8.5 #3 change “The static initialization of v raises no (execution-time) floating-point exceptions because
its computation is done at translation time” to “The constexpr initialization of t and the static initialization
of v raise no (execution-time) floating-point exceptions because their computation is done at translation
time”.

A related problem is that the CD specification for initialization with signaling NaN macros doesn’t cover
constexpr. This could be fixed with the following change:

In 5.2.4.2.2 #21 replace “If an optional unary + or - operator followed by a signaling NaN macro is used as the
initializer for initializing an object of the same type that has static or thread storage duration ...” with “If an
optional unary + or - operator followed by a signaling NaN macro is used as an initializer that must be
evaluated at translation time ...".

GB-286

The strto£fN functions are not like the strfrom£N functions whose wide character versions can easily be
obtained from other functions (as shown in an example). Rather than add them at this late date ...

In 7.33.20 after paragraph 1 add: “Functions with potentially reserved identifiers westofN and westodN
are intended to be wide character analogs of the strtofN and strtodN functions.”

GB-287
The suggested change seems too large to do now. Instead ...

In 7.24.1.6#4 change the bullet “It is not a hexadecimal floating number” to “Whether the subject sequence
may be a hexadecimal floating number is implementation-defined.”

In 7.24.1.6, before the Returns section, insert:

Recommended practice
Rounding for hexadecimal input should follow the method in H.12.2.

In 7.24.1.6#4, in the "0x1 . 8p+4" example, before “(+1, 0, 0), ...” insert “If hexadecimal input is accepted, (+1,
24, 0). If hexadecimal input is not accepted, ”

GB-288

To H.12.2 #3 append: “The preferred quantum exponent for the result is 0 if the hexadecimal number is
exactly represented in the decimal type; the preferred quantum exponent for the result is the least possible if
the hexadecimal number is not exactly represented in the decimal type.”

About N3071

The following proposed changes are intended to address the missing (or ambiguous) specification pointed
outin N3071.

To 6.7.1 #5, append: “If the object declared has real floating type, the initializer shall have integer or real
floating type. If the object declared has imaginary type, the initializer shall have imaginary type. If the
initializer has decimal floating type, the object declared shall have decimal floating type and the conversion
shall preserve the quantum of the initializer. If the initializer has real type and a signaling NaN value, the
unqualified versions of the type of the initializer and the corresponding real type of the object declared shall
be compatible.”

After 6.7.1 #17 (EXAMPLE 3), insert

EXAMPLE 4 This example illustrates constexpr initializations involving different type domains,
decimal and non-decimal floating types, NaNs and infinities, and quanta in decimal floating types.

#include <float.h>
#include <complex.h>

constexpr float _Complex fcl = 1.0; // ok

constexpr float _Complex fc2 = 0.1; // constraint violation, unless double
// has the same precision as float
// and is evaluated with the same
// precision

constexpr float _Complex fc3 = 3*I; // ok

constexpr double dl = (double _Complex)1.0; // constraint violation

constexpr double d2 = (double _Imaginary)0.0; // constraint violation

constexpr float f1 = (long double) INFINITY; // ok

constexpr float £2 = (long double)NAN; // ok, quiet NaNs in real floating
// types are considered the same
// value, regardless of payloads

constexpr double d3 = DBL_SNAN; // ok

constexpr double d4 = FLT SNAN; // constraint violation, even if float
// and double have the same format

constexpr double _Complex dcl = DBL SNAN; // ok

constexpr double _Complex dc2 = CMPLX(DBL_SNAN, 0.); // ok

constexpr double _Complex dc3 = CMPLX(0., DBL_SNAN) ; // ok

constexpr _Decimal32 d321 = 1.0; // ok

constexpr _Decimal32 d322 = 1; // ok

constexpr _Decimal32 d323 = INFINITY; // ok

constexpr _Decimal32 d324 = NAN; // ok

constexpr _Decimal64 dé41 = DEC64_SNAN; // ok

constexpr _Decimal64 d642 = DEC32_SNAN; // constraint violation

constexpr float £3 = 1.DF; // constraint violation

constexpr float f4 = DEC_INFINITY; // constraint violation

constexpr double d5 = DEC_NAN; // constraint violation

constexpr _Decimal32 d325 = DEC64_TRUE _MIN * 0; // constraint violation, quantum not
// preserved

#ifdef _ STDC_IEC_ 60559 COMPLEX _

constexpr double d6é = (double _Imaginary)0.0; // constraint violation

constexpr double _Imaginary dil = 0.0*I; // ok

constexpr double _Imaginary di2 = 0.0; // constraint violation

#endif

The following is an additional editorial comment, with a proposal:

6.7.1 #14 (NOTE 2) uses “mantissa” which is used nowhere else in the document. Suggest changing “a
diagnostic is required if a truncation of the mantissa occurs” to “a diagnostic is required if a truncation of the
excess precision changes the value”.

image13.emf
ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf
WG14 N3082

Title: CFP response to NB comments and N3071 - update
Author, affiliation: C FP group

Date: 2023-01-19

Reference: N3054,N3067,N3071,N3073, N3081

This document updates N3081, “CFP response to NB comments and N3071". It includes: (1) response to
N3073, “Updated SCC Comments for ISO/IEC CD 9899, C”, (2) changes intended to address WG14 email
comments, and (3) clarifications. Changes from N3081 are highlighted.

Below are the comments CFP has reviewed and our suggested response. (Editorial comments seen as clear
and uncontroversial are not listed.) Also, at the end, are suggested responses to the issues raised in N3071.

Agree. Accept proposed change.

US 5-018

US 6-023

GB-063

GB-127

GB-147

GB-149

GB-152

US 39-155

GB-156

GB-157

GB-163

US 40-166

GB-173

US 56-187

US 57-189

GB-220 and duplicate US 63-216
GB-229

GB-230

GB-267

GB-268 Note also F.10.3.7 uses exp while 7.12.6.7 uses p for the same argument.
GB-269

GB-271 Wording more style-consistent than similar US 68-270.
GB-276

US 67-278

Disagree. No change needed.

GB-153
If imaginary types are not supported the formula gives Inf + (0,1)*zero = Inf + (zero,zero) = (Inf, zero). The
normative formula defines proj when z has an infinite part.

GB-164
The qualification for default rounding in C18 was intended to apply to returning HUGE_VAL, not to reporting
an error. If overflow returns a finite number, it's even more important to report it. Change not desired.

However, if preserving the default rounding qualification is deemed too valuable, the qualification could be
restored for errno but not floating-point exceptions, as follows:

In 7.12.1 #5, insert before “and the integer expressionmath_errhandling & MATH_ ERRNO is nonzero”
the words “and default rounding is in effect”.

The corresponding change for MATHERR EXCEPT should not be made. Not raising an “overflow” floating-
point exception when overflow occurs because a non-default rounding direction is in effect would be
inconsistent with IEC 60559. In this regard, the following clarification should be made (if the change above is
made):

In 7.12.1 #5, insert at the end of the paragraph, after “the ‘overflow’ floating-point exception is raised” the
parenthetical remark “(regardless of whether default rounding is in effect)”.

US 43-170

Both footnotes are implied by the Description (“return the maximum/minimum numeric value of their
argument”), so are not normative. No change needed.

CA-N3073-006
Recommend no change.

The primary objection raised with the CD specification is that it requires some current implementations with
double-double formats for long double to change macro values. This requirement comes from the CD’s
clarification that all normalized numbers, i.e. all numbers with a given precision (p) within a given exponent
range (emin through emax), must be represented.

The last Proposed Technical Corrigendum (April 2017, too late for C18) for DR #467 included a change to
clarify that a type must be able to represent all normalized numbers. This property is important for users,
and, we believe, has been generally assumed. For example, users might reasonably expect that

#include <float.h>

#ifdef LDBL_MANT DIG >= 105

long double x = 0x1.1234567890123456789012345Fp0L;
#endif

would store the exact value of its initializer in x.

The change proposed in CA-N3073-006 qualifies the definition of the * MANT DIG (and other) macros with
“in relation to implementation-defined model parameters not subject to the restriction that the floating type
is able to represent all normalized floating-point numbers”. This change would invalidate the code (above),
and the general assumption about the macros.

The change proposed in CA-N3073-006 also introduces new macros that are equivalent to the ones in the CD
now. This would be a cost to users in needing to understand more specification, the differences between old
and new macros, and which ones they should use. We expect almost all users would want the ones in the CD
and (with the proposed change) they would need to modify their code to get them.

We appreciate the general concern that there might be unknown user consequences of interface changes, that
existing program might get different results. Here, an implementation would need to change its macro

definitions only if (1) the values are not currently consistent with respect to some fixed p, emax, and emin, or
(2) the implementation doesn’t represent all normalized numbers for its chosen p, emax, and emin. We are
not aware of meaningful use of the macros that the required implementation changes would break.

CA-N3073-006 proposes changes and new macros for the * MANT DIGand* EPSILON macros. But other
macros are similarly dependent on the representability of normalized numbers. The proposed change (if
generally accepted) would need to be expanded.

Generally agree. Modify /complete proposed change.

GB-007

Agree with first two changes. In 6.7.1 change “single precision” to “£loat” and change “32-bit single-
precision IEC 60559” to “IEC 60559 binary32”.

US 26-075
In 6.7.1 #5 after the second sentence, insert “An initializer of floating type shall be evaluated with the
translation-time floating-point environment.”

In the comment example the fesetround call would not affect the initialization of h.

GB-151

Change both footnotes to: “For a complex variable z, z and CMPLX (creal (z) , cimag(z)) are equivalent
expressions. If imaginary types are supported, z and creal (z) + cimag(z) *I are equivalent
expressions.”

US 42-169
Add the Returns paragraph as suggested. Similar 7.24.1.3 has a Returns section.

US 71-275
Delete the entire line. It was a holdover from earlier version of IEC 60559.

GB-279

CFP response (above) to US-75 makes constexpr initialization done with the translation-time floating-
point environment, like for static and thread storage duration. It would be independent of the FENV_ACCESS
pragma but would be affected by the FENV_ROUND and FENV_DEC_ROUND pragmas.

In F.8.4 #1 insert after “for an object that has static or thread storage duration” the words “or that is declared
with storage-class specifier constexpr”.

In F.8.4 #2 in the example before “float w[] =..”insert“constexpr double v = 0.0/0.0; //
does not raise an exception”.

In F.8.4 #3 change “For the static initialization” to “For the static and constexpr initializations”.

In F.8.5 #1 insert after “of objects that have static or thread storage duration” the words “or that are declared
with storage-class specifier constexpr”.

In F.8.5 #2 in the example before “float u[] =..”insert“constexpr float t = (float)l.le75;
// does not raise an exception”.

In F.8.5 #3 change “The static initialization of v raises no (execution-time) floating-point exceptions because
its computation is done at translation time” to “The constexpr initialization of t and the static initialization
of v raise no (execution-time) floating-point exceptions because their computation is done at translation
time”.

A related problem is that the CD specification for initialization with signaling NaN macros doesn’t cover
constexpr. This could be fixed with the following change:

In 5.2.4.2.2 #21 replace “If an optional unary + or - operator followed by a signaling NaN macro is used as the
initializer for initializing an object of the same type that has static or thread storage duration ...” with “If an
optional unary + or - operator followed by a signaling NaN macro is used as an initializer that must be
evaluated at translation time ...".

GB-286

The strto£fN functions are not like the strfrom£N functions whose wide character versions can easily be
obtained from other functions (as shown in an example). Rather than add them at this late date ...

In 7.33.20 after paragraph 1 add: “Functions with potentially reserved identifiers westofN and westodN
are intended to be wide character analogs of the strtofN and strtodN functions.”

GB-287
The suggested change seems too large to do now. Instead ...

In 7.24.1.6#4 change the bullet “It is not a hexadecimal floating number” to “Whether the subject sequence
may be a hexadecimal floating number is implementation-defined.”

In 7.24.1.6, before the Returns section, insert:

Recommended practice
Rounding for hexadecimal input should follow the method in H.12.2.

In 7.24.1.6#4, in the "0x1 . 8p+4" example, before “(+1, 0, 0), ...” insert “If hexadecimal input is accepted, (+1,
24, 0). If hexadecimal input is not accepted, ”

GB-288

To H.12.2 #3 append: “The preferred quantum exponent for the result is 0 if the hexadecimal number is
exactly represented in the decimal type; the preferred quantum exponent for the result is the least possible if
the hexadecimal number is not exactly represented in the decimal type.”

About N3071

The following proposed changes are intended to address the missing (or ambiguous) specification pointed
outin N3071.

To 6.7.1 #5, append: “If the object declared has real floating type, the initializer shall have integer or real
floating type. If the object declared has imaginary type, the initializer shall have imaginary type. If the
initializer has decimal floating type, the object declared shall have decimal floating type and the conversion
shall preserve the quantum of the initializer. If the initializer has real type and a signaling NaN value, the
unqualified versions of the type of the initializer and the corresponding real type of the object declared shall
be compatible.”

After 6.7.1 #17 (EXAMPLE 3), insert

EXAMPLE 4 This example illustrates constexpr initializations involving different type domains,
decimal and non-decimal floating types, NaNs and infinities, and quanta in decimal floating types.

#include <float.h>
#include <complex.h>

constexpr float _Complex fcl = 1.0; // ok

constexpr float _Complex fc2 = 0.1; // constraint violation, unless double
// has the same precision as float
// and is evaluated with the same
// precision

constexpr float _Complex fc3 = 3*I; // ok

constexpr double dl = (double _Complex)1.0; // constraint violation

constexpr double d2 = (double _Imaginary)0.0; // constraint violation

constexpr float f1 = (long double) INFINITY; // ok

constexpr float £2 = (long double)NAN; // ok, quiet NaNs in real floating
// types are considered the same
// value, regardless of payloads

constexpr double d3 = DBL_SNAN; // ok

constexpr double d4 = FLT SNAN; // constraint violation, even if float
// and double have the same format

constexpr double _Complex dcl = DBL SNAN; // ok

constexpr double _Complex dc2 = CMPLX(DBL_SNAN, 0.); // ok

constexpr double _Complex dc3 = CMPLX(0., DBL_SNAN) ; // ok

constexpr _Decimal32 d321 = 1.0; // ok

constexpr _Decimal32 d322 = 1; // ok

constexpr _Decimal32 d323 = INFINITY; // ok

constexpr _Decimal32 d324 = NAN; // ok

constexpr _Decimal64 dé41 = DEC64_SNAN; // ok

constexpr _Decimal64 d642 = DEC32_SNAN; // constraint violation

constexpr float £3 = 1.DF; // constraint violation

constexpr float f4 = DEC_INFINITY; // constraint violation

constexpr double d5 = DEC_NAN; // constraint violation

constexpr _Decimal32 d325 = DEC64_TRUE _MIN * 0; // constraint violation, quantum not
// preserved

#ifdef _ STDC_IEC_ 60559 COMPLEX _

constexpr double d6é = (double _Imaginary)0.0; // constraint violation

constexpr double _Imaginary dil = 0.0*I; // ok

constexpr double _Imaginary di2 = 0.0; // constraint violation

#endif

The following is an additional editorial comment, with a proposal:

6.7.1 #14 (NOTE 2) uses “mantissa” which is used nowhere else in the document. Suggest changing “a
diagnostic is required if a truncation of the mantissa occurs” to “a diagnostic is required if a truncation of the
excess precision changes the value”.

image14.emf
ISO-IEC JTC 1-SC 22-WG 14_N3112_Compatible Types.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3112_Compatible Types.pdf
Proposal for C23

WG14 N 3112

Title: Compatible Types

Author, affiliation: Robert C. Seacord, Woven Planet
Date: 2023-2-13

Proposal category: Defect

Target audience: Implementers

Abstract: Compatible types

Prior art: C

Compatible Types

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3112

Reference Document: N 3019

Date: 2023-2-17

Change Log
2023-2-17:
e Initial version

1.0 Introduction and Rationale

The aliasing rules Subclause 6.5, paragraph 7 allows “the signed or unsigned type” to alias another
object but fails to mention type compatibility. Consequently, it is unclear if a compatible
enumeration type can alias such an object.

2.0 Proposed Solution

The proposed solution is to allow compatible types to alias in all cases.
3.0 Wording

Subclause 6.5, “Expressions”, paragraph 7:

Change:

— a type that is the signed or unsigned type corresponding to the effective type of the object,

— a type that is the signed or unsigned type corresponding to a qualified version of the effective
type of the object,

to:

— the signed or unsigned type compatible with the underlying type of the effective type of the

object,

— the signed or unsigned type compatible with a qualified version of the underlying type of the
effective type of the object,

Make the following changes to subclause 7.16.1.1, “The va_arg macro”, paragraph 2:

— one type is compatible with a signed integer type, the other type is compatible with the
corresponding unsigned integer type, and the value is representable in both types;

4.0 Acknowledgements

| would like to recognize the following people for their help with this work: Martin Uecker, Jens
Gustedt, and Joseph Myers.

5.0 References

None.

image15.emf
ISO-IEC JTC 1-SC 22-WG 14_N3095_Restartable Functions for Efficient Character Conversion, r11.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3095_Restartable Functions for Efficient Character Conversion, r11.pdf
N3095: Restartable Functions for Efficient Character Conversions

N3095
Restartable Functions for Efficient

Character Conversions
Published Proposal, 2023-01-31

Previous Revisions:
N3075 (r10) , N3031 (r9) , N2999 (18) , N2966 (r7) , N2902 (r6) , N2730 (r5), N2620 (14) , n2595 (13) , n2500

(12), 12440 (r1) , n2431 (r0)
Authors:

JeanHeyd Meneide

Shepherd (Shepherd's Oasis LI.C)

Latest:

https://thephd.dev/ vendor/future cxx/papers/C%20-%20Efficient%20Character%20Conversions.html

Paper Source:
GitHub ThePhD/future cxx

Issue Tracking:
GitHub

Project:
ISO/IEC JTC1/SC22/WG14 9899: Programming Language — C

Proposal Category:
Library Feature Request

Target:
C2y/C3a

Abstract

Implementations firmly control what both the Wide Character and Multi-Byte Character strings are treated at
runtime by the Standard Library. While this control is fine, users of the Standard Library have no portability
guarantees about how these library functions may behave, especially in the face of encodings that do not support
each other’s full codepage. And, despite additions to C11 for maybe-UTF16 and maybe-UTF32 encoded types,
these functions only offer conversions of a single unit of information at a time, leaving orders of magnitude of
performance on the table. This paper proposes and explores additional library functionality to allow users to

retrieve multibyte and wide character into a statically known encoding to enhance the ability to work with text.

L=

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3075.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3031.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2999.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2966.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2902.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2730.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2620.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2595.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2500.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2500.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2440.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2431.pdf

mailto:phdofthehouse@gmail.com

mailto:shepherd@soasis.org

https://thephd.dev/_vendor/future_cxx/papers/C%20-%20Efficient%20Character%20Conversions.html

https://thephd.dev/_vendor/future_cxx/papers/source/C%20-%20Restartable%20and%20Non-Restartable%20Character%20Functions%20for%20Efficient%20Conversions.bs

https://github.com/ThePhD/future_cxx/issues

N3095: Restartable Functions for Efficient Character Conversions

Table of Contents

1 Changelog

1.1 Revision 11 - January 315, 2023

1.2 Revision 10 - January 51, 2023

1.3 Revision 9 - July 19", 2022

1.4 Revision 8 - June 17t", 2022

1.5 Revision 7 - April 121, 2022

1.6 Revision 6 - January 15!, 2022

1.7 Revision 5 - November 301, 2021

1.8 Revision 4 - December 15t, 2020

1.9 Revision 3 - October 271", 2020

1.10 Revision 0-2 - March 2", 2020

2 Introduction and Motivation

2.1 Problem 1: Lack of Portability

2.2 Problem 2: What is the Encoding?
2.3 Problem 3: Performance

24 Problem 4: (Sl Cannot Roundtrip
2.5 Problem 5: The C Standard Cannot Handle Existing Practice
2.6 In Summary

3 Prior Art

3.1 Standard C

3.2 Win32

33 (EEENEED

34 SDCC

3.5 iconv/ICU

4 Design

41 Which Function Form?

4.1.1 @B P arameter for Unicode-only Conversions?
4.1.2 Simplification Without Loss of Functionality?
4.1.3 Performance of Double-Pointers?
414 Structure Returns?

415 Proposed Choice

4.2 @SB =nd Existing practice

5 Conclusion

6 Proposed Wording

6.1 Intent

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

6.2 Proposed Specification

6.2.1 Modify §3.7.3 Wide Character to change the definition to remove the one-to-one correspondence

6.2.2 Modify §6.10.9.2 Environment Macros to add new wide literal-only predefined macro

6.2.3 Modify §7.21 Common Definitions to Remove Harmful (i Text

6.2.4 Modify §7.31 Extended Multibyte and Wide Character Utilities to Clarify Role of (SiEiD

6.2.5 Modify §6.2.9 Encodings to include definitions of Code Point, Code Unit, Wide/Narrow Execution
Encodings, and Encoding Error

6.2.6 Modify §7.21.3 Files to remove the italics from the term "encoding error", since it’s initial definition
was moved to §6.2.9 Encodings

6.2.7 Create a new section §7.S and §7.S .1 Text Transcoding Utilities

6.2.8 Create a new section §7.S .2 Single Unit Sized Conversion Functions

6.2.9 Create a new subsection §7.S .3 Multi Unit Sized Conversion Functions

6.2.10 Add unspecified behavior to Annex J.1 Unspecified behavior

7 Acknowledgements

8 Appendix

8.1 (From revisions 0-3) What about UTF{X} <> UTF{Y} functions?

References

Informative References

1. Changelogé&

1.1. Revision 11 - January 31 St 2023 &

o Fix minor typos in example specification.

e Point out that C++ has made a similar change for its @SB i [02460r2] and that if we would like to
remain in sync, C should consider following suit, as described in § 4.2 wchar t and Existing practice.

1.2. Revision 10 - January 51, 20238

o Retargeting for C2y/C3a, after failure during the July 2022 Virtual Meeting to advance the state of Unicode.

o Apply all of the changes recommended by Hubert Tong, concerning @ vrite out (turn it into being a part of
an indivisible unit of work), the "clear the (I iME® footnote being applied to both places, and the new
way to write the paragraph concerning what a valid (iEeias is-

e WGI14 could not decide between prefix vs. no-prefix, or prefix-but-only-for-macros. All votes came out even.
In the interest of not trampling the user namespace and since this is an entirely new header, this paper

restores the prefixes.

e Fix double-italicized unrecorded encoding error and leave only one (thanks, Aaron Ballman!).

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

During the July 2022 Virtual Meeting, it was made clear that a DeathStation 9000 implementation could use
the wording in the standard to ignore the multi-output capabilities of the new functions and still artificially
restrict itself to UCS-2 and similar for "conformance" purposes. Therefore, the following specific wording

changes were made to address such concerns:

o for the initial "wide character" definition (§ 6.2.1 Modify §3.7.3 Wide Character to change the definition
to remove the one-to-one correspondence);

o for definition of pre-defined macros by the compiler (§ 6.2.2 Modify §6.10.9.2 Environment Macros to
add new wide literal-only predefined macro);

o for definition of (SIS in (8.6.2.3 Modify §7.21 Common Definitions <stddef.h> to

Remove Harmful wchar_t Text);

o and, for usage of (RIS in QIEREIED s specification (§6.2.4 Modify §7.31 Extended Multibyte and
Wide Character Utilities <wchar.h> to Clarify Role of wchar t).

1.3. Revision 9 - July 19", 20228

o Removed the (el prefix in all of the prose.
e Wording changes:
o Removed the (alal prefix for the transcoding functions and (ReaRiaaasg- (This particular change is

not highlighted because it is a find-and-replace and would turn much of the paper a different color over
what is a mechanical/editorial name change.)

o Remove freestanding changes.
o Add a new sentence for properly writing out the null character AND any preceding conversion state.

o Add a new paragraph to directly explain what states are valid to place into the functions (both the single

and multi-conversion functions).

o Change the wording for when (el is a null pointer, saying instead: "automatic storage duration object
of type (IR is created unique to the current invocation".

o Remove the text describing "first use”" of ({EENEGIRG 2 it is now covered by the new paragraph.

o Add 1 new footnote to ensure users understand that they may lose conversion state data for restarting a
conversion if the state parameter is not provided or is a null pointer.

o Add 1 new footnote to make it clear that the state can be reset by using with G
()E@E. as described in §7.30.6 (Extended multibyte/wide character conversion utilities).

e Greatest of thanks to Dr. H. for the continual review and catching most of my most glaring mistakes.

1.4. Revision 8 - June 171, 20228

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

o Editorial changes:

o Use "is a null pointer" versus "is ([j" and similar.
o Fix a grammar mistake for a sentence discussing code points.
o Use "initial shift state" over "initial conversion sequence"

o Talk about how (NSRS is not necessary for the u8/ul6/u32 functions, but preserves function form for

macro-generic programming.

e Wording changes:

o This header shall exist for freestanding.

o Define code point, code unit, encoding error, unrecorded encoding error, and more in 6.2.9 for use

elsewhere.
o Properly change how the functions handle the and (GHEERES object in the wording.

o Fix the problem with the specification of the output values when processing a null character value or
when using that are null pointers.

o Adjust the specification to give proper unspecified behavior.

o Add Annex J.1 entry.

1.5. Revision 7 - April 121", 20228

o Update definitions for when the Sl pointer - and its pointed to pointer - are ([} and make sure they
have identical behaviors.

o Update definitions for when the (iS8N pointer - and its pointed to pointer - are (), and make sure they
have identical behaviors.

o Ensure that ((EEERERRE is properly cleared to the initial conversion state on both ([input pointers or
U+00000000 being processed in the input string. Ensure that it outputs any code unit sequences to the output

necessary to return the output to its initial conversion state as well (thanks, Hubert Tong!).
o Handle (USSR being changed in the wording (it’s unspecified behavior) (thanks, Hubert Tong!).
o Switch to using (iEING® officially now that it has been accepted to C23 (thanks, Joseph Myers!).

@R 2dded to the function prototypes (§4.1.5 Proposed Choice).

1.6. Revision 6 - January 15!, 20228

o Add design critique for the latest interface suggestion in § 4.1 Which Function Form?.
e Remove all non- (SIS functions, to reduce the function count, and change behavior of the function.

o Make sure (REISMUSEES is meant to be a proper error enumeration and a typedef.

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

e Properly define indivisible unit of work.

1.7. Revision 5 - November 30t", 20218

o Design critique and benchmark 3 different styles of function declaration and discuss benefits.

¢ A full, independent implementation of this paper (and more) is now available.

1.8. Revision 4 - December 15t, 20208

e Add missing functions for ¢8/16/32 to the platform-specific variants.

e Ensure that ((EEEEEASG is used throughout rather than (GO

o Explain behavior of () for (EEREIEES to avoid use of global values.

1.9. Revision 3 - October 27, 20208

o Completely Reformulate Paper based on community, musl-libc, and glibc feedback.

o Completely rewrite every section past ~ § 6 Proposed Wording, and change many more.

1.10. Revision 0-2 - March 2”d, 20203

o Introduce new functions and gather consensus to move forward.

o Attempt to implement in other standard libraries and gather feedback.

2. Introduction and Motivation&

C adopted conversion routines for the current active locale-derived/ @SBRED - controlled/implementation-defined
encoding for Multibyte ({fi)) Strings and Wide ({f§) Strings. While the rationale for having such conversion

routines to and from Multibyte and Wide strings in the C library are not explicitly stated in the documents, it is

easy to derive the many benefits of a full ecosystem of both restarting (§) and non-restarting conversion routines

for both single units and string-based bulk conversions for {f§) and @ strings. From ease of use with string literals

to performance optimizations from bulk processing with vectorization and SIMD operations, the —

and vice-versa — granted a rich and fertile ground upon which C library developers took advantage of platform
amenities, encoding specifics, and hardware support to provide useful and fast abstractions upon which encoding-

aware applications could build.

Unfortunately, none of these API designs were granted to GEEEED E5) or CGEERED (@R conversion

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

functions. Nor were they given a way to work with a well-defined 8-bit multibyte encoding such as UTF8 without
having to first pin it down with platform-specific calls. This has resulted in a series of extremely
vexing problems when trying to write a portable, reliable C library code that is not locked to a specific vendor.

This paper looks at the problems, and then proposes a solution with the goal of hoping to arrive at a solution that

is worth implementing for the C Standard Library.

2.1. Problem 1: Lack of Portability$

Already, Windows, z/OS, and POSIX platforms greatly differ in what they offer for ({jiil§-typed, Multibyte string
encodings. EBCDIC is still in play after many decades. Windows’s Active Code Page functionality on its machine
prevents portability even within its own ecosystem. Platforms where LANG environment variables control
functionality make communication between even processes on the same hardware a silent and often unforeseen
gamble for library developers. Using functions which convert to/from (i make it impossible to have stability
guarantees not only between platforms, but for individual machines. Sometimes even cross-process
communication becomes exceedingly problematic without opting into a serious amount of platform-specific or

vendor-specific code and functionality to lock encodings in, harming the portability of C code greatly.

@RS cocs not fare better. By definition, a wide character type must be capable of holding the entire character
set in a single unit of ([P Reality, however, is different: this has been a fundamental impossibility for
decades for implementers that switched to 16-bit UCS-2 early. IBM machines persist with this issue for all 32-bit
builds, though some IBM platforms took advantage of the 64-bit change to do an ABI break and use UTF32 like
other Linux distributions settled on. Even if one were to know this knowledge about IBM and program exclusively
on their machines, certain IBM platforms can still end up in a situation where (il is neither 32-bit UTF32 or
16-bit UCS-2/UTF16: the encoding can change to something else in certain Chinese locales, becoming completely
different.

Windows is permanently stuck on having to explicitly detail that its implementation is "16-bit, UCS-2 as per the

standard", before explicitly informing developers to use vendor-specific

(RIS (IS ETEIEEESER to handle UTF16-encoded characters in (D

These solutions provide ways to achieve a local maxima for a specific vendor or platform. Unfortunately, this
comes at the extreme cost of portability: the code has no guarantee it will work anywhere but your machine, and
in a world that is increasingly interconnected by devices that interface with networks it makes sharing both data

and code troublesome and hard to work with.

2.2. Problem 2: What is the Encoding?§

With (s and (IR only responding to and returning implementation-defined ((EEIIDISIEN: there

is no way to portably determine what the locale (and any associated encoding) should or should not be. The
typical solution for this has been to code and program only for what is guaranteed by the Standard as what is in the

Basic Character Set. While this works fine for source code itself, this produces an extremely hostile environment:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

e conversion functions in the standard mangle and truncate data in (sometimes troubling, sometimes hilarious)

fashion;

e programs which are not careful to meticulously track encoding of incoming text often lose the ability to

understand that text;

e programmers can never trust the platform will support even the Latin characters in any representation of data
beyond the 7th bit of a byte;

¢ and, interchange between cultures with different default encodings makes it impossible to communicate with

others without entirely forsaking the standard library.

Abandoning the C Standard Library -- to get standard behavior across platforms -- is an exceedingly bitter pill

to have to swallow as an enthusiastic C developer.

2.3. Problem 3: Performances

The current version of the C Standard includes functions which attempt to alleviate Problems 1 and 2 by providing

conversions from the per-process (and sometimes per-thread), locale-sensitive black box encoding of multibyte

strings. They do this by providing conversions to (SiEIRNGIS units or EEIEEI units with
and functions. We will for a brief moment ignore the presence of the ([SIS 21d

EEEESEEEER 2cros and assume the two types mean that string literals and library functions convert to and
from UTF16 and UTF32 respectively. We will also ignore that ([Silll's encoding -- which is just as locale-

sensitive and unknown at compile and runtime as (jJfl§'s encoding is -- has no such conversion functions. These

givens make it possible to say that we, as C programmers, have 2 known encodings which we can use to shepherd

data into a stable state for manipulation and processing as library developers.
Even with that knowledge, these one-unit-at-a-time conversions functions are slower than they should be.

On many platforms, these one-at-a-time function calls come from the operating system, dynamically loaded
libraries, or other places which otherwise inhibit compiler observation and optimizer inspection. Attempts to
vectorize code or unroll loops built around these functions is thoroughly thwarted by this. Building static libraries
or from source is very often a non-starter for many platforms. Since the encoding used for multibyte strings and
wide strings are controlled by the implementation, it becomes increasingly difficult to provide the functionality to
convert long segments of data with decent performance characteristics without needing to opt into vendor or

platform specific tricks.

2.4. Problem 4: ((SIEI® Cannot Roundtrips

With no (S o (ISEeIsRg functions, the only way to convert a wide character or wide character string to a
program-controlled, statically known encoding UTF encoding is to first invoke the wide character to multibyte
function, and then invoke the multibyte function to either (iGN o CIEREEED-

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

This means that even if we have a well-behaved @SB (1t is not sensitive to the locale (e.g., on Windows
machines), we lose data if the locale-controlled il encoding is not set to something that can handle all
incoming code unit sequences. The locale-based encoding in a program can thus tank what is simply meant to be a

pass-through encoding from (D to CHEIIaR CiEREEES. 2!! because the only Standards-compliant

conversion channels data through the locale-based multibyte encoding ({SIEHIERESEIED) functions.

For example, it was fundamentally impossible to engage in a successful conversion from ([HiEE® strings to SR
multibyte strings on Windows using the C Standard Library. Until a very recent Windows 10 update, UTF8 could
not be set as the active system codepage either programmatically or through an experimental, deeply-buried
setting. This has changed with Windows Version 1903 (May 2019 Update), but the problems do not stop there.

No dedicated UTF-8 support (the standard mandates no specific encodings or charsets) leaves developers to write
the routines themselves. Worse, roundtrip through the locale after forcing a change to a UTF-8 locale may not be
supported, leaving the developer to use the combination of functions to hope that the multibyte locale encoding is
good enough to transfer data from the Unicode encodings to the wide character encodings (and vice-versa). While
the non-restartable functions can save quite a bit of code size, unfortunately there are many encodings which are
not as nice and require state to be processed correctly (e.g., Shift JIS and other ISO-2022 encodings). Not being
able to retain that state between potential calls in a (SR IRIMEE is detrimental to the ability to move forward with
any encoding endeavor that wishes to bridge the gap between these disparate platform encodings and the current

locale.

Because other library functions can be used to change or alter the locale in some manner, it once again becomes
impossible to have a portable, compliant program with deterministic behavior if just one library changes the locale
of the program, let alone if the encoding or locale is unexpected by the developer because they do not know of that
culture or its locale setting. This hidden state is nearly impossible to account for: the result is software systems
that cannot properly handle text in a meaningful way without abandoning C’s encoding facilities, relying on

vendor-specific extensions/encodings/tools, or confining one’s program to only the 7-bit plane of existence.

2.5. Problem 5: The C Standard Cannot Handle Existing Practices

The C standard does not allow a wide variety of encodings that implementations have already crammed into their
backing locale blocks to work, resulting in the abandonment of locale-related text facilities by those with double-

byte character sets, primarily from East Asia. For example, there is a serious bug that cannot be fixed without non-

conforming, broken behavior:

This call writes the second Unicode code point, but does not consume any input. 0 is returned since no input is
consumed. According to the C standard, a return of 0 is reserved for when a null character is written, but since
the C standard doesn’t acknowledge the existence of characters that can’t be represented in a single (i

we’re already operating outside the scope of the standard.
The standard cannot handle encodings that must return two or more (il for however many -- up to

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

(EEISSED - @Bl it consumes. This is even for when the target (Il "'Wide execution” encoding is UTF-
32; this is a fundamental limitation of the C Standard Library that is absolutely insurmountable by
the current specification. This is exacerbated by the standard’s insistence that a single (Sl must be
capable of representing all characters as a single element, a philosophy which has been bled into the relevant
interfaces such as (Eeng and other related types. As the values cannot be properly represented in the
standard, this leaves people to either make stuff up or abandon it altogether. This means that the design introduced
from C11 and beyond is fundamentally broken when it comes to handling existing practice.

Furthermore, clarification requests have had to be filed for other functions, just to improve their behavior with

respect to multiple input and multiple output. Many have been noted as issues for BT and similar
functionality, as was originally part of Dr. Philip K. Krause’s fixes to the functions. This paper attempts to solve

the same problem in a more fundamental manner.

2.6. In Summarys§

The problems C developers face today with respect to encoding and dealing with vendor and platform-specific
black boxes is a staggering trifecta: non-portability between processes running on the same physical hardware,
performance degradation from using standard facilities, and potentially having a locale changed out from under

your program to prevent roundtripping.

This serves as the core motivation for this proposal.

3. Prior Art&

There are many sources of prior art for the desired feature set. Some functions (with fixes) were implemented
directly in implementations, embedded and otherwise. Others rely exclusively platform-specific code in both
Windows and POSIX implementations. Others have cross-platform libraries that work across a myriad of

platforms, such as ICU or iconv. We discuss the most diverse and exemplary implementations.

3.1. Standard C¢&

To understand what this paper proposes, an explanation of the current landscape is necessary. The below table is

meant to be read as being (EESIEEeE] j§. The symbols provide the following information:
e : Function exists in both its restartable (function name has the indicative ' in it) and its canonical non-

restartable form ((ESSINpRsert YR row}rtof).
e : Function exists only in its "restartable" form ((gSsBIseE]).

e : Function does not exist at all.

Here is what exists in the C Standard Library so far:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

There is a lot of missing functionality here in this table, and it is important to note that a large amount of this
comes from both not being willing to standardize more than the bare minimum and not having a cohesive vision
for improving encoding conversions in the C Standard. Notably, string-based functions are missing,
leaving performance-oriented multi-unit conversions out of the standard. There are also severe API flaws in the C

standard, as discussed above .

3.2. Win32§

EEEEREIEEEE ond (IESENESEIEEEE - the APIs of choice for those in Win32 environments to get

to and from the run-time execution encoding and -- if it matches -- the translation-time execution encoding.
Unfortunately, these APIs are locked within the Windows ecosystem entirely as they are not available as a
standalone library. Furthermore, as an operating system Windows exclusively controls what it can and cannot
convert from and to; some of these functions power the underlying portions of the character conversion functions
in their Standard Library, but they notably truncate multi-code-unit characters for their UTF-16 (il This
produces a broken, deprecated UCS-2 encoding when e.g. (RIS is used instead of directly relying on the
operating system functionality, making the C standard’s functions of dubious use.

3.3. (HNEITRD

GEEEREERER is « POSIX function that returns various pieces of information based on an enumerated input and
some extra parameters. It has been suggested that this be standardized over anything else, to make it easier to

determine what to do with a given locale.

The first problem with this is it returns a string-based identifier that can be whatever an implementation decides it

should be. This makes (i NEIEERRRY is no better than in its design:

Specifies the name of the coded character set for which the charmap file is defined. This value determines

the value returned by the (EINEINCERg subroutine. The must be specified using any

character from the portable character set, except for control and space characters.

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

Any name can be chosen that fits this description, and POSIX nails nothing down for portability or identification

reasons. There is no canonical list, just whatever implementations happen to supply as their "charmap" definitions.

3.4. SDCC§

The Small Device C Compiler (SDCC) has already begun some of this work. One of its principle contributors, Dr.
Philip K. Krause, wrote papers addressing exactly this problem. Krause’s work focuses entirely on non-restartable
conversions from Multibyte Strings to (IS and EEREEMS- There is no need for a conversion to a UTF8
@B sty!e string for SDCC, since the Multibyte String in SDCC is always UTF8. This means that ({EEseameg and
@EEEREEED 2nd the "reverse direction" functions encompass an entire ecosystem of UTF8, UTF16, and UTF32.

While this is good for SDCC, this is not quite enough for other developers who attempt to write code in a cross-

platform manner.

Nevertheless, SDCC’s work is still important: it demonstrates that these functions are implementable, even for
small devices. With additional work being done to implement them for other platforms, there is strong evidence

that this can be implemented in a cross-platform manner and thusly is suitable for the Standard Library.

3.5. iconv/ICUS

The C functions presented below is motivated primarily by concepts found in a popular POSIX library, [iconv].
We do not provide the full power of iconv here but we do mimic its interface to allow for a better definition of

functions, as explained in Problem 5 . The core of the functionality can be embodied in this parameterized function

signature:

In @BH's case, an additional first parameter describing the conversion (of type (HSiMI)- That is not needed for
this proposal, because we are not making a generic conversion API. This proposal is focused on doing 2 things
and doing them extremely well:

o Getting data from the current execution encoding ((i) to a Unicode encoding ((SiEIEI® UTF-8,
GBS UTr-16, GEREEE UTF-32), and the reverse.
o Getting data from the current wide execution encoding (@EEED) to 2 Unicode encoding (SiEIEIS UTF-8,

GRS UTr-16, GEREEE UTE-32), and the reverse.

iconv can do the above conversions, but also supports a complete list of pairwise conversions between about 49
different encodings. It can also be extended at translation time by programming more functionality into its library.

This proposal is focusing just in doing conversions to and from encodings that the implementation owns to/from

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

Unicode. This results in the design found below .

4. Designs

Given the problems before, the prior art, the implementation experience, and the vendor experience, it is clear that
we need something outside of (N INENEMMRD: lighter weight than all of (e, and more resilient and
encompassing than what the C Standard offers. Therefore, the solution to our problem of having a wide variety of
implementation encodings is to expand the contract of (Sl for an entirely new set of functions which

avoid the problems and pitfalls of the old mechanism.

Notably, both of the multibyte string’s function design and the wide character string’s definition of a single
character is broken in terms of existing practice today. The primary problem relies in the inability for both APIs in
either direction to handle ({ffl encodings, rather than (i or {fl)- Therefore, these new functions focus on

providing an interface to allow multi-code-unit conversions, in both directions.

To facilitate this, a new header -- -- is introduced. The header contains the "multi character” ({f§)
and "multi wide character" ({fl§) conversion routines, respectively. To support getting lossless data out of
@SS 2nd @Rl strings controlled firmly by the implementation -- and back into those types if the code units in

the characters are supported -- the following functionality is proposed using the new multi (wide) character
(@B prefixes and suffixes:

In particular, it is imperative to recognize that the implementation is the "sole proprietor" of the wide locale
encodings and multibyte locale encodings for its string literals (compiler) and library functions (standard library).

Therefore, the [{f§ and (f§ functions simply focus on providing a good interface for these encodings. The form of

both the individual and string conversion functions are:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

The input and output sizes are expressed in terms of the # of GBI @Bl They take the input/output sizes as
pointers, and decrement the value by the amount of input/output consumed. Similarly, the input/output data

pointers themselves are incremented by the amount of spaces consumed / written to. This only happens when an
irreversible and successful conversion of input data can successfully and without error be written to the output.

The § functions work on whole strings rather than just a single complete irreversible conversion, the (§ stands for

taking a size value.

Input is consumed and output is written (with sizes updated) in accordance with a single, successful computation
of an indivisible unit of work. An indivisible unit of work is the smallest set of input that can be consumed that
produces no error and guarantees forward progress through either the input or output buffer (most of the time,
both). No output is guaranteed to occur (e.g., during the consumption of a shift state mechanism for e.g. SHIFT-

JIS), but if output does happen then it only occurs upon the successful completion of an indivisible unit of work.

If an error happens, the conversion is stopped and an error code is returned. The function does not decrement the
input or output sizes for the failed operation, nor does it shift the input and output pointers forward for the failed

operation. "Failed operation" refers to a single, indivisible unit of work. The error codes are as follows:

- T - (hc input is correct but there is not enough output space
- SRR - » incomplete input was found after exhausting the input

o GEEEEETEEEIEE - < cncoding error occurred

o GRS - hc operation was successful

The behaviors are as follows:
o ifEeAEs is a null pointer, then:
o an automatic storage duration (non- (RS (EEEEIE objcct is initialized to the initial conversion

state;

o and, a pointer to this state object plus the original four parameters are passed to the function.

o if SIS is a null pointer or is a null pointer, then no output will be written. If is not

a null pointer, the value will be decremented the amount of characters that would have been written.

o i EEEES and are not null pointers, and (SN HENIEERA is @ null pointer, then enough space is

assumed in the output buffer for the entire operation.

o if @SR is a null pointer or is a null pointer, then Eiela8 is set to the initial conversion state and, if
GEEEEE s not a null pointer, will write out a sequence - if any - to represent a change to the initial conversion

state. No other actions are performed. In all other cases, ({jJill§ must not be a null pointer.

Finally, it is useful to prevent the class of (RIS @ c:rors from showing up in your
[

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

code if you know you have enough space. For the non-string (the functions lacking §) that perform a single

conversion, a user can pre-allocate a suitably sized static buffer in automatic storage duration space. This will be
facilitated by a group of integral constant expressions contained in macros, which would be;
o GIEEEISER. which is the maximum output for a call to one of the X to multi character functions
o GBS, which is the maximum output for a call to one of the X to multi wide character functions
GBS, v hich is the maximum output for a call to one of the X to UTF-8 character functions
GEEESEEIR. which is the maximum output for a call to one of the X to UTF-16 character functions
GIEEEEEEIR. which is the maximum output for a call to one of the X to UTF-32 character functions
these values are suitable for use as the size of an array, allowing a properly sized buffer to hold all of the output

from the non-string functions. These limits apply only to the non-string functions, which perform a single unit of

irreversible input consumption and output (or fail with one of the error codes and outputs nothing).

Here is the full list of proposed functions:

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

4.1. Which Function Form?§&

There are several different ways to write the functions present here, each with their own unique tradeoffs. Since a
lot of calling conventions cannot afford struct parameters and returns by-value without elevating them to a level of
indirection (filling in a pointer of an object allocated by the caller on the stack), and since much of the
functionality of the standard does not follow such a convention, in this paper we simply evaluate the pointer and
integer-based forms that will allow all parameters to be passed in registers or similar on most calling conventions
we know of (including but not limited to arm7e, arm, arm64, amd64 (VC++ and System V), x86). From those

requirements, the most prominent forms are:

The form of (1) is what is in this paper and the form that this paper started out with. It is what we are going to

move forward with for this proposal. It is similar to ({Se, but deviates from that design a bit by using the typical
Win32 and similar convention that a null pointer argument changes the behavior to allow for greater flexibility.
For example, passing [to the first design for the (iHENIREREY 2!lows an implementation to assume the output
buffer is large enough: this can save on size checking on every successful conversion and write out. It also allows
passing ([for CEEEE®. which allows an end-user to not perform any write outs but simply determine the full

count of objects.

As a negative, it requires writes through indirect pointers for both the input and output, as well as for the sizes for
the input and output. This causes multiple updates to be necessary, and duplicates information in exchange for a
moderate decrease in ease-of-use. U#fortunately, it turns out this form is actually necessary for all of the

functionality proposed here.

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

4.1.1. (EEEEEEE Parameter for Unicode-only Conversions? §

Because the Unicode conversions, as specified, require no intermediate holdings, there is technically no reason to
provide the (RN Parameter. However, macro-generic programming used to wrap this code may partially
rely on having an additional parameter to pass to the function. There is currently no way to have a variable
argument parameter in a macro reflected with (S NSSEEE without undefined behavior / implementation
extensions, and solving such an issue would take even more advanced macro generic programming to solve the
problem. Therefore, we keep the (SIS Parameter, noting that passing the state object or just simply passing
@B 2! the time to such a parameter is a viable usage strategy. We realize this is not ideal but it is how it has

been implemented in our code.

4.1.2. Simplification Without Loss of Functionality? S

An attempt to fix this is done by utilizing the form in (2), which prevents giving the sizes as pointers but still has
pointer-to-pointer values. Unfortunately for design (2), this means that it is impossible to perform a "counting"
operation (just calculate the number of code units to write out or the number of input characters that will be
consumed) without having a valid buffer to write data into, so that before/after pointer values for iFeN can be

subtracted from one another.

One could then try to smuggle the error code into the return value, albeit down that path is fraught with API
design issues. One would need to exclude the values {§,),) and @ from being used in return values, or some
other set of arbitrary values. These are not good ideas and C users have struggled with APIs that behaved this way
in the past: see the conversion functions currently in the C Standard which behave in this manner and obfuscate
the return value for {§ (which still writes out a character but also indicates other actions performed) or the case of
@ (where multiple write outs may need to happen so the function needs to be called again). These issues have
also caused fundamental limitations in the C standard library, as present in [glibc-25744].

Form (3) is simply a re-visitation of form (2), but using pointers to indicate the size. This is nominally fine, until
subtraction between two pointers must be done. If (iBIIRNNRY is less than EHEASMMES and the architecture uses,
for example, segmented memory, than it is possible to create a region of memory EHEASNEES that exceeds the size
that can be understood from subtracting the leading pointers from the pointers. This is a mostly a
theoretical concern on larger systems and hosted systems, but of much more grave concern on bare-metal
machines with a tiny (jSIgEIMEe. or machines that make full use of the address space and frequently tap into

paged memory.

Finally, form (4) was the most attractive simplification. By keeping the indirect sizes but removing the double
indirection from the input and output parameters, it presented a tempting bit of functionality that seemed to keep
all of the benefits of form (1) but none of the drawbacks. That, unfortunately, does not apply in this one specific

case for "unbounded writing":

= (b) > &) ;> &))

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

https://ztdcuneicode.readthedocs.io/en/latest/api/generic%20typed%20conversions.html#c.cnc_cxsnrtocysn

https://ztdcuneicode.readthedocs.io/en/latest/api/generic%20typed%20conversions.html#c.cnc_cxsnrtocysn

N3095: Restartable Functions for Efficient Character Conversions

The above seems okay, until it becomes clear that you have no idea how many characters were written out into
CIEEEEEENRED: By passing ([for the size but having no pointer to update, the information is lost entirely.
One could argue that someone should call the version which does the counting first and THEN pass ([for the
size, but this is overly restrictive. For example, a maximally-sized buffer can be prepared before hand when doing

a UTF-8 to UTF-32 by simply assuming every code unit of input will result in one code point of output (e.g.,
everything input is ASCII). One could guarantee the fastest possible writing speed by creating such a maximally-
sized buffer and then using [for the size, but it would be impossible to know exactly how much output was
written in that case. One could compromise the return value to return that information, but that brings up the same

API design issues mentioned above. Therefore, we keep the double-pointer form to retain the information

properly.

4.1.3. Performance of Double-Pointers? 8

Benchmarks were inconclusive when it came to determining the cost of each API design. While writing out

2~~20.5 3vailable Unicode

through (doubly-)indirect pointers provided a non-negligible cost when serializing all
code points through a UTF-8 to UTF-32 conversion, these costs became noise values when bulk functions were
written that did not simply invoke the single-conversion functions repeatedly. That is: it performed the logical
equivalent of performing the bulk operation, and only updated the input/output pointers and sizes when it was

finished with the operation.

This could present a problem on at least one implementation, such as musl-libc. musl-libc both reportedly and in
its implementation tends to implement their current bulk transcoding routines by simply looping over the single-
unit transcoding routines. But, they have stated that they do not care about the performance degradation here and
that they are perfectly fine with the cost of writing the bulk functions in terms of the single transcoding functions.

As such, we find no reason to change the pointer-based design on the grounds of performance either.

See additional information at this benchmarking page , particularly the function form benchmarks and the
transcoding benchmarks .

4.1.4. Structure Returns? &

We do note that there could be a better interface design in general if the error value and other information were
returned in a structure (the current input pointer, output pointer, and sizes-left). Then, we would not have to
compromise the error return with a size and properly separate the two so that users do not accidentally misuse it as
they have in the past. But, most places in the C Standard avoid using by-value structure returns. Therefore, this

idea was, similarly, discarded.

4.1.5. Proposed Choice &

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

https://ztdtext.readthedocs.io/en/latest/benchmarks.html

https://ztdtext.readthedocs.io/en/latest/benchmarks/function%20form.html

https://ztdtext.readthedocs.io/en/latest/benchmarks/transcoding%20-%20UTF.html

N3095: Restartable Functions for Efficient Character Conversions

Given the above considerations about consistency with other functionality (no struct returns), the downsides of
function forms (2)-(4), and the benchmark indications that the impact of doubly-indirect pointers is negligible in
bulk, we therefore propose the double-pointer form, in order to retain the requisite information properly. Finally,
we also added the ([EEIRERES keyword to all pointers in the function signatures, in line with other functions

currently in and proposed to the standard library.

4.2. (R and Existing practices

@RS 21d wide characters in general have a requirement placed on them in the definition section that every
character supported in the wide execution encoding (and wide literal encoding) must be fully representable as a
single (IS value. This has not matched existing practice for the last ~20 or so years, and has produced
specification issues with functions such as (jjiSeme. which does not have a sequence of return values that can
adequately represent e.g. BigS-HKSCS needing to output 2 different UTF-32 code points for some of its input

characters (4 specific input sequences of them result in two UTF-32 code point outputs, to be precise).

Part of this proposal removes the wording that makes this requirement. Because this is an expansion of privileges
and not a shrinking, it conflicts with no existing implementation that was already working around this requirement
or arbitrarily restricting their C Standard Library functionality to handle this (some *BSD-based platforms, some

IBM-vended platforms, all Microsoft platforms).

As explained in § 2.5 Problem 5: The C Standard Cannot Handle Existing Practice, this has been a long-standing

issue in C and C++, but has particularly struck the C implementations due to the wording and setup of these types.
Therefore, it would be extraordinarily expedient to remove the requirement and do as this proposal does, which is
provide additional functionality to cover the fundamentally incompatible ABI and API — as well as user

expectations — for the existing functions.
C++ has adopted identical changes to the one in this proposal here in Corentin Jabot’s [p2460r2].

As part of coping with these changes, implementations are offered 2 new macros, one predefined in the compiler
and one in the standard library header to reflect the new existing situation:

o BEEEETNEESEEEE. v hich is a predefined compiler macro describing whether the wide literal

encoding (the compile-time ({fffj string literal encoding) is ISO 10646 compliant for a single value of
@SB This can be achieved by UTF-32 implementations only.

o (EEEEEEEED. v hich is a non-constant expression, that has a non-zero value if the wide execution
encoding (the runtime encoding associated with (iaens. CEREeEs. and similar functions) is ISO 10646
compliant. Because this is a runtime check, it can handle the inherently runtime nature of this without

compromising the compiler.

These changes are necessary because, as Clang implementers have pointed out in various issues against their

compiler (such as this one), they cannot know before-hand whether or not the compiler can predefine this because
the standard has mixed both execution encoding (execution time) and literal encoding (translation time) into the

same macro, and asks the compiler to predefine it. An execution time property cannot be provably ascertained by

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

the compiler ahead of time.

GCC and other platforms work around this by using a special, internal, implementation-defined mechanism such
as (iRl Where they collect a number of environment macros and then use them to provide enhanced
compile-time information. Clang does not have the same powers right now and so, in a completely conforming
manner, simply shuts off the macro despite the information it providing being very useful on a myriad of

platforms.

By separating the literal encoding macro with the new (IR, 2nd lcaving the

EEEEEECEEETE 2 cro to represent a potential interpretation of both translation and execution time
behavior, we give the user more actionable information and prevent split compiler/library implementations like
Clang from needing special knowledge to provide useful information. We also allow implementations to provide
the information at runtime, which -- especially for large strings -- can provide sufficiently actionable information
that even doing the check at runtime can give significant performance improvements. (UTF-32 based encoding
and decoding routines are often very heavily optimized, as compared to generic locale-based conversion routines
in not only C and C++ implementations, but routines underlying Haskell, Go, and other programming languages.
See the work in Daniel Lemire’s [lemire-spire2021].)

No changes are needed to ([EIESHENCRIESIISED b cause the specification for this macro already

deliberately refers to using a basic character set value "... as the line character in an integer character constant"
(§6.10.9.2, 41, [n3054]). Therefore, the only change to this predefined macro is the value for

These changes strengthen C’s legacy as a language suitable for powerful string processing.

5. Conclusiong

The ecosystem deserves ways to get to a statically-known encoding and not rely on implementation and locale-
parameterized encodings. This allows developers a way to perform cross-platform text processing without needing
to go through fantastic gymnastics to support different languages and platforms. An independent library
implementation, cuneicode (talked about from Meeting C++ and C++ On Sea), is now publicly available to

everyone.

6. Proposed Wordings

The following wording is relative to n3054.

6.1. Intent§

The intent of the wording is to provide transcoding functions that:

o define "code unit" as the smallest piece of information;

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions
o define the notion of an "indivisible unit of work";

e remove the requirement that wide characters must represent a full, complete unit for all wide execution

encodings that exist on the machine as they do not today;

e introduce the notion of multi-unit work that does not use the same 1:N or M:1 design as the precious

@RS (unctions;

o convert from the execution (" (") and wide execution (" (") encodings to the Unicode ("§8", "CHl9",

"@B") encodings and vice-versa;
o convert from the execution (" (") encoding to the wide execution ("{l§") encoding and vice-versa;
o provide a way for (RGNS to be properly initialized as the initial conversion state; and,

¢ to be entirely thread-safe by default with no magic internal state asides from what is already required by

locales.

6.2. Proposed Specifications

Author’s Note: Any € or is a stand-in character to be replaced by the editor.

6.2.1. Modify §3.7.3 Wide Character to change the definition to remove the one-to-one correspondences

3.7.3

1 wide character

value representable by an object of type (il -capable-of representing-any-charactertr-the-eurrent
toeate

6.2.2. Modify §6.10.9.2 Environment Macros to add new wide literal-only predefined macro=

6.10.9.2 Environment Macros

1 The following are unspecified:

EEEEEEEEEEE n integer constant of the form (NI (for example, (- If this

symbol is defined, then every character in the Unicode required set, when stored in an object of
type ((SEEII®: has the same value as the short identifier of that character. The Unicode required set

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

consists of all the characters that are defined by ISO/IEC 10646, along with all amendments and
technical corrigenda, as of the specified year and month. If some other encoding is used, the macro

shall not be defined and the actual encoding used is implementation-defined.

EESEEEEETEEEEE A 1 intcger constant of the form (NN (for example. (). 1

this symbol is defined, then the wide literal encoding (6.2.9) is capable of storing every character in
the Unicode required set and each object of from string or character literals has a value

that is the same as the short identifier of the character.

S ESENEECE The integer constant), intended to indicate that, in the wide literal

encoding for (IS, 2 member of the basic character set need not have a code value equal to its

value when used as the lone character in an integer character constant.

6.2.3. Modify §7.21 Common Definitions to Remove Harmful ({[EID Text &

7.21 Common definitions (iR

2 The types are ...

.. which is an object type whose alignment is the greatest fundamental alignment;

which is an integer type whose range of values can represent distinetecodes-for-alb-members-ofthe
d . codes for all the members of the

all supported wide execution encodmgs (6.2. 9): the null character shall have the code value zero. Each

member of the basic character set shall have a code value equal to its value when used as the lone

character in an integer character constant if an implementation does not define

TR .

6.2.4. Modify §7.31 Extended Multibyte and Wide Character Utilities to Clarify Role of (HiEIED:

7.31 Environment Macros

7.31.1 Introduction

T The header defines feur five macros, and declares four data types, one tag, and many

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

functions.

3 The macros defined are ([(described in 7.21); (SEETEED. (SRS, -nd (SHEEEEED (d<-

scribed in 7.22) ;

which expands to an expression of signed or unsigned integer type that is non-zero if the wide execution
encoding (6.2.9) is both capable of representing every character in the required Unicode set, and also if

the character stored in a - object shall have a value equivalent to the short identifier of the

character ; and,

which expands to a ...

6.2.5. Modify §6.2.9 Encodings to include definitions of Code Point, Code Unit, Wide/Narrow Execution
Encodings, and Encoding Error

6.2.9 Encodings

3 A code unitis a single compositional unit of encoded information. usually of type (). CHEREED-

4 A code point is a single compositional unit of decoded information. Code points are generally used as
the single complete decoded output, or as an intermediary to transcode to other code units. A Unicode
code point is a single compositional unit of decoded information as defined in ISO/IEC 10646,
typically used to convert to or from UTF-8, UTF-16, and UTF-32.

S The narrow execution encoding is the implementation-defined 7.11.1)-influenced, locale-
based execution environment encoding. The wide execution encoding is the implementation-defined,

- (7.11.1)-influenced, locale-based wide execution environment encoding. Both of these

encodings are called the execution encodings.

6 An unrecorded encoding error occurs when an encoding, decoding, or transcoding function
encounters an input sequence of code units or code points that

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

— does not form a valid sequence according to the encoding being associated with the sequence, or

— is not representable in the output encoding or coded character set.

7 An encoding error is the same as an unrecorded encoding error, except that the value of the macro
@R (7.5) is stored in (@l when such an error occurs during execution of the functions defined in
this document unless otherwise specified.

6.2.6. Modify §7.21.3 Files to remove the italics from the term "encoding error", since it’s initial definition
was moved to §6.2.9 Encodings

7.21.3 Files

14 An encoding-efror encoding error _ occurs if the character sequence presented to the underlying
@EIERE function does not form a valid (generalized) multibyte character, or if the code value passed to
the underlying ([SSe® does not correspond to a valid (generalized) multibyte character. The wide
character input/output functions and the byte input/output functions store the value of the macro (IR
in (R if and only if an encoding error occurs.

6.2.7. Create a new section §7.S and §7.S .1 Text Transcoding Utilities>

7.8 Text transcoding utilities

78 1 General

1 The header declares four status code enumerators, five macros, several types and several

functions for transcoding encoded text safely and efficiently. It is meant to supersede conversion utilities

from Unicode utilities (7.28) and Extended multibyte and wide character utilities (7.29). It is meant to

represent "multi character" functions. These functions can be used to count the number of input that

form a complete sequence. count the number of output characters required for a conversion with no

additional allocation, validate an input sequence, or transcode text from one encoding to another
encoding. Particularly, it provides single unit and multi unit transcoding functions for transcoding by
working on code units and code points.

Inputs to the functions in this clause are read until there is enough information taken in to perform an
indivisible unit of work. An indivisible unit is the smallest possible input, as defined by the encoding,

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

that can produce one or more outputs, perform a transformation of any state, or both. The conversion of

these indivisible units is called an indivisible unit of work, and they are used to complete the transcoding
operations specified below.

3 One or more of the following must hold for any given transcoding operation on an attempt to complete
an indivisible unit of work:

— enough input is consumed to perform an output or change the state:

— output is written from consuming input, or output is written from the state which causes the state
to change; or,

— an error occurs and both the input and output do not change relative to the current indivisible
unit of work.

For the multi unit functions, the process acts as if it completes one indivisible unit of work repeatedly.
When an error occurs, only the input successfully consumed, the state successfully altered, and the

output successfully written according to the last indivisible unit of work are reflected in the output
values of the functions in this clause: no other values are written.

4 Functions in (REuEteaNE which use (@l and (SEEIE. or their qualified forms, derive their

implementation-defined encodings from the narrow execution encoding or the wide execution encoding
(6.2.9), respectively. The other encodings are UTF-8, associated with UTF-16, associated with

-; and UTF-32, associated with -.FN 0

EN . . . - .
—O)_Each value is treated as code units and not as a container of octets. This means that the decision of. for example. UTF-16 in

big or little endian encoding scheme is decided by the endianness of the code unit type. Only whole code unit values are used. i.e.. a
UTF-32 code point value of U+0001F377 represents a value identical to how _ is stored by the implementation. This

requirement does not apply to the implementation-defined literal, wide literal. narrow execution. and wide execution encodings, but
does apply to the Unicode encodings.

S Forthe UTF-8, UTF-16, and UTF-32 encodings, collectively referred to as the Unicode encodings, an
indivisible unit of work for a read operation shall be the sequence of code units that corresponds to one
Unicode code point. If input is exhausted before a sequence of code units corresponding to one code
point can be reached, then (RRIIHERIIEII I shall be returned. If there is an illegal code
wumrw

execution and wide execution encodings, they have the same aforementioned requirement if the
implementation defines it to be one of the Unicode encodings.FN 2

6 For all functions in this clause, when the equivalent of a - (a code unit value of 0) is encountered in
the input, the _ object in use for the transcoding operation is set to the initial shift statefN-3),
The output associated with the indivisible unit of work consists of the appropriate null character
preceded by any shift sequence necessary to cause the output to be in the initial shift state.

— For example. if an implementation chooses to provide a UTF-8 execution encoding as the input encoding. then it is required to

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

read one full complete code point’s worth of code units. If it cannot. it shall return if the input

sequence is not long enough but does not have any invalid code units in the sequence) or —_(ifth_emww
is not a proper UTF-8 code unit sequence).

EN_J) This requirement does not apply to derivative encodings defined by the implementation. For example, an implementation may
define a "partial UTF-8" execution encoding where it stores every read UTF-8 code unit in the state and. rather than returning
— returns _ and produces no output. It may accumulate code units and write out a code
point when it accumulated enough code units in its internal state. However, such an encoding is distinct and separate from the UTF-8
encoding used in the . prefixed and suffixed functions.

FN 3 . . . L . e e
L As described in 7.30.6. an object of type - may always be set to the initial conversion sequence by initializing it with e

lm. An existing - object may always be set to the initial conversion sequence by assigning to it from the

expressions (ST o ((EEERESE.

7 Changing the (SIS category causes any conversion state already in use with the functions in this
clause to be indeterminate.

8 The types declared are ([EERNSHRSIN® (described in 7.29.1). (I (described in 7.19). (iETRaNS
described in 7.28 described in 7.28 described in 7.28 - (described in

7.19), and;

which is both an enumerated type and a typedef whose enumerators identify the status codes from a
function calls described in this clause.

9 The five macros declared are

which correspond to the maximum output for each single unit conversion function (7.S _.2) and its
corresponding output type. Each macro shall expand into an integer constant expression with minimum
values, as described in the following table.

10 There is an association of naming convention, types, encoding, and maximums, used to describe the

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

functions in this clause:

Name Code Unit Encoding Maximum Output Minimum
Type Macro Value
mc char] The narrow execution [STDC_MC_MAX] []
encoding,

influenced by (SNSIRES

The wide execution [STDC_MWC_MAX] []
encoding,

influenced by (SSRGS

S GEER Uiks SToc_cs_ha 0
T BToc. cr6. M 0
BN B BToc. c2. 1 0

The maximum output macro values specified in the above table are related to the single unit conversion
functions (7.S .2). These functions perform at most one indivisible unit of work, or return an error. The
maximum output macro values shall be integer constant expressions large enough that conversions to
the single unit conversion function’s specified encoding shall not overflow a buffer of the proper code
unit type with that size. The maximum output macro values do not affect the multi unit conversion

functions (7.S .3). which perform as many indivisible units of work as is possible until an error occurs

until the output space is exhausted, or until the input is exhausted.

11 Unlike the functions presentin (iSRS and EHEREINEY. the functions present in this header can
return multiple values for conversions based on - to accommodate a wider set of

implementation-defined encodings. so long as the number of code units does not exceed the maximum

output macro value of _L
12 The enumerators of the enumerated type R o:c defined as follows:

mwc

Each value represents an specific situation when calling the relevant transcoding functions in

<stnchar.n 8
— R S LR SR R e IRaees. v [ion the input is correct and an indivisible unit of work
can be performed but there is not enough output space to write to;

— R T AR Raes . v hen input has been exhausted and the sequence is not
incorrect but there are no more input values;

— M. - o unrecorded encoding error occurred; and.,

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

— when the operation was successful (none of the situations described for the

other values of this enumerated type apply).

No other value shall be returned from the functions described in this clause.

Recommended Practice

13 The maximum output macro values are intended for use in making automatic storage duration array
declarations. Implementations should choose values for the macros that are spacious enough to
accommodate a variety of underlying implementation choices for the target encodings supported by the
narrow execution encodings and wide execution encodings, which for some encodings can output more
than one UTF-32 code point. Below is a set of values which are most resilient to future additions and
changes in implementations:

14 Beyond just the Unicode encodings mentioned above, implementations are encouraged to not store
partial reads or partial writes in the _ object with these functions unless as is strictly necessary.
Implementations providing additional encodings for use with these functions should. to the extent
possible for a given encoding, always define an indivisible unit of work to transcode as complete a unit
of information as is possible or produce an error. If a sequence of code units cannot form a complete

shift sequence or produce output. then an implementation should return (RIS SEEITE It
if the input is exhausted. or if the input sequence is incorrect.

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/...EC%. C%201-SC%2022-WG%2014 N3095 Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/...EC%

N3095: Restartable Functions for Efficient Character Conversions

Description

2 Let transcoding function be one of the functions listed above transcribed in the form

with the following properties:

— Xand Y be one of the prefixes/suffixes in the table from 7.S .1;
— - and be the associated code unit types for X and Y in the table from 7.S .1; and

— encoding X and encoding Y be the associated encoding types for X and Y in the table from
7S 1.

The transcoding functions take an input buffer and an output buffer of the associated code unit types,

potentially with their sizes. The function consumes any number of code units of type - to perform a
single indivisible unit of work necessary to convert some amount of input from encoding X to encoding
Y. which results in zero or more output code units of type (§iEiD-

3 An (R obicct assuredly describes the conversion state for the current conversion if it is not in an
unspecified state (as described further below) and:

— the conversion is between Unicode encodings; or

— the input fragment is the start of an encoded sequence in the input encoding and the _
object was initialized to the initial conversion state; or

— the input fragment is a continuation of an encoded sequence and _ is the result of
having advanced to the input and output positions through the application of prior calls to the same
transcoding function.

The behavior is undefined when a function described by this subclause is invoked and (SR8 (or. if
G is 2 null pointer. the (D obicct created for that case) does not describe the conversion

state for the current conversion.

4 The transcoding functions convert from code units of type - interpreted according to encoding X to

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

code units of type (Il according to encoding Y given a conversion state of value (ila®- This
function only performs a single indivisible unit of work. It returns — if the input is empty.
The input is considered empty if (HiENESNEES is a null pointer, or is zero if (RS is
not a null pointer. The behavior of the transcoding functions is as follows.

— 1 (e is a null pointer, then an automatic storage duration object of type (RIS is

created which is unique to the current invocation. It is initialized to the initial conversion state and
a pointer to this object is used wherever - is used in this paragraphM;

— I @ is a null pointer or (GERNENE is a null pointer, then (EREeE is set to the initial conversion
state. If - and - are not null pointers, and if - is not in the initial conversion

state, it writes any necessary output to return the output sequence to the initial conversion state,

unless (SNNSMENEERE is not a null pointer and there is not enough space to write that output. In the
case where the output sequence is not written to because there is not enough space,

and if (INSSRIERA is not a null pointer then (ENINSNMEERAS is decremented by the amount of

output written. I (IfNSIRSNEREAY is a null pointer and (NSNS and EENIESNE are not null pointers, then
enough space to perform the write out is assumed; the behavior is undefined if the output buffer is
not large enough for the transcoding operation in this case.

— The function reads code units from - if is large enough to produce an

indivisible unit of work. If no encoding errors have occurred but the input is exhausted before an
indivisible unit of work can be computed, the function returns — If
an unrecorded encoding error occurs, then the function returns

— 1f (CHNSNEEERaS is not a null pointer, then (NIMeIRSNERAg will be decremented the amount of
code units that would have been written to - (even if - is a null pointer). If the output
would be exhausted (_ will be decremented below zero by the write out of the

indivisible unit of work). the function returns and does not

decrement
—If - - is a null pointer, then no output will be written. If applicable, -

still read and incremented. If is not a null pointer and both and m
not a null pointer, then _ shall point to at least _ charY code units.

— 1f (NSRS is a null pointer is not a null pointer, and is not a null pointer

then enough space in the buffer pointed to by - is assumed for the write out of the
completed indivisible unit of work. The behavior is undefined if the output buffer is not large
enough for the transcoding operation.

Returns

5 On success or failure, the transcoding functions shall return one of the above error codes (7.S .1). If

@B is 2 null pointer or (NSNS is a null pointer. then (GRRERY is sct to the initial conversion state as

described below and no other work is performed.

6 If the function returns _; then all of the following is true:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

— if (R and QNN arc not null pointers, (GEEEME is incremented by the number of code units

read and successfully converted ;

—if is not a null pointer. _ is decremented by the number of code units

read and successfully converted from the input;

—if and _ are not null pointers, - is incremented by the number of code
units written to the output: and,

—if is not a null pointer is decremented by the number of code units

written to the output.

Otherwise, if an error is returned then none of the above occurs. If the return value is

CERETIIETIEIEE). ([CEEEs s in an unspecified state. If the return value is
or then is not changed.
EN_4)

N 4 .) L
I_f- is a null pointer, and the function uses the created automatic storage duration _ object that is discarded by
the end of the invocation. then any potential conversion state contained in the created _ object and used during processing
could become unrecoverable to the program.

Recommended Practice

7 Implementations should take advantage of the information of null pointer values for the output size
pointer, output data pointer, or both, to drastically improve performance characteristics for assumed
unlimited write space, output counting scenarios, or input validation/counting, respectively.

8 Implementations should prefer returning an error for an incomplete input sequence over storing
intermediate data within the state where possible for non-Unicode encodings. This may make it easier
for functionality built on top of the functions in this subclause to report errors without skipping over
potentially invalid input data.

6.2.9. Create a new subsection §7.S .3 Multi Unit Sized Conversion Functionss

78 3 Multi Unit Sized Conversion Functions

Synopsis

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/...EC%. C%201-SC%2022-WG%2014 N3095 Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

file:///C/...EC%

N3095: Restartable Functions for Efficient Character Conversions

Description

2 Let multi unit transcoding function in this function be one of the functions listed above transcribed in
the form

with the following properties:

— Xand Y be one of the prefixes/suffixes in the table from 7.S .1;
— - and be the associated code unit types for X and Y in the table from 7.S .1; and

— encoding X and encoding Y be the associated encoding types for X and Y in the table from
7S 1.

The multi unit transcoding functions take an input buffer and an output buffer of the associated code
unit types, potentially with their sizes. The functions consume any number of code units to perform a
sequence of indivisible units of work, which results in zero or more output code units. The functions
will repeatedly perform an indivisible unit of work until either an error occurs or the input is exhausted.

3 An (R obicct assuredly describes the conversion state for the current conversion if it is not in an
unspecified state (as described further below) and:

o the conversion is between Unicode encodings: or

o the input fragment is the start of an encoded sequence in the input encoding and the _
object was initialized to the initial conversion state; or

o the input fragment is a continuation of an encoded sequence and _ is the result of having
advanced to the input and output positions through the application of prior calls to the same
transcoding function.

The behavior is undefined when a function described by this subclause is invoked and (SR8 (or. if
G is 2 null pointer. the (D obicct created for that case) does not describe the conversion

state for the current conversion.

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

4 1 GESNEEEED is o null pointer shall either be a null pointer or point to a null pointer. Otherwise

@B shall be a pointer to a non-null pointer to an array of at least CHNSIRIEAS clements.

The multi unit transcoding functions convert from code units of type

encoding X to code units of type - according to encoding Y given a conversion state of value
@EEEE®. The behavior of these functions is as-if the analogous single unit function (iR was
repeatedly called, with the same (iHeNES. CHEIIREELS. (IENS. (EENEEEED. ond (EIEs parameters, to

perform multiple indivisible units of work. The function stops when an error occurs or the input is
exhausted (only signified when

interpreted according to

1S zero).

6 The multi unit transcoding functions behave as-if:

1. If] is a null pointer, then an automatic storage duration object of type | is

created which is unique to the current invocation. It is initialized to the initial conversion state
and a pointer to this object is used wherever - is used in this paragraph EN 5)

. CRTTIED i colled with (TTEESED. CID. G @D, -0 @F vith it

result stored in a temporary named (§§.

is a null pointer, return _;

then return

3. If] is a null pointer or

4. 1@ is not

5. Otherwise, if

reater than zero, go back to (2).

6. Otherwise. call and store its result in a temporary named (IS RETTIES.

7. If is zero, go back to (2).
8. Otherwise, return .;

Returns

7 On success or failure, the transcoding functions shall return one of the above error codes (7.S .1). If

I is not a null pointer and (GBI is not initialized to the initial conversion state for the function on

its first use, or is used after being input into a function whose result is not one of _
or the behavior of the functions

is unspecified.

8 The following is true after the invocation:

— ' will be incremented by the number of code units read and successfully converted if

EEED and G arc not null pointers. If is returned, then this will consume all

the input. Otherwise, - will point to the location just after the last successfully completed
indivisible unit of work.

— _ is decremented by the number of code units read from - that were

successfully converted. If no error occurred, then will be 0.

—if and - is not a null pointer, - will be incremented by the number of

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

code units written from successfully completed indivisible unit of work.

—if is not a null pointer is decremented by the number of code units

written to the output or that would have been written to the output.

If the return value is and is not a null pointer, then ' is in an
unspecified state.

FN_35)

The object to unique to the invocation is reused for every call in the second step of the multi unit sized conversion algorithm
and not recreated. If - is a null pointer, and the function uses the created automatic storage duration _ object that is
discarded by the end of the invocation. then any potential conversion state contained in the created _ object and used during

processing could become unrecoverable to the program.

9 EXAMPLE 1

The following is an example of using a single indivisible unit sized conversion function

_ to implement a multi unit sized conversion algorithm:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

"\"Saw a \U@ee1F9DC \u2014"
"didn’t catch her\u2026 \UGOO1F61E\"\n\t- Sniff";

(*str));

)) o

file:///C/... EC%20JTC%201-SC%2022-WG%2014_N3095_Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

The above program demonstrates validating, counting, and doing an unbounded (size unsafe) write
using the provided functions. Caution should be taken when a program uses unbounded writes, as the
size of the buffer is assumed to be large enough during the call to the multi unit sized conversion
function when _ is a null pointer. An implementation may detect the above cases where
specific arguments or their pointed to values are a null pointer value, and provide improved
implementations relying on assumptions from these qualities.

Recommended Practice

11 The multi unit transcoding functions are explicitly for the purpose of performing conversions on the
largest contiguous section of valid data in the shortest amount of time possible. Implementations should
take advantage of the information of null pointer values for the output size pointer, output data pointer,
or both, to drastically improve performance characteristics for assumed unlimited write space, output
counting scenarios, or input validation/counting, respectively.

12 Implementations should prefer returning an error for an incomplete input sequence over storing
intermediate data within the state where possible for non-Unicode encodings. By leaving partial input
unconsumed, it can be easier for functionality built on top of the functions in this subclause to report
errors without skipping over potentially invalid input data.

6.2.10. Add unspecified behavior to Annex J.1 Unspecified behavior 3

J.1 Unspecified Behavior

1 The following are unspecified:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

— The conversion state after an encoding error (6.2.9) occurs (7.30.6.3.2, 7.30.6.3.3, 7.30.6.4.1,
7.30.6.4.2).

— The conversion state after a unrecorded encoding error (6.2.9) occurs (7.S).

7. Acknowledgementss

Thank you to Philipp K. Krause for responding to the e-mails of a newcomer to matters of C and providing me
with helpful guidance. Thank you to Rajan Bhakta, Daniel Plakosh, and David Keaton for guidance on how to
submit these papers and get started in WG14. Thank you to Tom Honermann for lighting the passionate fire for
proper text handling in me for not just C++, but for our sibling language C.

8. Appendixs

8.1. (From revisions 0-3) What about UTF{X} <> UTF{Y} functions?&

Function interconverting between different Unicode Transformation Formats are not proposed here because --
while useful -- both sides of the encoding are statically known by the developer. The C Standard only wants to
consider functionality strictly in the case where the implementation has more information / private information
that the developer cannot access in a well-defined and standard manner. A developer can write their own Unicode
Transformation Format conversion routines and get them completely right, whereas a developer cannot write the

Wide Character and Multibyte Character functions without incredible heroics and/or error-prone assumptions.

This brings up an interesting point, however: if (B 2" (ESIEEE both cxist, does that not

mean the implementation controls what (§ilf§ and (@8 mean? This is true, however: within a (admittedly limited)

survey of implementations, there has been no suggestion or report of an implementation which does not use
UTF16 and UTF32 for their (iEIgnams 2nd CHEREES litcrals, respectively.

Thankfully, that does not seem to be the case at this time. It will also no longer be the case in C23, as the paper
charl6_t and char32 t literals should be UTF-16 and UTF-32 has been accepted. (Note: this paper has been
accepted.)

May the Tower of Babel’s curse be defeated.

Referencess

Informative References

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

N3095: Restartable Functions for Efficient Character Conversions

[CLANG-1ISO10646]
Corentin Jabot. Define _ STDC ISO_10646 . June 22nd, 2021. URL:

https://reviews.llvm.org/D106577

[CUNEICODE]
JeanHeyd Meneide; Shepherd's Oasis, LLC. cuneicode - A spicy text library for C. November 20th, 2021.

URL: https://ztdcuneicode.rtfd.io

[GLIBC-25744]
Tom Honermann; Carlos O'Donnell. “mbrfowc” with Bigh-HKSCS returns 2 instead of 1 when

consuming the second byte of certain double byte characters. URL:
https://sourceware.org/bugzilla/show_bug.cgi?id=25744
[ICONV]
Bruno Haible; Daiki Ueno. libiconv. August 2020. URL: https://savannah.gnu.org/git/?group=Ilibiconv
[LEMIRE-SPIRE2021]
Daniel Lemire. Unicode at Gigabytes per Second. November 14th, 2021. URL:
https://doi.org/10.48550/arXiv.2111.08692

[N1570]
ISO/IEC JTC1 SC22 WG14 - Programming Languages, C. C11 Committee Draft. April 12,2011. URL:

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

[N2244]
WG14. Clarification Request Summary for C11, Version 1.13. October 2017. URL: https://www.open-
std.org/jtc1/sc22/wgl4/www/docs/n2244 htm

[N2282]
Philip K. Krause. Additional multibyte/wide string conversion functions. June 2018. URL:

https://www.open-std.org/jtc1/sc22/wgl4/www/docs/n2282.htm

[N2728]
JeanHeyd Meneide. char16 _t and char32 t shall be UTF-16 and UTF-32. May 15th, 20201. URL:
https://thephd.dev/ vendor/future cxx/papers/C%20-
%20char16_t%20&%20char32 t%20string%20literals%20shall%20be%20UTF-16%20&%20UTF-32.html
[N3054]
ISO/IEC JTC1 SC22 WG14 - Programming Languages, C; JeanHeyd Meneide; Freek Wiedijk. n3054:
ISO/IEC 9899:202x - Programming Languages, C. September 3rd, 2022. URL: https://www.open-
std.org/jtc1/sc22/wgl4/www/docs/n3054.pdf
[P2460R2]
Corentin Jabot. Relax requirements on wchar_t to match existing practices. 15 July 2022. URL:
https://wg21.1ink/p2460r2
[Unicode_deep_c_diving]
JeanHeyd Meneide. Deep C Diving - Fast and Scalable Text Interfaces at the Botfom. July 2020. URL:
https://youtu.be/X-FLGsa8l.Vc

[Unicode_greater_detail]
JeanHeyd Meneide. Catching 1: Unicode for C++ in Greater Detail. November 2019. URL:

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

https://reviews.llvm.org/D106577

https://reviews.llvm.org/D106577

https://ztdcuneicode.rtfd.io/

https://ztdcuneicode.rtfd.io/

https://sourceware.org/bugzilla/show_bug.cgi?id=25744

https://sourceware.org/bugzilla/show_bug.cgi?id=25744

https://sourceware.org/bugzilla/show_bug.cgi?id=25744

https://savannah.gnu.org/git/?group=libiconv

https://savannah.gnu.org/git/?group=libiconv

https://doi.org/10.48550/arXiv.2111.08692

https://doi.org/10.48550/arXiv.2111.08692

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2282.htm

https://thephd.dev/_vendor/future_cxx/papers/C%20-%20char16_t%20&%20char32_t%20string%20literals%20shall%20be%20UTF-16%20&%20UTF-32.html

https://thephd.dev/_vendor/future_cxx/papers/C%20-%20char16_t%20&%20char32_t%20string%20literals%20shall%20be%20UTF-16%20&%20UTF-32.html

https://thephd.dev/_vendor/future_cxx/papers/C%20-%20char16_t%20&%20char32_t%20string%20literals%20shall%20be%20UTF-16%20&%20UTF-32.html

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3054.pdf

https://wg21.link/p2460r2

https://wg21.link/p2460r2

https://youtu.be/X-FLGsa8LVc

https://youtu.be/X-FLGsa8LVc

https://www.youtube.com/watch?v=FQHofyOgQtM

https://www.youtube.com/watch?v=FQHofyOgQtM

https://www.youtube.com/watch?v=FQHofyOgQtM

https://www.youtube.com/watch?v=FQHofyOgQtM

N3095: Restartable Functions for Efficient Character Conversions

https://www.youtube.com/watch?v=FQHofyOgQtM

file:///C/...EC%20JTC%201-SC%2022-WG%2014_N3095_ Restartable%20Functions%20for%20Efficient%20Character%20Conversion,%20r11.htm[5/3/2023 1:52:10 PM]

https://www.youtube.com/watch?v=FQHofyOgQtM

		Local Disk

		N3095: Restartable Functions for Efficient Character Conversions

image16.emf
ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3082_CFP Review of NB comments - N3081 update.pdf
WG14 N3082

Title: CFP response to NB comments and N3071 - update
Author, affiliation: C FP group

Date: 2023-01-19

Reference: N3054,N3067,N3071,N3073, N3081

This document updates N3081, “CFP response to NB comments and N3071". It includes: (1) response to
N3073, “Updated SCC Comments for ISO/IEC CD 9899, C”, (2) changes intended to address WG14 email
comments, and (3) clarifications. Changes from N3081 are highlighted.

Below are the comments CFP has reviewed and our suggested response. (Editorial comments seen as clear
and uncontroversial are not listed.) Also, at the end, are suggested responses to the issues raised in N3071.

Agree. Accept proposed change.

US 5-018

US 6-023

GB-063

GB-127

GB-147

GB-149

GB-152

US 39-155

GB-156

GB-157

GB-163

US 40-166

GB-173

US 56-187

US 57-189

GB-220 and duplicate US 63-216
GB-229

GB-230

GB-267

GB-268 Note also F.10.3.7 uses exp while 7.12.6.7 uses p for the same argument.
GB-269

GB-271 Wording more style-consistent than similar US 68-270.
GB-276

US 67-278

Disagree. No change needed.

GB-153
If imaginary types are not supported the formula gives Inf + (0,1)*zero = Inf + (zero,zero) = (Inf, zero). The
normative formula defines proj when z has an infinite part.

GB-164
The qualification for default rounding in C18 was intended to apply to returning HUGE_VAL, not to reporting
an error. If overflow returns a finite number, it's even more important to report it. Change not desired.

However, if preserving the default rounding qualification is deemed too valuable, the qualification could be
restored for errno but not floating-point exceptions, as follows:

In 7.12.1 #5, insert before “and the integer expressionmath_errhandling & MATH_ ERRNO is nonzero”
the words “and default rounding is in effect”.

The corresponding change for MATHERR EXCEPT should not be made. Not raising an “overflow” floating-
point exception when overflow occurs because a non-default rounding direction is in effect would be
inconsistent with IEC 60559. In this regard, the following clarification should be made (if the change above is
made):

In 7.12.1 #5, insert at the end of the paragraph, after “the ‘overflow’ floating-point exception is raised” the
parenthetical remark “(regardless of whether default rounding is in effect)”.

US 43-170

Both footnotes are implied by the Description (“return the maximum/minimum numeric value of their
argument”), so are not normative. No change needed.

CA-N3073-006
Recommend no change.

The primary objection raised with the CD specification is that it requires some current implementations with
double-double formats for long double to change macro values. This requirement comes from the CD’s
clarification that all normalized numbers, i.e. all numbers with a given precision (p) within a given exponent
range (emin through emax), must be represented.

The last Proposed Technical Corrigendum (April 2017, too late for C18) for DR #467 included a change to
clarify that a type must be able to represent all normalized numbers. This property is important for users,
and, we believe, has been generally assumed. For example, users might reasonably expect that

#include <float.h>

#ifdef LDBL_MANT DIG >= 105

long double x = 0x1.1234567890123456789012345Fp0L;
#endif

would store the exact value of its initializer in x.

The change proposed in CA-N3073-006 qualifies the definition of the * MANT DIG (and other) macros with
“in relation to implementation-defined model parameters not subject to the restriction that the floating type
is able to represent all normalized floating-point numbers”. This change would invalidate the code (above),
and the general assumption about the macros.

The change proposed in CA-N3073-006 also introduces new macros that are equivalent to the ones in the CD
now. This would be a cost to users in needing to understand more specification, the differences between old
and new macros, and which ones they should use. We expect almost all users would want the ones in the CD
and (with the proposed change) they would need to modify their code to get them.

We appreciate the general concern that there might be unknown user consequences of interface changes, that
existing program might get different results. Here, an implementation would need to change its macro

definitions only if (1) the values are not currently consistent with respect to some fixed p, emax, and emin, or
(2) the implementation doesn’t represent all normalized numbers for its chosen p, emax, and emin. We are
not aware of meaningful use of the macros that the required implementation changes would break.

CA-N3073-006 proposes changes and new macros for the * MANT DIGand* EPSILON macros. But other
macros are similarly dependent on the representability of normalized numbers. The proposed change (if
generally accepted) would need to be expanded.

Generally agree. Modify /complete proposed change.

GB-007

Agree with first two changes. In 6.7.1 change “single precision” to “£loat” and change “32-bit single-
precision IEC 60559” to “IEC 60559 binary32”.

US 26-075
In 6.7.1 #5 after the second sentence, insert “An initializer of floating type shall be evaluated with the
translation-time floating-point environment.”

In the comment example the fesetround call would not affect the initialization of h.

GB-151

Change both footnotes to: “For a complex variable z, z and CMPLX (creal (z) , cimag(z)) are equivalent
expressions. If imaginary types are supported, z and creal (z) + cimag(z) *I are equivalent
expressions.”

US 42-169
Add the Returns paragraph as suggested. Similar 7.24.1.3 has a Returns section.

US 71-275
Delete the entire line. It was a holdover from earlier version of IEC 60559.

GB-279

CFP response (above) to US-75 makes constexpr initialization done with the translation-time floating-
point environment, like for static and thread storage duration. It would be independent of the FENV_ACCESS
pragma but would be affected by the FENV_ROUND and FENV_DEC_ROUND pragmas.

In F.8.4 #1 insert after “for an object that has static or thread storage duration” the words “or that is declared
with storage-class specifier constexpr”.

In F.8.4 #2 in the example before “float w[] =..”insert“constexpr double v = 0.0/0.0; //
does not raise an exception”.

In F.8.4 #3 change “For the static initialization” to “For the static and constexpr initializations”.

In F.8.5 #1 insert after “of objects that have static or thread storage duration” the words “or that are declared
with storage-class specifier constexpr”.

In F.8.5 #2 in the example before “float u[] =..”insert“constexpr float t = (float)l.le75;
// does not raise an exception”.

In F.8.5 #3 change “The static initialization of v raises no (execution-time) floating-point exceptions because
its computation is done at translation time” to “The constexpr initialization of t and the static initialization
of v raise no (execution-time) floating-point exceptions because their computation is done at translation
time”.

A related problem is that the CD specification for initialization with signaling NaN macros doesn’t cover
constexpr. This could be fixed with the following change:

In 5.2.4.2.2 #21 replace “If an optional unary + or - operator followed by a signaling NaN macro is used as the
initializer for initializing an object of the same type that has static or thread storage duration ...” with “If an
optional unary + or - operator followed by a signaling NaN macro is used as an initializer that must be
evaluated at translation time ...".

GB-286

The strto£fN functions are not like the strfrom£N functions whose wide character versions can easily be
obtained from other functions (as shown in an example). Rather than add them at this late date ...

In 7.33.20 after paragraph 1 add: “Functions with potentially reserved identifiers westofN and westodN
are intended to be wide character analogs of the strtofN and strtodN functions.”

GB-287
The suggested change seems too large to do now. Instead ...

In 7.24.1.6#4 change the bullet “It is not a hexadecimal floating number” to “Whether the subject sequence
may be a hexadecimal floating number is implementation-defined.”

In 7.24.1.6, before the Returns section, insert:

Recommended practice
Rounding for hexadecimal input should follow the method in H.12.2.

In 7.24.1.6#4, in the "0x1 . 8p+4" example, before “(+1, 0, 0), ...” insert “If hexadecimal input is accepted, (+1,
24, 0). If hexadecimal input is not accepted, ”

GB-288

To H.12.2 #3 append: “The preferred quantum exponent for the result is 0 if the hexadecimal number is
exactly represented in the decimal type; the preferred quantum exponent for the result is the least possible if
the hexadecimal number is not exactly represented in the decimal type.”

About N3071

The following proposed changes are intended to address the missing (or ambiguous) specification pointed
outin N3071.

To 6.7.1 #5, append: “If the object declared has real floating type, the initializer shall have integer or real
floating type. If the object declared has imaginary type, the initializer shall have imaginary type. If the
initializer has decimal floating type, the object declared shall have decimal floating type and the conversion
shall preserve the quantum of the initializer. If the initializer has real type and a signaling NaN value, the
unqualified versions of the type of the initializer and the corresponding real type of the object declared shall
be compatible.”

After 6.7.1 #17 (EXAMPLE 3), insert

EXAMPLE 4 This example illustrates constexpr initializations involving different type domains,
decimal and non-decimal floating types, NaNs and infinities, and quanta in decimal floating types.

#include <float.h>
#include <complex.h>

constexpr float _Complex fcl = 1.0; // ok

constexpr float _Complex fc2 = 0.1; // constraint violation, unless double
// has the same precision as float
// and is evaluated with the same
// precision

constexpr float _Complex fc3 = 3*I; // ok

constexpr double dl = (double _Complex)1.0; // constraint violation

constexpr double d2 = (double _Imaginary)0.0; // constraint violation

constexpr float f1 = (long double) INFINITY; // ok

constexpr float £2 = (long double)NAN; // ok, quiet NaNs in real floating
// types are considered the same
// value, regardless of payloads

constexpr double d3 = DBL_SNAN; // ok

constexpr double d4 = FLT SNAN; // constraint violation, even if float
// and double have the same format

constexpr double _Complex dcl = DBL SNAN; // ok

constexpr double _Complex dc2 = CMPLX(DBL_SNAN, 0.); // ok

constexpr double _Complex dc3 = CMPLX(0., DBL_SNAN) ; // ok

constexpr _Decimal32 d321 = 1.0; // ok

constexpr _Decimal32 d322 = 1; // ok

constexpr _Decimal32 d323 = INFINITY; // ok

constexpr _Decimal32 d324 = NAN; // ok

constexpr _Decimal64 dé41 = DEC64_SNAN; // ok

constexpr _Decimal64 d642 = DEC32_SNAN; // constraint violation

constexpr float £3 = 1.DF; // constraint violation

constexpr float f4 = DEC_INFINITY; // constraint violation

constexpr double d5 = DEC_NAN; // constraint violation

constexpr _Decimal32 d325 = DEC64_TRUE _MIN * 0; // constraint violation, quantum not
// preserved

#ifdef _ STDC_IEC_ 60559 COMPLEX _

constexpr double d6é = (double _Imaginary)0.0; // constraint violation

constexpr double _Imaginary dil = 0.0*I; // ok

constexpr double _Imaginary di2 = 0.0; // constraint violation

#endif

The following is an additional editorial comment, with a proposal:

6.7.1 #14 (NOTE 2) uses “mantissa” which is used nowhere else in the document. Suggest changing “a
diagnostic is required if a truncation of the mantissa occurs” to “a diagnostic is required if a truncation of the
excess precision changes the value”.

image17.emf
ISO-IEC JTC 1-SC 22-WG 14_N3105_Issues with CFP response to NB comments - N3101 update.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3105_Issues with CFP response to NB comments - N3101 update.pdf
ISO/IEC JTC 1/SC 22/WG 14 N 3105

ISO/IEC JTC 1/SC 22/WG 14 "C"
Convenorship: ANSI
Convenor: Keaton David Mr

Issues with CFP response to NB comments - N3101 update - Reserved N-
number

Document type Related content Document date Expected action
Meeting / Working
documents for Meeting: VIRTUAL 13 Feb 2023 2023-02-08

discussion

https://sd.iso.org/documents/open/53750abb-0c7d-41d0-9513-f40c15b8803d

http://sd.iso.org/meetings/122549

WG14 N3105

Title: Issues with CFP response to NB comments - N3101 update
Author, affiliation: C FP group

Date: 2023-02-06

Reference: N3054,N3067,N3082,N3101

This note updates N3101 to respond to [SC22WG14.23086].

This note follows up on requests from WG14 regarding CFP response (N3082) to NB comments USA42-169,
GB-286 and GB-287 (N3067).

USA42-169

The comment in N3067 is “7.12.11.4 (nexttoward): Should a ‘Returns’ paragraph be added?” and the proposed
solution is “If added, it should be similar to the ‘nextafter’ one.” The CFP response in N3082 is “Add the Returns
paragraph as suggested. Similar 7.24.1.3 has a Returns section.” Since 7.24.1.3 doesn’t seem similar, WG14
requested clarification.

The only purpose of the reference to 7.24.1.3 was to show that in similar cases-where one function is described
as equivalent to another function-a Returns section is provided for both functions. We support US42-169 and
adding a Returns section (similar to nextafter) in 7.12.11.4 as proposed in the comment, specifically:

Returns
3 The nexttoward functions return the next representable value in the specified format after x in the
direction of y.

GB-286

WG14 requested CFP provide specification for westo£fN and westodN functions. To add the specification,
make the changes highlighted in yellow below.

H.12.2 String to floating

1 This subclause expands 7.24.1.5, 7.31.4.1.2, 7.24.1.6, and 7.31.4.1.3 to also include functions for the
interchange and extended floating types. It adds to the synopsis in 7.24.1.5 the prototypes

_FloatN strtofN(const char * restrict nptr, char ** restrict endptr);
_FloatNx strtofNx(const char * restrict nptr, char ** restrict endptr);

It adds to the synopsis in 7.31.4.1.2 the prototypes

_FloatN wcstofN (const wchar t * restrict nptr,
wchar t ** restrict endptr);

_FloatNx wcstofNx(const wchar t * restrict nptr,
wchar t ** restrict endptr);

It encompasses the prototypes in 7.24.1.6 by replacing them with

_DecimalN strtodN(const char * restrict nptr, char ** restrict endptr);
_DecimalNx strtodNx(const char * restrict nptr,
char ** restrict endptr);

It encompasses the prototypes in 7.31.4.1.3 by replacing them with

_DecimalN wcstodN(const wchar t * restrict nptr,
wchar t ** restrict endptr);

_DecimalNx wcstodNx(const wchar t * restrict nptr,
wchar t ** restrict endptr);

2 The descriptions and returns for the added functions are analogous to the ones in 7.24.1.5, 7.31.4.1.2,
7.24.1.6 and 7.31.4.1.3.

Paragraph 3 will need to be changed too. See further below.

Considering the principle behind GB-286, specification for wide character versions of the string to encoding
functions should also be added. To add it, make the changes highlighted in yellow below.

H.12.4 String to encoding

1 An implementation shall declare the strtoenc£fN and westoenc£N functions for each N equal to the
width of a supported IEC 60559 arithmetic or non-arithmetic binary interchange format. An implementation
shall declare the strtoencdecdN, strtoencbindN, westoencdecdN and westoencbindN functions
for each N equal to the width of a supported IEC 60559 arithmetic or non-arithmetic decimal interchange
format.

H.12.4.1 The strtoencEN functions
Synopsis
1 #define _ STDC_WANT IEC_60559 TYPES EXT _
#include <stdlib.h>
void strtoencfN (unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Description

2 The strtoenc£N functions are similar to the strtofN functions, except they store an IEC 60559
encoding of the result as an N/8 element array in the object pointed to by encptr. The order of bytes in the
array follows the endianness specified with ___ STDC_ENDIAN NATIVE _ (7.18.2).

Returns
3 These functions return no value.

H.12.4.2 The westoenc£N functions
Synopsis
1 #define _ STDC WANT IEC 60559 TYPES EXT
#include <wchar.h>
void wcstoencfN (unsigned char encptr[restrict static N/8],
const wchar t * restrict nptr, wchar t ** restrict endptr);

Description

2 The westoenc£EN functions are similar to the westo£N functions, except they store an IEC 60559
encoding of the result as an N/8 element array in the object pointed to by encptr. The order of bytes in the
array follows the endianness specified with __ STDC_ENDIAN NATIVE _ (7.18.2).

Returns
3 These functions return no value.

H.12.4.3 The strtoencdecdN and strtoencbindN functions

Synopsis
1 #define __ STDC_WANT IEC_ 60559 TYPES EXT _
#include <stdlib.h>
void strtoencdecdN (unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);
void strtoencbindN (unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Description

2 The strtoencdecdN and strtoencbindN functions are similar to the strtodN functions, except they
store an IEC 60559 encoding of the result as an N/8 element array in the object pointed to by encptr. The
strtoencdecdN functions produce an encoding in the encoding scheme based on decimal encoding of the
significand. The strtoencbindN functions produce an encoding in the encoding scheme based on binary
encoding of the significand. The order of bytes in the array follows the endianness specified with
__STDC_ENDIAN_NATIVE _ (7.18.2).

Returns
3 These functions return no value.

H.12.4.4 The westoencdecdN and westoencbindN functions

Synopsis
1 #define _ STDC WANT IEC_60559 TYPES EXT
#include <wchar.h>
void wcstoencdecdN (unsigned char encptr[restrict static N/8],
const wchar t * restrict nptr, wchar t ** restrict endptr);
void wcstoencbindN (unsigned char encptr[restrict static N/8],
const wchar t * restrict nptr, wchar t ** restrict endptr);

Description

2 The westoencdecdN and westoencbindN functions are similar to the westodN functions, except they
store an IEC 60559 encoding of the result as an N/8 element array in the object pointed to by encptr. The
wcstoencdecdN functions produce an encoding in the encoding scheme based on decimal encoding of the
significand. The westoencbindN functions produce an encoding in the encoding scheme based on binary
encoding of the significand. The order of bytes in the array follows the endianness specified with
__STDC_ENDIAN NATIVE_ _ (7.18.2).

Returns
3 These functions return no value.

Changes to H.12.2 #3 depend on the resolution of GB-287. The following change assumes support for
hexadecimal input is not moved to the main body of the standard. Changes for moving hexadecimal input to the
main body of the standard allow removing #3 entirely.

3 For implementations that support both binary and decimal floating types and a (binary or decimal) non-
arithmetic interchange format, the strtodN, strtodNx, westodN and westodNx functions (and hence
the strtoencdecdN, strtoencbindN, westoencdecdN and westoencbindN functions in H.12.4.3
and H.12.4.4) shall accept subject sequences that have the form of hexadecimal floating numbers (excluding
any digit separators (6.4.4.1)) and otherwise meet the requirements of subject sequences (7.24.1.6). Then the
decimal results shall be correctly rounded if the subject sequence has at most M significant hexadecimal
digits, where M = [(P — 1)/4] + 1 is implementation-defined, and P is the maximum precision of the supported
binary floating types and binary non-arithmetic formats. If all subject sequences of hexadecimal form are
correctly rounded, M may be regarded as infinite. If the subject sequence has more than M significant
hexadecimal digits, the implementation may first round to M significant hexadecimal digits according to the
applicable rounding direction mode, signaling exceptions as though converting from a wider format, then
correctly round the result of the shortened hexadecimal input to the result type.

GB-287

WG14 requested CFP provide specification to allow hexadecimal input into strtod* in the main body of the
standard. To add the specification, make the changes highlighted in yellow below. Note that with this change the
strtodN functions and the strtof, strtod and strtold functions accept the same input.

There was considerable WG14 and CFP email discussion about whether strtodN needs to accept hexadecimal
input at all. It was noted that IEC 60559 does not require conversions of hexadecimal strings to decimal formats.
See [Cfp-interest 2662] Re: GB-287 . However, IEC 60559 does require correctly rounded conversions between all
supported formats (arithmetic and non-arithmetic). We haven’t found any other as feasible way of converting
from non-arithmetic binary formats to decimal formats without the hexadecimal support in strtodN. See H.4.3
and the example in H.12.2. Difficulties with other approaches are explained in [Cfp-interest 2657] Re: GB-287 .

7.24.1.6 The strtodN functions

Synopsis
1 #include <stdlib.h>
#ifdef _ STDC_IEC_60559 DFP
_Decimal32 strtod32(const char * restrict nptr,
char ** restrict endptr);
_Decimal6é4 strtodé4 (const char * restrict nptr,
char ** restrict endptr);
_Decimall28 strtodl28(const char * restrict nptr,
char ** restrict endptr);
#endif

Description

2 The strtodN functions convert the initial portion of the string pointed to by nptr to decimal floating type
representation. First, they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters; a subject sequence resembling a floating constant or representing an infinity or NaN;
and a final string of one or more unrecognized characters, including the terminating null character of the
input string. Then, they attempt to convert the subject sequence to a floating-point number, and return the
result.

http://mailman.oakapple.net/pipermail/cfp-interest/2023-January/002676.html

http://mailman.oakapple.net/pipermail/cfp-interest/2023-January/002671.html

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then an
optional exponent part as defined in 6.4.4.2, excluding any digit separators (6.4.4.1)

— a Ox or 0%, then a nonempty sequence of hexadecimal digits optionally containing a decimal-point

character, then an optional binary exponent part as defined in 6.4.4.2, excluding any digit separators
(6.4.4.1)

— INF or INFINITY, ignoring case

— NAN or NAN (d-char-sequence,,) , ignoring case in the NAN part, where:
d-char-sequence:
digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject sequence contains no characters if the
input string is not of the expected form.

4 1f the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a floating

constant accordlng to the rules of 6.4.4.2, meL&dmg—ee%eeHe%@mg—a&d—dete%mmaﬂe&eﬁthe%eeﬁﬁe&eﬁ—e

except that the decimal-point character is used in place of a period, and that if neither an exponent part nor a
decimal-point character appears in a decimal floating-point number, or if a binary exponent part does not
appear in a hexadecimal floating-point number, an exponent part of the appropriate type with value zero is
assumed to follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence is
interpreted as negated before rounding and the sign s is set to -1, else s is set to 1.

5 If the subject sequence has the expected form for a decimal floating-point number, the value resulting from
the conversion is correctly rounded and the coefficient c and the quantum exponent g are determined by the
rules in 6.4.4.2 for a decimal floating constant of decimal type.

6 If the subject sequence has the expected form for a hexadecimal floating-point number, the value resulting
from the conversion is correctly rounded provided the subject sequence has at most M significant
hexadecimal digits, where M = [(P - 1) /4] + 1 is implementation-defined, and P is the maximum precision of
the supported radix-2 floating types and binary non-arithmetic interchange formats*). If all subject sequences
of hexadecimal form are correctly rounded, M may be regarded as infinite. If the subject sequence has more
than M significant hexadecimal digits, the implementation may first round to M significant hexadecimal digits
according to the applicable rounding direction mode, signaling exceptions as though converting from a wider
format, then correctly round the result of the shortened hexadecimal input to the result type. The preferred
quantum exponent for the result is 0 if the hexadecimal number is exactly represented in the decimal type;
the preferred quantum exponent for the result is the least possible if the hexadecimal number is not exactly
represented in the decimal type.

*) Non-arithmetic interchange formats are an optional feature in Annex H.

F or INFINIT

i i . i - A character sequence IN Yis ...

Returns
10 The strtodN functions return the eerreetlyrounded converted value, if any. ...

11 EXAMPLE

"0x1.8p+4" (+1,24,0)

Moving hexadecimal input into the main body of the standard allows removing H.12.2 #3:

image1.emf
ISO-IEC JTC 1-SC 22-WG 14_N3111_Six versus eight-digit short identifiers v2.pdf

ISO-IEC JTC 1-SC 22-WG 14_N3111_Six versus eight-digit short identifiers v2.pdf
Proposal for C23

WG14 N 3111

Title: Six versus eight-digit short identifiers v2

Author, affiliation: Robert C. Seacord, Woven Planet

Date: 2023-2-13

Proposal category: Defect

Target audience: Implementers

Abstract: Six versus eight-digit short identifiers for universal character names

Prior art: C

Six versus eight-digit short identifiers v2

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3111

Reference Document: N 3019

Date: 2023-9-2

Change Log
2023-2-13:

e |Initial version
2023-2-19:

e Changed “hexadecimal number” to “hexadecimal value.”
e Changed “0000FFFF” to “O0FFFF” and change “00010000” to “010000.”

1.0 Introduction and Rationale

NB comment GB-012 from [n3019] identifies the issue that the 2011 edition of ISO/IEC 10646
removed eight-digit short identifiers that were present in the 2003 edition (and this removal still
applies as of the 2020 edition) but the current C23 draft supports eight-digit short identifiers but not
six-digit short identifiers.

SC 22 N 5777, Subclause 6.4.3, “Universal character names” paragraph 4 states that:

The universal character name \Unnnnnnnn designates the character whose eight-
digit short identifier (as specified by ISO/IEC 10646) is nnnnnnnn.80) Similarly, the
universal character name \unnnn designates the character whose four-digit short
identifier is nnnn (and whose eight-digit short identifier is 0000nnnn).

Ideally, the C standard would only use short identifiers with no more than six digits. However, this
would break backwards compatibility.

2.0 Proposed Solution

This solution is largely editorial. It does not change any syntax or semantics, but simply eliminates or
corrects any incorrect references to short identifiers.

3.0 Wording
Replace Subclause 6.4.3, “Universal character names”, paragraph 4:

The universal character name \Unnnnnnnn designates the character whose eight-digit short
identifier (as specified by ISO/IEC 10646) is nnnnnnnn. Similarly, the universal character name
\unnnn designates the character whose four-digit short identifier is nnnn (and whose eight-digit
short identifier is 0000nnnn).

with

A universal character name designates the character in ISO/IEC 10646 whose code point is the
hexadecimal value represented by the sequence of hexadecimal digits in the universal character

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3091.doc

name.

[Editor’s note: Remove footnote 80]

In Subclause 5.2.4.1 paragraph 1, change “O0000FFFF” to “O0FFFF” and change “00010000” to
“010000”.

— 31 significant initial characters in an external identifier (each universal character name specifying
a short identifier of 0000FFFF or less is considered 6 characters, each universal character name
specifying a short identifier of 00010000 or more is considered 10 characters, and each extended
source character is considered the same number of characters as the corresponding universal
character name, if any)*®

4.0 Acknowledgements

| would like to recognize the following people for their help with this work: Corentin Jabot, Aaron
Ballman, Steve Downey, Peter Bindels, Jens Gustedt, and Joseph Myers.

5.0 References

[n2785] Corentin Jabot, Aaron Ballman. Delimited escapes sequences. https://www.open-
std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

[n3019] Keaton, David. CD1 9899 ballot comments with progress from first week of ballot resolution.

[P2071R0] Tom Honermann and Peter Bindels. P2071R0: Named universal character escapes.
https://wg21.link/p2071r0, 1 2020.

[P2290R3] Corentin Jabot. P2290R3: Delimited escape sequences. https://wg21.link/p2290r1, 6
2021.

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n2785.pdf

https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3091.doc

