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Program Real Numbers in the Entire Real
Domain with NaN, +0.0, and +Inf

Deliver a Consistent Correct Numerical Value

or NaN e
For example, because lim;_gz° = 0° = 1 and lim,_, ! = (% = ¢,
pow(0.0,0.0) delivers NaN

Polymorphic Functions

pow(2,3) == 8; pow(2.0F, 3.0F) == 8.0F; pow(2.0D, 3.0F) ==
8.0D; pow(complex(2,0), 3) == complex(8.0, 0), pow(dual(2,0),
3) == dual(8.0, 0)

Add Binary Integral Constants
Binary constants: 0b11110, 0B11110

Octal constants: 036

Decimal constants: 30

Hexadecimal constants: Oxle, 0X1le, 0X1E

Add Binary Format Specifier
printf("3 = (%b)2, 3 = (%8b)2\n", 3, 3);
output: 3 = (11)2, 3 = (00000011)2

Add Double Constants
double constants: 3.4D, 3.4e9D, 3.4E9d

Default constants such as 2.3 are float, which can be switched to
double by the compiler option or by the function floatconst(on_off)
for interpretive implementation.

Add Exclusive-or Operator

exclusive-or ~*
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Increment and Decrement Operation
+++4+1 i=1i42

1+4+++ i=i42
it++++4+4+ ] = i+4
o o | 1= i2
i--—- i=1i-2

Bitwise Shifting Operation
For lvalue << rvalue, if rvalue is negative, reverse the shifting di-
rection.

Functional Type Conversion Operation
i = int(9.5);

f = float(9);

z = complex(i, f);

Z = complex(3.5F, 5.3D);

Relational Operations

NaN == NaN gives 1

NaN != NaN gives 0

Inf == Inf gives 1

Inf != Inf gives 0

ComplexNaN == ComplexNaN gives 1
ComplexNaN 1= ComplexNaN gives 0
ComplexInf == ComplexInf gives 1
ComplexInf != ComplexInf gives 0

Ifx==y, (z-y) == —(y — z) is TRUE even for NaN, +0.0, +Inf.

Single Delimiter Comment
i= complex(1,2); /# single delimiter comment

179



wGlY /N3l
X3511/93-059

Alternative Solutions to Restricted Pointers
for Anti-Aliasing

1. Add do-loop.

2. Add assumed-shaped arrays, only arrays can be passed to
assumed-shape arrays.

3. Add nested-functions that modularize the program and ease
the detection of aliasing.

4. Add array syntax without aliasing.
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Declaration of Complex Variables

complex z1, zz1[10], *zpi, **Zppl, *zpai[10];

double complex z2, zz2[10], *2p2, **zZpp2, *zpa2[10];
long double complex z3, 23[10], *2zp3, **zpp3, *zpa3[10];

Complex Constructor

complex z1;

double complex z2;

z1 = complex(1, 2); \# complex = complex

z1 = complex(1F, 2D);: \# complex double complex

z2 = complex(1F, 2); \# double complex = complex

z2 = complex(1D, 2D); \# double complex = double complex

I/0 for Complex Numbers

complex z1, z2, *Zptr;

zptr = &z2; /# zptr points to z2’s memory
printf("Please type in four numbers for two complexs \n");
scanf (&z1, zptr);

printf ("The first complex number is ", z1, "\np");
printf("The second complex number is %f \n", z2);

The result of the interactive execution of the above program
is as follows

Please type in four numbers for two complex

12.038.04

The first complex number is complex(1.000,2.000)
The second complex number is complex(3.000000,4.000000)

157



Table 1: Complex operations
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Definition [CY Syntax C® Semantics =

negation -z - — iy

addition zl + z2 (21 + ) +4(y; + Y2)

subtraction z1 — z2 (21 = z9) + i(y; - Y2)

multiplication | z1 % z2 (71 %29 — y; * Y2) + iy * 0 + T *ys)
° v o L1 * Ty 4+ y; *xys Y1 * Ty — T *

division zl / z2 P + 1 P e

equal z2l == 22 |z, == Z2 and y; ==y,

| not equal zl !=22 |z,!'=z, or v =y

’é R
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Table 2: The syntax and semantics of built-in complex functions.

C" Syntax C" Semantics
sizeof(z) 8
abs(z) sqrt(z? + y2)
real(z) z
imaginary(z) Y
complex(z,y) |z + iy
conjugate(z) zT-1y
polar(z) sqrt(z? + 32) +i0; © = atan2(y, z)

polar(r, theta)
sqrt(z)
sqrt(z, k)

exp(z)
log(2)
log(2, k)

log10(z)
log10(z, k)

pow(zy, 23)
Pow(zy, 25, k)
ceil(2)

floor(z)
fmod(z1, 22)
modf(z1, &22)
frexp(z1, &22)
ldexp(z1, 22)
sin(z)

cos(z)

tan(z)

asin(z)

asin(z, k)
asin(z, k1, k2)
acos(z)
acos(z, k)
acos(z, k1, k2)
atan(z)

atan(z, k)
atan2(z1, 22)

atan2(z1, 22, k)
sinh(z)
cosh(z)
tanh(z)

7 cos(theta) + ir sin( theta)

sqrt(sqrt(z? + y2))(cosg- + isin -g)-); © = atan2(y, )

sqrt(sqrt(z? + 32))(cos _tz&r  isin 2 i 2k7r);

© = atan2(y, z)
e*(cosy + isin y)
log(vzZ+4?) +i0; © = atan2(y, z)

log(vZZ+37) +4(0 + 2k); © = atan2(y, z)
log(z

21" = eI = exp(z, + log(z,))
21 = e®la = exp (4, & log(21, k))
ceil(z) + ¢ ceil(y)

floor(z) + 4 floor(y)

2; % =k+ %, k>0

modf(z,, &z,) + i modf(y;, &)
frexp(z,, &z2) + i frexp(y,, &ys)
ldexp(z;, z5) + i 1dexp(y,, Y2)
sinz coshy + i cos z sinh Y

COsz cosh y — 7 sin z sinh Y
sin z

COSZ

—tlog(iz + sqrt(1 - 2
—tlog(iz + sqrt(1 — 22, k))
—tlog(iz + sqrt(1 - 22, k1), k2)
—tlog(z + isqrt(1 - 22))
—tlog(z + isqrt(1 — 22, k))
—ilog(z + isqri(1 — 22, k), kz)

; log($£42)

7 log(12 1

1 141z /2
77 log( —zzl/zi)

1 1+iz/2
sinh z cosy + tcoshzsiny
coshzcosy + isinh zsiny

Sinhz cosy + ; cosh z sin
coshz cosyy + tsinh z sin 3

continued on next page i

% 2



WG 1Y /N3
X831 /33 -058

Table 3: Valid lvalues related to complex numbers.

Meaning of lvalue Example
simple variable N z = complex(1.0, 2);
an element of a complex array zarray[i] = complex(1.0, 2)+ ComplexInf;
complex pointer variable zptr = malloc(sizeof(complex) #* 3;
zptr = &z;
address pointed to by a complex variable *zptr = complex(1.0, 2) + z;

an element of a complex pointer array

address pointed to by an element

of a complex pointer array
real part of a complex variable
real part of a complex variable
real part of a complex variable
real part of a complex variable
imaginary part of a complex variable
imaginary part of a complex variable
imaginary part of a complex variable
imaginary part of a complex variable
float pointer variable

pointer to real part of a complex variable
pointer to imaginary part of a complex variable

zarrayptr[i] = malloc(sizeof(complex) * 3;
zarrayptr[i] = &z;
*zarrayptr[i] = complex(1.0, 2);

real(z) = 3.4;

real(*zptr) = 3.4;

real (*(zptr+1)) = 3.4;

real (*zarrayptr[i]) = 3.4;
imaginary(z) = complex(1.0, 2);
imaginary(*zptr) = 3.4;
imaginary(*(zptr+1)) = 3.4;
imaginary(*zarrayptr[i]) = 3.4;
fptr = &z;

fptr = zptr;

=fptr = 1.0;

=(fptr+l) = 2.0;

9
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270 ] Conformal Mappings

Riemann sphere

For some purposes it is convenient to introduce a point “="" in addition
to the points z € C. This has not been done systematically in this text
because such a device often leads to confusion and abuse of the symbol
<. which, in fact. is merely a convenience.

In contrast to the real line to which +% and —x are added, we have
only one = for C: the reason is that € has no natural ordering as R does.

Formally we add a symbol =" to C to obtain the extended complex
plane € and define operations with = by the “rules”

z+ =%
Z+-00=0®
04+ o=

20 - 00 =00,

W e also define, for example. lzi_n.xi} f(z) =z, to mean that for any € >0

there is an R such that |z| = R implies that | f(z) — zo| < €.

Thus a point z € Cis “close to = when it lies outside a large circle.
This type of closeness can be pictured geometrically by means of
the Riemann sphere. The Riemann sphere S is shown in Figure 5.3. By
“stereographic projection,” illustrated in this figure, a point z' on the
sphere is associated with each point z in C. Exactly one point on the
sphere S has been omitted —the “north™ pole. We assign = in C to the
north pole. Then we see geometrically that z is close to x iff, on the
Riemann sphere. these points are close in the usual sense of closeness
in R3. Proof of this assertion is requested in exercise 11.

In summary, then, the Riemann sphere represents a convenient
geometric picture of the extended plane €= C U {=}. This picture can
also be used to make precise the ideas of analytic at = and residue at @
(see exercise 10, Section 4.2). It can also be used conveniently to observe
points that correspond to = in conformal mappings. We shall have
occasion to use it for this purpose in the next section.

N==x

S

Figure 5.3 Riemann sphere.
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INFINITY AND STEREOGRAPHIC
PROJECTION

20. Proper and Improper Complex Numbers

In the theory of functions of a complex variable, an important role is
played by an “improper” complex number called infinity and denoted by
the symbol . In order to define this concept suitably, we first introduce a
new interpretation of complex numbers, which comes up quite naturally in
problems involving limits.

Two convergent sequences of complex numbers {u,} and {t,} are said to
be coterminal if they have the same limit.! Let E be the set of all convergent
sequences of complex numbers, and divide E into all classes (subsets) of
coterminal sequences. In other words, {u,} and {va} belong to the same class
if and only if {u,} and {v,) converge to the same limit. Obviously, these
classes are disjoint and their union is E. If the common limit of all the
sequences in a given class is denoted by a small letter, say a, then we denote
the class itself by the corresponding capital letter, say A,i.e.,u, - aasn — oo
if and only if {u,} € A. In this way, we establish a one-to-one correspondence

a— A, be—B,... .1

between the complex numbers and classes of coterminal sequences.

! For a somewhat different definition of coterminal sequences, which reduces to the
present definition in the case where the sequences are convergent, see G. E. Shilov, 4An
Introduction to the Theory of Linear Spaces (translated by R. A. Silverman), Prentice-
Hall, Inc., Englewood Cliffs, N. J. (1961), p. 253.

77
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78 INFINITY AND STEREOGRAPHIC PROJECTION CHAP. §

If A and B are two classes of coterminal sequences, we define 4 + B as
the class of all sequences of the form {u, + t,}, 4B as the class of all sequences
of the form {u,v,}, and A/B as the class of all sequences of the form {u,/v,},
where {u,} € A4, {v,} € B but are otherwise arbitrary.? Since {u,} € 4, {v,} € B,
we have

limu, =a, limo, =5

and hence
lim (u, + v,) =a+ b, lim uw, = ab, lim ‘;— = ‘5’ (5.2)

It follows that 4 + B, AB and A/B are again classes of coterminal sequences.
Moreover (5.2) implies that

YIS A LR B s 254,

bigtB

i.e., the one-to-one correspondence (5.1) is an isomorphism® between the
field of complex numbers and the field of coterminal sequences. In this
sense, we are justified in identifying a and A4, b and B, etc., and then every
class of coterminal sequences is called a proper complex number. In particular,
the class 4 can be represented geometrically by the same point in the complex
plane as that representing the complex number a. With this interpretation, a
convergent sequence {u,} belongs to the class 4 = a if and only if the unique
limit point of the set of points representing the complex numbers u,, u,, . . .,
U, . .. coincides with a.

We now adjoin a single improper complex number to the set of all proper
complex numbers (i.e., the set of all classes of coterminal sequences). This
improper complex number, which we denote by oo, is the class of all sequences
{ua} with the property that given any p > 0, there exists an integer n, > 0
(depending on p and {u,}) such that |u,| > p whenever n > n,. If a sequence
{ua} belongs to the class oo, we say that {u,} converges to infinity, and we write
U, —> 00 as 1 — OO Or

lim u, = .

n - @
The union of the set of all proper complex numbers and the improper complex
number oo is called the extended complex number system. Algebraic opera-
tions are defined for the extended complex number system in exactly the
same way as for the set of proper complex numbers. However, as the
following examples show, in some cases an algebraic expression involving
the class co does not lead to a class of coterminal sequences, and hence is
meaningless:

? Whenever we write u,/v, or a/b, it is assumed that v, # 0 or b # 0.
3 See e.g., G. Birkhoff and S. MacLane, op. cit., p. 35.

/éy
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SEC. 21 INFINITY AND STEREOGRAPHIC PROJECTION 79

1. If a is a proper complex number, then a + © = 0 + g = oo, but
@ + oo is meaningless, as shown by the two sequences

15373 5057317, 92, 4 (5.3)
and
_l’ -2’ _37 '—4’ _5’ —6v _71 —8’ (5.4)

belonging to the class co. In fact, adding (5.3) and (5.4) term by term,
we obtain the sequence

0,1,0,1,0,1,0,1,...,

which obviously does not belong to any class of coterminal sequences
(since it has no limit).

2. Similarly,a =0 =0 - a=woifagisa proper complex number, but
© — oo is meaningless.

3. If a # 0 is a proper complex number, then a- o = oo -a = oo and
moreover oo - 0 = o, but 0- o is meaningless.

4. If a is any proper complex number, then a/oo =0 and w/a = o,
but co/co is meaningless.

Remark. This approach also allows us to divide by zero. In fact,a/0 = o
if a # 0 is a proper complex number, but 0/0 is meaningless.

21. Stereographic Projection. Sets of Points
on the Riemann Sphere

In order to represent the extended complex number system geometrically,
it is convenient to use the following construction, due to Riemann
(1826-1866). Consider a sphere Z of unit radius and center O, and let [T be
a plane passing through O (see Figure 5.1). Introducing a rectangular
coordinate system in the plane 1, with origin at O, we can represent any
proper complex number z = x + iy by a point (x, y) in the plane II. To
associate a point on the sphere £ with a given point P € I1, we first draw the
diameter NS of the sphere which is perpendicular to IT and intersects IT at O.
Then we draw the line segment joining one end of this diameter, say N, to
the point P. The line segment NP (or its prolongation) intersects the sphere
Z in some point P* different from N. It is clear that this construction
establishes a one-to-one correspondence between the points of the sphere
(except for the point N itself) and the points of the plane I1. This mapping
of the sphere into the plane (or of the plane into the sphere) is called srereo-
graphic projection, and the sphere I is called the Riemann sphere. If the point
P eI represents the complex number z, we also regard the point P*e X as
representing z.

1§55
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80 INFINITY AND STEREOGRAPHIC PROJECTION CHAP. §

To be as descriptive as possible, we use geographic terminology. Thus,
the circle in which the sphere Z intersects the plane is called the equator, the
points N and S are called the north pole and south pole, respectively, the
great circles going through N and S are called meridians, and in particular,
the meridian lying in the plane NOx is called the prime (or initial) meridian.
Then it is easy to see that the points of the plane Il lying inside the unit
circle |z| = 1 (which coincides with the equator) are mapped into points of
the southern hemisphere (containing S), while the points of Il lying outside
the unit circle are mapped into points of the northern hemisphere (containing
N). Similarly, the upper half-plane y > 0 is mapped into the eastern hemi-
sphere (which is intersected by the positive y-axis), while the lower half-
plane y < 0 is mapped into the western hemisphere, and so on.

FIGURE S.1

We now introduce spherical (or geographic) coordinates on I, i.e., the
latitude @, measured from the equator and ranging from 0 to =/2 in the
northern hemisphere and from 0 to —=/2 in the southern hemisphere, and
the longitude )\, measured from the prime meridian (more exactly, from the
point of intersection of the prime meridian with the positive x-axis) and
ranging from 0 to = (including =) in the eastern hemisphere and from 0 to
—n (excluding — =) in the western hemisphere. Asshown by Figure 5.1, under
stereographic projection we have

- - T+ 9.
argz = A, |z| tan(4+2)

Therefore, the point of the sphere with coordinates A and ¢ is the image of
the complex number

i
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X

Figure 1: The extended complex plane and unit sphere T.

44
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Complex Numbers Follow Mathematical Con-

ventions )

Program Complex Numbers in the Extended
Finite Complex Plane

There are only ONE complex infinity (ComplexInf) and ONE complex-
not-a-number (ComplexNaN). Pairs of real numbers such as (Inf,
3), (NaN, 5) and (NaN, Inf) are not valid complex numbers. They
are arrays of two real numbers.

float z1[2] = {Inf, 3}, z2[] = {NaN, 5}, z3[] = {NaN, Inf};
The computation of 2i * (Inf + 3 i)= -6 + Inf i will not hap-
pen in complex analysis. Therefore, (0,2) * (Inf, 3) = (NaN, Inf)
is not likely to happen. But (0,2)*ComplexInf = ComplexInf

Deliver a Consistent Correct Numerical Value
or ComplexNalN

Distinguish —0.0 from 0.0 in Real Numbers,
not in Complex Numbers

The orgin of the complex plane can be approached from any di-
rection by lim,_ore? using polar(r, theta). If the branch cut is
not along the coordinate axes, the sign of zeros will be overpow-
ered by round-off errors.

The Principal Value © lies in the Range of
—T<O<n7

Unique value for each branch of a multiple-valued complex func-
tion.

F(z + i0) = F(z) + i0, if z is Within the Valid
Domain of F(z)
Real numbers form a subset of complex numbers. When the

imaginary part of a complex operand or a complex argument is
identically zero, the system will deliver a complex result with an
identically zero imaginary part. sqrt(complex(3,0)) == sqrt(3)
sqrt (complex(-3,0)) != sqrt(-3)

/¢ L
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When a complex is converted to real number;
only its real part is used and the imaginary
part will be discarded if the imaginary part
i1s identically zero. If the imaginary part is
not identically zero, the converted real num-
ber becomes NaN.

Consistent numerical results for passing variables of different data

types to functions by reference. Use complex polynormial to find
real roots.

Optional Arguments for Different Branches of
Multiple-Valued Complex Functions
log(z, k) = log(v/z% + y2H+ i(6 + 2kn)
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Table 4: Addition and subtraction results.

Addition and Subtraction +
left operand right operand
complex(0.0, 0.0) z2 ComplexInf ComplexNaN
complex(0.0, 0.0) complex(0.0, 0.0) +z2 ComplexInf ComplexNaN
zl zl zl £ z2 ComplexInf ComplexNaN
ComplexInf ComplexInf  ComplexInf ComplexNaN ComplexNaN
ComplexNaN ComplexNaN ComplexNaN ComplexNaN ComplexNaN




Table 5: Results of complex functions for complex(0.0, 0.0)
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» ComplexInf, and ComplexNaN.

function z value and results
complex(0.0, 0.0) ComplexInf ComplexNaN
sizeof(z) 8 8 8
abs(z) 0.0 Inf NaN
real(z) 0.0 NaN NaN
imaginary(z) 0.0 NaN NaN
conjugate(z) complex(0.0,0.0) ComplexInf ComplexNaN
polar(z) complex(0.0, 0.0) ComplexInf ComplexNaN
sqrt(z) complex(0.0,0.0) ComplexInf ComplexNaN
exp(z) complex(1.0,0.0) ComplexNaN ComplexNaN
log(z) ComplexInf ComplexInf ComplexNaN
log10(z) ComplexInf ComplexInf ComplexNaN
ceil(z) complex(0.0,0.0) ComplexInf ComplexNaN
floor(z) complex(0.0, 0.0) ComplexInf ComplexNaN
modf(z, &z2) complex(0.0, 0.0) complex(0.0,0.0) ComplexNaN
z2 complex(0.0, 0.0) ComplexInf ComplexNaN
frexp(z, &22) complex(0.0, 0.0) ComplexInf ComplexNaN
z2 complex(0.0, 0.0) complex(0.0,0.0) ComplexNaN
ldexp(z, z2) complex(0.0, 0.0) ComplexInf ComplexNaN
sin(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cos(z) complex(1.0, 0.0) ComplexNaN ComplexNaN
tan(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
Note: tan(complex(7/2 + k « 7,0.0)) = ComplexInf
asin(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acos(z) complex(pi/2, 0.0) ComplexInf ComplexNaN
atan(z) complex(0.0, 0.0) complex(pi/2, 0.0) ComplexNaN
Note: atan(complex(0.0,il.O)) = ComplexInf;
atan(ComplexInf, k) = complex(pi/2 + kxpi, 0.0)
sinh(z) complex(0.0, 0.0) ComplexNaN ComplexNaN
cosh(z) complex(1.0,0.0) ComplexNaN ComplexNaN
tanh(z) complex (0.0, 0.0) ComplexNaN ComplexNaN
Note: tanh(complex(0.0, 7/2 + k * 7)) = ComplexInf
asinh(z) complex(0.0, 0.0) ComplexInf ComplexNaN
acosh(z) complex(0.0, pi/2) ComplexInf ComplexNaN
atanh(z) complex(0.0, 0.0) complex (0.0, pi/2) ComplexNaN
Note: atanh(complex(+1.0, 0.0)) = ComplexInf;
atanh(ComplexInf, k) = complex(0.0, pi/2 + k*pi)

i
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Add Assumed-shape Arrays

int funct(complex a[:], int b[:][:])
int funct(char *c[:]; float **f[:][:], double *xkxd[:J[:][:]);

Rules and restrictions

1,

An assumed-shape specification is to replace the constant ex-
Pression for extent of each dimension or the empty argument
of the first dimension of an array declaration in a function
definition or function prototypes in C by a colon ’’.

. The rank of an assumed-shape array is equal to the number

of colons in the assumed-shape specification.

. If an array index of the assumed-shape array is less than zero,

the lower bound of zero will be used as the index. If an index
of the assumed-shape array is greater than the upper bound
of the actual array, the upper bound of the actual array will
be used as the index. In ejther case, a warning message will
be generated by the system.

. Only arrays, including assumed-shape and deferred-shape ar-

rays, can be passed to an assumed-shape array. Pointers or
pointers to array, which do not have the complete shape infor-
mation, can not be passed to an assumed-shape array. Oth-
erwise, an error message will be generated by the system.

- Polymorphic operations and intrinsic functions will be applied

to expressions involving an assumed-shape array based upon
the data type of its formal definition. If the data types of
the actual and assumed-shape arrays are different, a warning
message will be generated by the system at compilation time;
the data type of an actual array will be converted to the data
type of the assumed-shape array implicitly at execution time.

- SHOULD THIS BE A RULE? The same array can not be passed

to the assumed-shape arrays of a function more than once. Otherwise,
a warning message will be generated by the system and the behavior of
the function is undefined.

A
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Add the Keyword array or matriz for Array
Syntax

Array Syntax Follows the Mathematical Con-
ventions

[F*xkk CH skkxnk/

matrix int X[100], Y[100], Z[100];
X=Y+ Z;

X += 17;

/**x%x*x DPCE: Cx ek ok ok 5k /
shape [100]Shape;
int:Shape X, Y, Z;
X=Y+ Z;

X += 17;

/***%%x Iterators: Cray ks,
int X[100], Y[100], Z[100];
iter I;

X[I] = Y[I] + Z[1];

X[I] += 17;

/*%%k%kx ANSI C *kokokok /
int X[100], Y[100], Z[100];
int i:
for(i=0; i<100; i++)

X[il = Y[i] + Z[i];
for(i=0; i<100; i++)

X[i] += 17;
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Dual Numbers and Dual Constructor

Dual numbers d € D = {(z,y)|z,y € R} can be defined
as ordered pairs

d = (z,y)
with specific addition and multiplication rules (Clif-
ford, 1873).

The real number R is a subset of D, i.e., R = {(z,y)|z €
R,y=0} and R C D. If a real number is considered ei-
ther as z or (z,0) and let ¢ denote the pure dual number
(0,1) with the property of £2 = 0, dual numbers can be
written as

d=z+ey

a dual number can be created in CH by the dual con-
structor dual(x, y) with z,y € R. For example,
dual(1.2, 3.4).

=

e
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data type order

dual
complex
double
float

int

char

1

high

low

The order of basic data types in CH,

Data types of char, int, float, double, complex, and
dual can be converted implicitly and explicitly in CH,
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Dual Variables

dual di; /* declare dl as dual variable */
dual *dptri; /# dptrl is pointer to dual variable
dual d2[2]; /# d2 is an array of dual

dual *dptr2[2][4]; /# dptr2 is array of pointer to dual
dptir = &di; /# dptrl points at the address of di

*dptrl = dual(1,2); /# d1 with real 1.0 and dual 2.0

7o07)

Vo
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I/0O for Dual Numbers

The following CH program will illustrate how dual
numbers are handled by the I/0O functions printf() and
scanf().
dual d1, a2 *dptr;
dptr = &d2; /# dptr points to d2’s memory
Printf("Please type in four numbers for two duals \n")
scanf (&d1, dptr);

Printf("The first dual number is ", d1, "\n");
printf("The second dual number is Yf \n", 42);

The result of the interactive execution of the above
program is shown as follows

Please type in four numbers for two duals

12030

The first dual number is dual(1.000,2.000)
The second dual number is dual(3.000000,4.000000)

where the second line in italic is the input and the rest
are the output of the program.
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Table 6: Dual operations.

Definition |CH Syntax CH Semantics
negation —-d —-Z — €y
addition dl +d2 | (z;+z3) +e(y; + 3o)
subtraction |dl1 - d2 |(z; - T2) + e(y1 — yo)
multiplication | d1 % d2 T1% T2+ (Y1 * To + T1 * 9
division S ~ L1* Y
equal dl == d2 |z; ==z, and 2y1 ==
not equal dl !=d2 |z,!=z, or v 1=y

Zot
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Dual Functions

A dual function f(d) = f(z + ey) with a dual variable
can be obtained by expanding it formally in a Taylor

series. Because ¢" =0 for n > 1, then,
f(d) = f(z +ey) = f(z) + ey f'(z)

where f'(z) in the dual part is the derivative of function

f(z). Similarly, a dual function with two dual variables
can be obtained as

fldi,dy) = f(z) +eyr, 20 + £Y2)
= f(z1,72) + (w1 £, (21, 2) + Yo fa, (21, 22))

where f; (z1,z,) is the partial derivative with respect to

the first variable d; and f4,(%1,3) with respect to the
second.

W}

0
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Table 7: Syntax and semantics of built-in dual functions.

CY Syntax CH Semantics
sizeof (d) 8
abs(d) sqrt(z? + y?)
reai(d) x
imaginary(d) |y
dual(z, y) T+ey
conjugate(d) |z —ey
polar(d) sart(z? + %) +i ©
sqrt(d) sart(z) + ®3sqrt(z)
exp(d) exp(z)(1 + ey)
log(d) log(z) + ¥
log10(d) log(d

g log(10
Pow(di, ) | di? = 2P + e(yy 202! + y227" log(1))
sin(d) sin(z) + ey cos(z)
cos(d) cos(z) — eysin(z)
tan(d) tan(z) + Ecos(x)ycos(ﬂ
¥a,31n(d) asm(m) - €Sqrt(1y_ .’L‘T)
acos(d) acos(z) — Esq il =29
atan(d) ata.n(:p) - er_f_/?g
sinh(d) sinh(z) + ey cosh(z)
cosh(d) cosh(z) + eysinh(z)
tanh(d) tanh(z) + ¢ Cosh(z cosh(z)
asinh(d) asinh(z) + ¢ sqrt(xyz +1)
acosh(d) acosh(z) — Esq Tt(@ = 1)
atanh(d) atanh(z) + e
ceil(d) ceil(z) + € ceil(y)
floor(d) floor(z) + ¢ floor (v)
ldexp(d1, d2) ldexp(z1,z) + ¢ ldexp(y1, o)

T d

fmod(d1,d2) |d: E;_' =k+ rs k>0

modf(d1, &d2)
frexp(dl, &d2)

modf(zy, &z;) + ¢ modf(y;, &)
frexp(z;, &z5) + ¢ frexp(y1, &)

20Y
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Table 8: Valid lvalues related to dual numbers.

Meaning of lvalue

Example

simple variable
an element of a dual array
dual pointer variable

address pointed to by a dual variable
an element of a dual pointer array

address pointed to by an element
of a dual pointer array

real part of a dual variable

real part of a dual variable

real part of a dual variable

real part of a dual variable
imaginary part of a dual variable
imaginary part of a dual variable
imaginary part of a dual variable
imaginary part of a dual variable
float pointer variable

pointer to real part of a dual variable
pointer to imaginary part of a dual variable

d = dual(1.0, 2);

darray[i] = dual(1.0, 2)+ Duallnf;
dptr = malloc(sizeof(dual) = 3;
dptr = &d;

*dptr = dual(1.0, 2) + z;
darrayptr[i] = malloc(sizeof(dual)
darrayptr[i] = &d;

*darrayptr[i] = dual(1.0, 2);

real(d) = 3.4;

real(*dptr) = 3.4;
real(*(dptr+1)) = 3.4;
real(*darrayptr([i]) = 3.4;
imaginary(d) = dual(1.0, 2);
imaginary(*dptr) = 3.4;
imaginary(*(dptr+1)) = 3.4;
imaginary(*darrayptr[i]) = 3.4;
fptr = &4;

fptr = dptr;

*fptr = 1.0;

*(fptr+l) = 2.0;

.07
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‘Z 4

Figure 3: The extended dual plane and unit sphere I'.
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Dualinf Duallnf
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Dualinf Dualinf

Figure 4: The extended finite dual plane and unit sphere A.
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Table 9: Dual addition and subtraction results

Addition and Subtraction =+

left operand

right operand

DualZero

d2 Duallnf DualNaN

DualZero
d1l
Duallnf
DualNaN

DualZero
d1
DuallInf

DualNaN DualNaN DualNaN DualNaN

+d2 Duallnf DualNaN
dl + d2 Duallnf DualNaN
DualInf DualNaN DualNaN

2.2 &
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Figure 5: The RCCC mechanism.
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The output 54 can be derived as

where

A+ A2+ B2 52)

04=2atan( ol

sin &; sin &3 sin 6,
— sin &3(cos &; sin &4 + sin &; cos G4 cos 6:)

Q) ) »)
I

= cos as(cos &; cos &4 — sin &; sin G4 cos 61) — cos &,

Let link parameters for a RCCC mechanism be
a; = 30° 4+ 2 in,
Go = 55° + €4 in,
a3 = 45° 4+ €3 in,
G4 = 60° + €5 in,
and d; = 0 for 6, = 6, + ed;

A CE program for computing two branches of 6, at 6, of 10
degrees is

/***********tttn****************************************/
dual alphal, alpha2, alpha3, alpha4;
dual A, B, C, thetad;

alphal = dual (30*pi/180, 2);
alpha2 = dual(55*pi/180, 4);
alpha3 = dual(45+*pi/180, 3);
alpha4 = dual(60*pi/180, 5);

thetal = dual(10%pi/180, 0);

A =
B =

C

sin(alphal)*sin(alpha3)*sin(thetal) ;

-sin(alpha3) * (cos(alphal) *sin(alpha4) +
sin(alphal)*cos(alpha4)*cos(thetal)) ;

cos(alpha3) * (cos(alphal)*cos (alpha4) -
sin(alphal)*sin(alpha4)*cos(thetal)) - cos (alpha2);

thetad = 2+atan((-A + sqrt(A*A + B*B - CxC))/(C-B));
thetad = 2xatan((-A - sqrt(A*A + BB - CxC))/(C-B));
/*******************************************************/

2,0



