
	SE-001

	
	

	
	te
	We believe that the accepted proposal of n2510, is detrimental to the C standard. The proposal removes the requirement for parameter names when declaring a function. We believe this removes the ability for implementers to issue errors for a reasonably common mistake. This will make C a harder language to use.

The paper makes the assertion that an implementation can assume that an anonymous parameter is intentional, and we think this is dubious. Very few C developers have access to the standard, and write code C using features of the latest version, or are even aware of its latest features. It is our estimation that even once the standard has been ratified and implemented, very few C programmers will recognize when or why to use anonymous parameters for optimization purposes, and the paper does not present any implementations that have been able to report measurable performance increases.

What this change does is that it deprives users of a basic error diagnostic that is today available. A C beginner may write code like:

void function(int)
{
 printf("a = %i", a);
}

int main()
{
 int a = 42;
 function(a);
 return TRUE;
}

... And wonder "Why does the compiler say I haven't defined a, when I am passing it in?". Today the user would hopefully get a clear error from the implementation that the parameter requires a name. This won't be possible in C2X. For an experienced programmer a simple typo can become a bug orders of magnitude harder to detect. Consider:

MyStruct *s /* commonly used param/variable name for pointer to MyStruct */

void function(/* lots of params*/ , MyStruct *) /* ops forgot to add param name "s" */
{ 	
 s->param = 42;
}

...

function(/* lots of params*/ , q);

This simple one character typo is now infinitely harder to find and diagnose because the compiler has to assume that the lack of a parameter name is intentional. Implementers will be put in a very difficult position, where they no longer can issue an error for something that in 99% of cases is a basic mistake. Even issuing a warning will be controversial since it prevents anyone from using this entirely ISO C compliant feature in warning free code.

We think an omission is a poor indicator of intent.

Further the design of this feature does not fully achieve its stated goal. If we look at the declaration:

extern void function(int);

And compare it to the definition:

void function(int)
{
 ...
}

The function signatures are no longer the same. In the declaration the omission of a parameter name has no meaning, whereas in the definition the omission does have a meaning. Any caller of this function that wants to optimize its call can therefore only do so if it exists in the same translation unit, in order to be able to assume that the parameter is not used.

Aside: (Allowing anonymous parameters in function declarations was in our opinion a mistake to begin with. We should strive for a clear, explicit language that has strict requirements that catch any typing mistake. Any claim of saving typing by omitting parameter names clearly doesn't hold water, since the programmer has to type the signature with parameter names in the definition of the function, and can simply copy that signature. Removing parameters from the signature takes more work, and reduces readability and clarity, something we should consider a loose-loose.)

The proposal assumes that there are optimizations that can be made when calling a function if you know that not all parameters will be used. If we assume the author is right despite not providing any measurements, this optimization would only be applicable if:

-The function is used as a function pointer, and therefore has to conform to a signature that includes useless params.

-The function is also called directly, and only then can the caller skip some unused params. (The compiler can not optimize this when calling a function pointer, since it may point to a function that does use the parameter.)

-The caller that calls directly is in the same translation unit as the function it's calling.

This seems like a very slim use case, where a user interested in increasing performance should instead consider inlining.

C2X does add a new standardized way to attach attributes. This functionality is much better suited as an attribute. An attribute could also be included in a declaration, and would explicitly unambiguously show user intent. We do note that this feature was added before the attribute format was introduced. While an attribute version of the feature would alleviate many of our concerns with the change, we are still not convinced an attribute version is justified. It still only applies to functions that are used as function pointers when they are not used as function pointers. To change the spec for such a corner case, we should require implementations of the optimization along with measurable improvements in performance in real world applications. We believe that even an attribute version of this feature is bloating the standard without a clear, common and measurable benefit.

If in some future version of C, the wg14 does decide to add this feature in the form of an attribute, then we will not be able to undo the damage done by this change. Implementations will still be forced to not issue errors on parameters without names because doing so would break backward compatibility with c2X.

n2953 Type inference for object definitions / Under specified Types.

We believe that the proposal, that allows the use of auto to infer the type from initialization, will have a detrimental effect on safety and reliability if that chooses to use it. In C different types can have very different behaviors. The most obvious case is if the different ways signed and unsigned integers handle overflow. Not explicitly stating the type of but to rather rely on an implicit assumption, is in our view a serious risk.

Consider the following:

 auto limit = MY_LIMIT;
 if(limit + add < limit) /* overflow protection */
 return;

The user here assumes that MY_LIMIT is an unsigned int. Since the unsigned int has a well defined overflow behavior, the overflow test is entirely valid. However, should the MY_LIMIT define be a signed int, then overflow is undefined, and a compiler may choose to optimize away the overflow protection. The implementation will issue no warning if the assumption is wrong. If instead the user would have explicitly declared that they expect a limit to be, say an unsigned int, then the code would not break, and if MY_LIMIT would be out of range of the unsigned int, the implementation can issue a clear diagnostic.

For this reason we believe that this functionality will be discurraged by organizations like MISRA, and various style guides, since it actively prevents compilers and other diagnostic tools from verifying that the actions of the program matches the programmers intentions. We believe that the wg14 should not introduce new functionality whose use is likely to be discouraged from a safety and reliability perspective.

While we believe this to be functionality to be adopted by a very small minority of C programmers. This however leaves the possibility of accidental use, when a user forgets to specify a type properly and the implementation is no longer able to issue a diagnostic, because it is forced to assume that the omission is intentional.

	Remove n2510, and n2953

	Rejected (also see -122 and -123 for the auto portion)

	GB-002

	
	2

	5
	ed
	The URL given here now redirects and the new version is shorter and friendlier.
	Change the URL in this paragraph to: https://standards.iso.org/ittf/PubliclyAvailableStandards/
	Accepted

	GB-003

	
	2

	9, 10
	ed
	www.unicode.org now uses https so the links should be updated accordingly.
	Change http to https in both paragraphs.
	Accepted

	GB-004

	
	2

	9, 10, 11
	ed
	Have the requirements of ISO/IEC Directives Part 2 §10.2 items a through e (on requirements for having non-ISO/IEC normative references) been satisfied and recorded?
	
	Accepted with coment: Convenor will get permission from the Unicode Consortium.

	GB-005

	
	3

	2
	ed
	Electropedia now uses https so the link should be updated accordingly.
	Change http to https in second bullet point.
	Accepted

	CA2-006

	
	5.1.1.2

	1
	Te
	The removal of trigraphs makes it impossible for processing of C source code in code pages with variant code points for characters in the basic character set in a guaranteed deterministic way for all programs.
	Add to the end of 5.1.1.2#1:
Trigraph sequences are replaced by corresponding single-character internal representations.
Add in a new section, 5.2.1.1 Trigraph sequences with the following body:
Before any other processing takes place, each occurrence of one of the following sequences of three characters (called trigraph sequences)17) is replaced with the corresponding single character.
??= # ??([??/ \
??)] ??’ ^ ??< {
??! | ??> } ??- ~
No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed above is not changed.
	Rejected

	GB-007

	
	5.1.2.3, 5.2.4.2.2, 6.7.1

	12
	ed
	The terms “single-precision” and “double-precision” are not defined in this document and the definitions in ISO/IEC 2382 (in terms of use of one or two computer words to represent a value) are not appropriate for their uses in this document because there is no guarantee that the types float or double correspond to those definitions. Furthermore, IEC 60559 refers to the formats as binary32 and binary64, not single and double.
	In 5.1.2.3 paragraph 12, change “single-precision” to “float” and “double-precision” to “double” (in both cases formatted as C keywords).
In 5.2.4.2.2 paragraph 29, change “single-precision” to “binary32” and “double-precision” to “binary64”.
In 6.7.1 paragraph 16 (Example 2), change “single precision” and “32-bit single-precision” to “binary32”.
Also ensure associated index entries for the “single-precision” and “double-precision” terms are removed.
	Accepted with comment: Agree with first two changes. In 6.7.1 change “single precision” to “float” and change “32-bit single- precision IEC 60559” to “IEC 60559 binary32”.

	GB-008

	
	5.1.2.4

	1
	ed
	The description of when threads are supported (for hosted implementations, implementation-defined for freestanding implementations) fails to take account of threads being optional in hosted implementations.
	Change “hosted implementation” to “hosted implementation that does not define __STDC_NO_THREADS__”.
	Accepted

	GB-009

	
	5.2.1

	1
	ed
	“zero or more locale-specific members” doesn’t reflect that there are now three required members of the extended character set.
	Change “zero or more” to “three or more”, with a footnote “The extended characters include at least @, $, and `.”.
	Accepted

	GB-010

	
	5.2.1

	3
	ed
	“N” in the table of uppercase letters is in bold, unlike the rest of the letters.
	For this table, disable whatever formatting causes “N” to be in bold.
	Accepted

	US 3
-011

	
	5.2.1

	3
	te
	Adopt Wording Alternative #1 from N3046 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3046.pdf

	If any other characters are encountered in a source file (except in an identifier, a character constant, a string literal, a header name, a comment, or a preprocessing token that is never converted to a token), the behavior is undefined. The $ character is reserved for use in identifiers as an implementation-defined extension.
	Accepted with comment: remove the word “defined” from the edit.

	GB-012

	
	5.2.4.1, 6.4.3

	
	ed
	The 2011 edition of ISO/IEC 10646 removed eight-digit short identifiers that were present in the 2003 edition (and this removal still applies as of the 2020 edition). Thus, the C standard should only use short identifiers with no more than six digits.
	In 5.2.4.1 paragraph 1, change “0000FFFF” to “00FFFF” and change “00010000” to “010000”.
In 6.4.3 paragraph 4, change “\Unnnnnnnn” to “\U00nnnnnn”, “eight digit” to “six digit” (twice), “nnnnnnnn” to “nnnnnn” and “0000nnnn” to “00nnnn”. At the end of footnote 80, add “If either of the first two digits after \U is not 0, this violates a constraint.”.
	Rejected

	US 4
-013

	
	5.2.4.2.1

	Para 5
	te
	The C Standard considers the language and the library components to both be combined into the “implementation”, but the reality of modern C implementations is that the compiler is potentially produced by a different vendor than the standard library. The requirements added by N2359 poses burdens for the latter kind of implementation scenario because the compiler has no control over the standard library features and the standard library has no control over the host compiler, so there is no way to know how to define these macros. As a concrete example, the Windows SDK is what vends the C Standard Library on Windows (used by MSVC and Clang, at a minimum), so it's quite easy to have an old version of a compiler that's linking against a new version of a standard library (or vice versa).

	We recommend reverting N2359 from C2x to give more time to explore the design space.

	Rejected

	GB-014

	
	5.2.4.2.2

	15
	te
	Stating that floating values shall be constant expressions ensures they can be used in static initializers, but the stronger condition of being arithmetic constant expressions (rather than some other kind of implementation-defined constant expression permitted in initializers) is needed for them to be usable in constexpr initializers.
	Assuming those macros should be usable in constexpr initializers, change “all floating values shall be constant expressions” to “all floating values shall be arithmetic constant expressions”.
	Accepted

	GB-015

	
	5.2.4.2.2

	24
	ed
	In the description of the *_MIN_10_EXP and *_MAX_10_EXP macros, “log” should not be in italics.
	Change to roman font (LaTeX \log), in both places.
	Accepted

	GB-016

	
	5.2.4.2.2

	29
	ed
	When the value 2 for *_IS_IEC_60559 was removed editorially at a late stage, some uses of it were left in examples.
	Change the values of FLT_IS_IEC_60559 and DBL_IS_IEC_60559 to 1 in Example 2.
	Accepted

	GB-017

	
	5.2.4.2.2

	5, 6
	ed
	The subscript “min” should not be in italics.
	Change to roman font (LaTeX \min), in both places.
	Accepted

	US 5
-018

	
	5.2.4.2.2

	paragraph 18
	te
	“match(es)” is used in a meaningful way in F.2 but is ambiguous here in the more general context of 5.2.4.2.2.
	Replace the paragraph with:
Whether a type has the same precision (p) and exponent range (emin ≤ e ≤ emax) as an IEC 60559 format is characterized by the implementation-defined values of FLT_IS_IEC_60559, DBL_IS_IEC_60559 and LDBL_IS_IEC_60559 (this does not imply conformance to Annex F):
 0 type does not have the precision and exponent range of an IEC 60559 format
 1 type has the precision and exponent range of an IEC 60559 format
	Accepted

	GB-019

	
	5.2.4.2.3

	10
	ed
	In the table of preferred quantum exponents, the entry for increment and decrement operators shows “min” in italics when other entries have it in roman font.
	Change to roman font (LaTeX \min).
	Accepted

	GB-020

	
	5.2.4.2.3

	8
	ed
	The upper bound on the coefficient given is incorrect.
	Change (LaTeX notation) $10^{(p-1)}$ to 10^p-1.
	Accepted

	US 8
-021

	
	5.2.4.2.3

	Preferred quantum exponents table
	ed
	Beginning with the row for compoundn, the typeface style for the arguments n, x, and y are incorrect and inconsistent with the table entries above.
	Beginning with the row for compoundn, fix the typeface style for the arguments n, x, and y to be consistent with the table entries above.
	Accepted

	US 7
-022

	
	5.2.4.2.3

	Preferred quantum exponents table
	ed
	In the row for postfix and prefix operators, in the second column, “min” is not italicized (as it is in other cells).
	In the row for postfix and prefix operators, in the second column, italicize “min” (as in other cells). Make other typeface changes if needed for consistency.
	Rejected

	US 6
-023

	
	5.2.4.2.3

	Preferred quantum exponents table
	ed
	The Operation column contains C operations, not mathematical ones. Thus, hyphen in program font should be used instead of minus math symbol, and likewise “+” in program font should be used instead of plus math symbol.
	In the Operation column, use hyphen in program font instead of minus math symbol, and use “+” in program font instead of plus math symbol.
	Accepted

	GB-024

	
	6.2.2

	5
	te
	The specification of linkage for file-scope objects fails to cover the case of objects declared as thread_local without static or extern.
	Change “no storage-class specifier or only the specifier auto” to “does not contain the storage-class specifier static or constexpr”.
	Accepted

	GB-025

	
	6.2.4

	2
	ed
	There is a stray “.” in mid-sentence immediately before the footnote number 35, and a missing “.” at the end of that sentence.
	Move the “.” from before footnote number 35 to before footnote number 36.
	Accepted

	GB-026

	
	6.2.5

	13
	ed
	The sentence “Decimal floating types are real floating types.” seems entirely superfluous, because the very next paragraph includes decimal floating types in the definition of real floating types.
	Remove that sentence.
	Accepted

	GB-027

	
	6.2.5

	14
	ed
	“real floating types” is being defined in this paragraph, so should be in italics to mark it as a defined term.
	Change “real floating types” into italics.
	Accepted

	GB-028

	
	6.2.5, 6.3.1.1, 6.5.16.1, 6.7.10, 7.20.1, J.3.4

	
	ed
	The seven uses of the “plain char” phrase (two appear in 7.20.1) in the document are inconsistent about whether the word “plain” is quoted or not.
	Make them consistent, with one choice or the other. Probably use quoting, as then only 7.20.1 needs to change.
	Accept with comment: We will make it consistent by adding quotes around the word “plain” before char where they are currently missing.

	GB-029

	
	6.2.6.1

	3
	ed
	This note would seem to be superfluous, as the readership of the Standard should be expected to know what “binary” means! If the definition is felt to be important then move it to paragraph 3.
	Remove this note.
	Accepted

	GB-030

	
	6.2.6.2

	5
	ed
	The statement in Note 1 that “this cannot occur with unsigned types” is too general; unsigned types have exceptional conditions (resulting in undefined behavior), such as division by zero or shifting by a too-large or negative amount, and those conditions could result in a non-value representation being stored as their form of undefined behavior.
	Remove “, and this cannot occur with unsigned types”. (Alternatively, a more detailed discussion could be added of which operations on unsigned types can or cannot have exceptional conditions.)
	Accepted

	DE-031

	
	6.2.7

	3
	te
	The rules for composite types in C are not fully complete which is a known issue affecting also previous versions of C standard (cf. C90 DR#13). The most relevant issue in the past was that the composite type of an enumerated type and its compatible integer type is not specified. With the new changes to compatibility of tagged types and the changes to enumerated types in C2X the general issue becomes more problematic and the rules should be fully specified to avoid future implementation divergence.
	6.2.7 Compatible Type and Composite Type
3 A composite type can be constructed from two types that are compatible; it is a type that is compatible with both of the two types and satisfies the following conditions:
– If both types are structure or union types the following rules apply:
· If both are the same, the composite type is this type.
· Otherwise, if both types are structure or union types, the composite type is determined recursively by forming the composite types of their members.
· Otherwise, if both types are enumerated types, the composite type is a compatible enumerated type.
· Otherwise, if one type is an enumerated type and the other is a compatible integer type, the composite type is the enumerated type.
· …
These rules apply recursively to the types from which the two types are derived. When constructing the composite type for the same two types in different contexts, the composite type is the same. If the composite type is equivalent to one of the two original types, it is unspecified whether the composite type is the same type as an equivalent original type.**

**) The notion of "same type" affects redeclarations of typedef names and structure or union types.

	Rejected

	GB-032

	
	6.2.7, 6.7.2.3

	
	te
	Within a translation unit, it is problematic to allow union types with members declared in a different order to be compatible, because a braced initializer for a union initializes the first named member (and default initialization is also defined in terms of the first named member), and given such declarations, it's not clear which member should be considered first. The same issue of course applies when the union has no tag but is contained within a struct or union that does have a tag.
	In 6.2.7 paragraph 1, after “For two structures, corresponding members shall be declared in the same order.” insert “For two unions declared in the same translation unit, corresponding members shall be declared in the same order.”.
In 6.7.2.3 paragraphs 7 and 8, move the “union bar” declarations from Example 1 (valid) to Example 2 (invalid), with a comment added “only valid if the two declarations are in different translation units”.
	Accepted

	GB-033

	
	6.3.1.8

	3
	ed
	The comment on the third multiplication example is only correct if int has less than 33 bits; if int has 33 bits or more, the _BitInt(33) operand is converted to int.
	At the end of the comment on the third multiplication example, add “, provided int has width at most 32”.
	Accepted

	US 9
-034

	
	6.3.2.3

	Para 3
	te
	This makes nullptr a null pointer constant, as well as 0, and (void *)0, but it seems to leave out (void *)nullptr which seems like a minor oversight.
	Add (void *)nullptr to the list of allowed forms of a null pointer constant.
	Rejected

	US 10
-035

	
	6.3.2.4

	Para 1
	te
	Introduces incompatible semantics with C++ regarding what can be converted to nullptr_t type in the following example (rejected in C, accepted in C++):
void func(nullptr_t);
func(0);
	This example should be accepted, as in C++.
	Accepted with comment: wording from N 3077

	FR-036

	
	6.4.1

	p3
	te
	Allow the bitprecise types _BitInt(N) to be implemented as macros
	see accompanying document
	Rejected

	US 11
-037

	
	6.4.1

	Para 3
	te
	There is an unfortunate (existing) incompatibility between C and C++ regarding thread_local that is exacerbated by renaming _Thread_local to thread_local. The meaning of _Thread_local in C and thread_local in C++ are subtly different in terms of behavior (this is an existing problem today with the thread_local macro and not new to C2x). This change impacts code like:
extern thread_local struct A a;
A *access() {
 return &a;
}
	We recommend rolling back just the change for thread_local from this paper to give time for further collaboration between WG14 and WG21 to resolve the incompatibility without being under time constraints.
	Rejected

	NEN/NL5-038

	n/a
	6.4.1; 6.4.4.5; 6.5.4; 6.5.9; 6.5.15, 7.21.2

	n/a
	te
	The nullptr predefined keyword and nullptr_t type was added, representing a separate way to access a null pointer constant. This may be redundant and unnecessary and the problems it addresses not suitably sufficient to justify keeping it. Users voiced concern over keeping it in the C Standard, and a few audited existing codebases and existing implementations to see if there was any need beyond just settling on an existing null pointer constant such as “(void*)0”. Additional users found existing practice where “0” and “0L” were being used as the null pointer constant (e.g., in definitions of “NULL”) for embedded chips like those employed by U.S. vendor [REDACTED]. While some vendors responded positively to being encouraged to change from using “0” and “0L” to “(void*)0”, others either did not respond or rejected outright the idea that they would change their NULL macro from 0 to “(void*)0”. Some platforms use a special __null even for their non-C++ platforms. Other vendors, such as [REDACTED], used “0”/”0L” explicitly unless a macro turned on to opt into a newer “(void*)0” definition of the macro. It is noted these users and implementations were in the vast minority, even though they do definitively exist.
	Given this additional information, poll the C Standards Committee again if the nullptr changes from N3042 should remain or be removed completely from the C Standard.
	Rejected

	GB-039

	
	6.4.2.1

	1
	te
	Consider allowing $ in identifiers again.
	See N3046 for some possible choices of wording.
	Accepted (see US3-011)

	US 12
-040

	
	6.4.2.1

	1
	te
	Adopt Wording Alternative #3 from N3046 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3046.pdf

	nondigit: one of _ $ a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
	Rejected (see US3-011)

	US 14
-041

	
	6.4.2.1

	2
	te
	Adopt Wording Alternative #3 from N3046 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3046.pdf

[Duplicate of US 11]
	An identifier is a sequence of nondigit characters (including the underscore _, the dollar sign $, the lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more entities as described in 6.2.1. It is implementation-defined if a dollar sign $ may be used as a nondigit character. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum length of an identifier.
	Rejected (see US3-011)

	US 13
-042

	
	6.4.2.1

	2
	te
	Adopt Wording Alternative #2 from N3046 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3046.pdf

	An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more entities as described in 6.2.1. The nondigit characters may also include a dollar sign $. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum length of an identifier.
	Rejected (see US3-011)

	GB-043

	
	6.4.2.1

	9
	ed
	The references to “attribute token” here should be more specifically to the identifiers listed for “standard attribute”.
	Change “attribute token” to “standard attribute” (twice in this paragraph).
	Accepted

	FR-044

	
	6.4.2.1

	p10
	te
	The status of optional identifiers could be clarified
	see accompanying document
	Accepted

	GB-045

	
	6.4.4.1

	7
	te
	A constant with the “wb” or “WB” suffix that exceeds BITINT_MAXWIDTH should not be allowed to have an extended integer type.
	In the first sentence of this paragraph, change “If an integer constant” to “If an integer constant that does not have a suffix including wb or WB”.
	Accepted

	GB-046

	
	6.4.4.3, 6.7.2.3, 6.7.12.2, 7.20.1

	
	ed
	For consistency, the phrase “enumeration type” should be changed to “enumerated type” throughout (the latter is the defined term in 6.2.5 paragraph 21).
	Change “enumeration type” to “enumerated type” throughout the document. Do not change uses of the word “enumeration” outside that phrase.
	Accepted

	GB-047

	
	6.4.4.4

	13, 14
	ed
	“an unsigned integer types” should be “an unsigned integer type”.
	Change “an unsigned integer types” to “an unsigned integer type” (in both paragraph 13 and paragraph 14).
	Accepted

	US 15-048

	
	6.4.6

	Footnote 89
	ed
	Change the text to refer to both digraphs and trigraphs.
This is not necessary and might be clearer, or might not depending on the association with the old semantics.
	Add the words ‘and “trigraphs”’ to the end of the footnote sentence.
	Rejected

	NEN/NL1-049

	n/a
	6.4.6

	Paragraph 3
	te
	Tripgraph removal is a good and necessary change that should happen. However, in removing trigraphs we have violated some of the few norms we have about working with and adjusting the C Standard. Namely, there was no deprecation period and no consideration of alternatives for implementations and users with demonstrated need of such.
We think trigraphs should be removed! However, doing so without a deprecation period and/or an alternative is not helpful to those users and that userbase.
	One of two potential options should be polled by the Committee:
· revert N2940 “Remove Trigraphs??!” and mark Trigraphs as a deprecated feature; OR,
· transition behavior of trigraphs into digraphs, removing problematic string-defying and comment-defying trigraph sequences and interchanging them with helpful digraph-based behavior, especially for the preprocessor “#” symbol.
	Rejected

	US 18
-050

	
	6.4.6

	Paragraph 3
	te
	Continue to make the remaining former trigraphs available with digraph semantics.
This minimizes the impact on existing user code.
No real-world user code is known to depend on the trigraph-specific semantics; all reported uses are as punctuators.
	Assuming comments 1 and 2 are included:
Revert paragraph 3 back to its original form, then add four new lines before “except for their spelling” (this is clearer than a single long list):
and the nine tokens
 ??= ??/ ??’ ??(??) ??! ??< ??> ??-
behave, respectively, the same as the nine tokens
 # \ ^ [] | { } ~	
	Rejected

	US 17
-051

	
	6.4.6

	Paragraph 3
	te
	Continue to make the former trigraphs for [and] available, but with “digraph” semantics.
These are the most commonly-used trigraphs in existing user code.
	Assuming comment 1 is included;
Change both occurrences of “the seven tokens” to “the nine tokens”; add to the end of the first list of punctuators, “??(” and “??)” (unquoted, three characters); add to the end of the second list of punctuators “[” and “]” (unquoted, one character)
	Rejected

	US 16
-052

	
	6.4.6

	Paragraph 3
	te
	Continue to make the former trigraph for # available, but with “digraph” semantics.
This is necessary to allow basic minimal C23 portability of older projects which use a #pragma line to switch the compiler into ASCII mode.
	Change both occurrences of “the six tokens” to “the seven tokens”; add to the end of the first list of punctuators, “??=” (unquoted, three characters); add to the end of the second list of punctuators “#” (unquoted, one character)
	Rejected

	GB-053

	
	6.4.7

	3
	ed
	The wording here about contexts for header name preprocessing tokens needs to include the same contexts as in 6.4 paragraph 4.
	Change “Header name preprocessing tokens are recognized only within #include preprocessing directives and in implementation-defined locations within #pragma directives.” to “Header name preprocessing tokens are recognized only within #include and #embed preprocessing directives, in __has_include and __has_embed expressions, as well as in implementation-defined locations within #pragma directives.” (the same wording as in 6.4 paragraph 4, and formatted the same way).
	Accepted

	GB-054

	
	6.5

	footnote 95
	ed
	The list of cases where operands may come from a later subclause doesn’t allow for _Generic.
	After “grouping parentheses () (6.5.1),”, insert “generic selection parentheses () (6.5.1.1),” (with the first pair of parentheses in a fixed-width font).
	Accepted

	GB-055

	
	6.5.1

	Constraints
	ed
	The Constraints paragraph does not have a paragraph number.
	Number this paragraph 2, adjusting numbers for paragraphs below accordingly.
	Accepted

	GB-056

	
	6.5.15

	3, 6
	te
	Given the tag compatibility changes, conditional expressions should be allowed between structures or unions that have compatible (not necessarily the same) type.
	In paragraph 3, second bullet point, change “the same” to “compatible”. In paragraph 6, change “If both the operands have structure or union type, the result has that type.” to “If both the operands have structure or union type, the result has the type of one operand.”.
	Accepted

	GB-057

	
	6.5.15

	footnote 122
	ed
	“that is not a null pointer constant” is not necessary for this footnote to apply, and “or” should be “and”.
	Remove “that is not a null pointer constant”. Change “or does not have type” to “and does not have type”.
	Accepted

	US 22
-058

	
	6.5.15

	Para 3
	te
	Introduces incompatible semantics with C++ regarding behavior of the following examples (rejected in C, accepted in C++):

nullptr_t val;
(void)(1 ? val : 0);
(void)(1 ? nullptr : 0);
	These examples should be accepted, as in C++.
	Rejected

	GB-059

	
	6.5.16.1

	3
	ed
	The editorial change to say “the overlap shall exactly match” seems less clear than the previous wording.
	Change “then the overlap shall exactly match and the two objects shall have” to “then the two objects shall occupy exactly the same storage and shall have”.
	Accepted

	US 25
-060

	
	6.5.16.1

	Footnote 126
	ed
	This footnote can't be implemented because it would require the implementation to inspect the value of an object as an assignment constraint at compile time. Consider:
 nullptr_t lhs_val;
 nullptr_t rhs_val = (nullptr_t)(void *)1; // UB
 lhs_val = rhs_val; // Expects a constraint violation here per the footnote but nothing normative
	I think the footnote should read that it’s undefined behavior rather than a constraint violation.
	Rejected (see US10-035)

	US 24
-061

	
	6.5.16.1

	Para 1
	te
	Introduces a different kind of incompatible semantics with C++ regarding the following example (rejected in C, accepted in C++):
nullptr_tval;
val = 0;
	This example should be accepted, as in C++.
	Accepted with comment: wording from N 3077.

	US 23
-062

	
	6.5.16.1

	Para 1
	te
	Introduces incompatible semantics with C++ regarding the behavior of the following examples (accepted in C, rejected in C++):
nullptr_t val;
bool b1 = val;
bool b2 = nullptr;
	These examples should be rejected, as in C++.
	Rejected

	GB-063

	
	6.5.2.1, 6.5.3.3, 6.5.6, 7.17.7.5

	
	ed
	In various places, including at least 6.5.2.1 paragraph 2, 6.5.3.3 paragraphs 1, 2 and 3, 6.5.6 paragraphs 6 and 7, and 7.17.7.5 paragraph 1, the ‘+’ and ‘-’ symbols are used for C operators but the font used is not the fixed-width font generally used for C code in the standard. Some such changes were made as part of commit 2333c3344c6955f9badc8a5b433c9e067d6fd596 in the C standard git repository, to work around other formatting issues with spacing around those operators.
	Fix those spacing issues in some other way, if not already fixed, and then restore all uses of ‘-’ and ‘+’ as C operators (as opposed to as mathematical operations) to a fixed-width font. (Other changes from the referenced commit should not be reverted.)
	Accepted

	CA3-064

	
	6.5.2.2

	2
	Te
	The removal of function declarations without a prototype without a viable replacement (var-args can have different ABIs on some systems) makes it impossible to declare functions that take a variable number of arguments but are not C var-arg functions.
	Either return the specification for called functions without a prototype or provide an alternate means of declaring such a function.
	Rejected

	GB-065

	
	6.5.2.2, 6.5.4

	
	te
	A series of changes have had the general effect of eliminating ways in which an rvalue might be considered to have a qualified type (see DR#423 / N1863, DR#481, N2726). However, those changes left two places where a literal reading would give an rvalue an atomic type: calls to functions with an atomic return type, and casts to an atomic type. This seems anomalous and contrary to the general intent, given that such types cannot occur with the result of lvalue-to-rvalue conversion, which returns an unqualified, non-atomic type, and given that it is explicitly said for both atomic and qualified types that those properties are only meaningful for lvalues (6.7.2.4, 6.7.3).
	In 6.5.2.2 paragraph 5, change “the function call expression has the same type as that object type” to “the type of the function call expression is the non-atomic version of that object type”, with a footnote saying “A function type cannot have a return type that is a qualified type (6.7.6.3).”. Alternatively, if it’s desired to avoid atomic return types on functions at all, change 6.7.6.3 paragraph 4 by changing “unqualified” to “unqualified, non-atomic”.
In 6.5.4 paragraph 5, change “unqualified” to “unqualified, non-atomic”.
	Accepted with comment: alternative wording for the first part.

	US 19
-066

	
	6.5.2.5

	Para 4
	te
	This specifies whether a compound literal expression is associated with block scope or file scope, but it fails to make clear what happens with a declaration like the following:
void func(int array[(register int){12}]);
Note that this is a function declaration, not a definition, so there is no block scope associated with it. This matters for conformance to 6.9p2; if the compound literal is declared at file scope, it should be diagnosed (because of the semantic rewriting to a declaration done in 6.5.2.5p4).
	Please clarify what was intended, but we believe this should be rejected as a constraint violation due to use of the register keyword at file scope.
	Accepted with comment: wording from N 3090.

	US 20
-067

	
	6.5.2.5

	Paras 4 & 5
	te
	These do not match what we think the intent is for code like:
(static int){12}
We think the intent is that this expression generates one notional static variable that is referenced each time the compound literal is evaluated. However, p4 says that it is rewritten to a form:
SC typeof(T) ID = { IL };
"where ID is an identifier that is unique for the whole program", while p5 says "A compound literal provides an unnamed object whose value, type, storage duration and other properties are as if given by the definition syntax in the constraints". The effect of this is that each time the compound literal is evaluated, you get a unique ID for the object and thus you get different static variables on each evaluation.
	Clarify whether each evaluation of a compound literal using the static storage class specifier creates a unique object or not.
	Accepted with comment: wording from N 3090.

	US 21
-068

	
	6.5.4

	Para 4
	te
	Introduces incompatible semantics with C++ regarding the following example (rejected in C, accepted in C++):
 (nullptr_t)nullptr;
because nullptr_t is not void, bool, or a pointer type (so it cannot be cast to itself). Note, this might be editorial because the last sentence of the para says “No type other than nullptr_t shall be converted to nullptr_t” but it’s unclear because of the use of “only” in the preceding sentence.
	Change the penultimate sentence to: The type nullptr_t shall not be converted to any type other than void, bool, nullptr_t, or a pointer type.
	Rejected (see US10-035)

	DE-069

	
	6.5.4, 6.7.8, 6.8.

	
	te
	When size expressions of arrays have to be evaluated is not clear, especially when used with typeof.

Examples:
(char(*)[f()])0;
typeof(f()) x;
typedef typeof(f()) t;

	6.5.4. Cast Operators, Semantics
Size expressions and typeof operators contained in a type name used with a cast operator are evaluated whenever the cast expression is evaluated.
6.7.8. Type Definitions
Any array size expressions associated with variable length array declarators and typeof operators are evaluated each time the declaration of the typedef name is reached in the order of execution
6.8. Statement and Blocks
… and the variable length array declarators and any size expressions and typeof operators in declarations of ordinary identifiers with block scope are evaluated.
	Accepted

	GB-070

	
	6.5.8

	7
	ed
	A “.” appears both before and after the reference to footnote number 119.
	Remove the second “.”.
	Accepted

	GB-071

	
	6.5.9

	2, 6
	te
	Almost all places that allow operands of type nullptr_t do so independent of whether the particular operand is a null pointer constant or another expression of that type. However, the rules for equality operators only allow comparison of a pointer that is not a null pointer constant with a nullptr_t value that is a null pointer constant, not with any other nullptr_t value. Since it seems C++ implementations allow such comparisons, disallowing them in C might not be intentional.
	If it’s not desired to disallow such comparisons after all, in the last bullet point in paragraph 2, change “is a null pointer constant” to “is a null pointer constant or has type nullptr_t”. In paragraph 6, change “the other is a null pointer constant, the null pointer constant is converted” to “the other is a null pointer constant or has type nullptr_t, the null pointer constant or operand of type nullptr_t is converted”.
	Accepted with comment: Adopted wording from N 3077 subclause 7.3.

	GB-072

	
	6.5.9

	4
	ed
	There is no “.” at the end of the sentence to which footnote 120 is attached.
	Add a “.” before the footnote number.
	Accepted

	FR-073

	
	6.5.9

	p2 and p6
	te
	There is a missing case for the comparison of pointers with type nullptr_t
	see accompanying document
	Accepted

	GB-074

	
	6.6

	6
	ed
	Paragraph 15 says that the “.” member access operator may form a compound literal constant, but paragraph 6 doesn’t mention that possibility (unlike paragraph 7, which mentions it for named constants).
	At the end of the first sentence in paragraph 6, insert “, as is a postfix expression that applies the . member access operator to a compound literal constant of structure or union type, even recursively”.
	Accepted

	US 26
-075

	
	6.6

	Para 17
	te
	N3018 (the constexpr specifier for object definitions) introduces the ability to have constant expressions in more situations, but it does not update the rules for constant expression evaluation of floats. This paragraph is not possible to implement in the case of floating-point types. C++ avoids this with a recommended practice http://eel.is/c++draft/expr.const#13 because they recognized the implementation impossibilities. Consider code like:
 constexpr float f = 1.0f;
 constexpr float g = 3.0f;
 fesetround(FE_TOWARDSZERO);
 constexpr float h = f / g;
Short of performing a full analysis of the control flow graph for the translation unit, there's no way to meet this semantic requirement.

	Consider using a recommended practice for the floating-point semantic requirements instead of mandating them.
	Accepted with comment: wording from N 3078 and N 3082.

	GB-076

	
	6.7

	5
	te
	There are several places in the standard that impose restrictions on what can occur within certain kinds of declarations, or require certain kinds of declarations to contain certain kinds of constructs or certain kinds of constructs to appear in certain declaration contexts, without being fully clear about what syntactic positions (within the tokens matching the “declaration” syntax specifier) count for the purposes of those rules. To the extent that the intent of these have been clarified in DRs, or are clarified in examples, it is not clear that the clarification actually follows from the normative text, especially since the intent seems to be different in different cases. See attached document c2x-declaration-context.pdf for more details of this issue.
	
	Rejected

	GB-077

	
	6.7

	6
	ed
	The bullet point on definitions, “an enumeration constant, is the only declaration of the identifier” (parentheses around “only” removed since the previous revision of the C standard) doesn’t cover the case of redeclaration of enumeration constants, which is now permitted; one declaration should still be considered a definition in that case.
	Change “only” to “first (or only)” for enumeration constants (matching the wording for typedef names).
	Accepted

	GB-078

	
	6.7.1

	14
	ed
	The example doesn’t make clear why the initializer for unstring might be invalid.
	At the end of the sentence about unstring, add “, because if char has eight bits and the same range of values as signed char, the initializer "\xFF" has type “array of char”, and its first element has value -1, which is not representable in unsigned char’.
	(Defer to consider homework from Jens.)

	GB-079

	
	6.7.1

	5
	te
	The reference to implicit initializer values in paragraph 5 runs into the issue that the definition of default initialization in 6.7.10 only says what the initializer value is, not what kind of constant expression it is. For example, default initialization for a pointer type is said to be with a null pointer; it is not specified whether it is a null pointer constant.
	If the removal of the reference to implicit initializers from the previous comment is accepted, this issue goes away. Otherwise, 6.7.10 would need amending to say what kind of constant default initializers are. In any case, add a new Example:
constexpr int *p = {}; // Default initialization with a null pointer
	Accepted with comment: resolved by adding the example plus the resolution of GB-080.

	GB-080

	
	6.7.1

	5
	te
	Suppose a structure or union object is, as the whole or part of a constexpr initializer, initialized with a single expression (a named or compound literal constant) of that type (see comment below on 6.7.10 regarding the details of when exactly this is permitted). How exactly should the constraints that constexpr pointer initializers be null pointer constant be applied in this case, if the structure or union contains such a member (and, in the case of the union, the pointer is the active member or part of the active member)? Should it be a constraint violation because a hypothetical expression accessing the pointer member of the constant structure or union would not itself be a null pointer constant? Or should it be permitted because no such hypothetical expression is actually formed in the initialization process and the initializer actually written for the structure or union is a structure or union constant?
	Supposing such an initialization should be permitted, replace “the implicit or explicit initializer value” by “any explicit initializer value”. Add a new Example:
struct s { void *p; };
constexpr struct s A = { nullptr };
constexpr struct s B = A;
/* Although the expression A.p is not a null pointer constant, only a null pointer, the only explicit initializer in the initialization of B is A, not A.p, so no constraint is violated by that initialization. */
If (see comment below on 6.7.10) such initializations are only accepted with automatic storage duration (if the proposed change for that comment is rejected), this example will need adjusting accordingly.
	Accepted with comment: wording from N 3078 plus applying the first sentence of the proposed resolution to 6.7.1p5.

	GB-081

	
	6.7.1

	5
	te
	The requirement on constexpr initializers that “The value of any constant expressions or of any character in a string literal of the initializer shall be exactly representable in the corresponding target type; no change of value shall be applied” is unclear in many cases, especially concerning floating point, regarding what exactly counts as a change of value when the type changes; the footnote and examples are only of limited value for clarifying this, and to the extent that the do clarify it, it is not clear that the results follow from the normative text. See attached document c2x-constexpr-init.pdf for more details of this issue.
	
	Accepted with comment: wording from N 3082, section titled “About N3071” including the editorial comment.

	GB-082

	
	6.7.10

	11, 12, 20, 22
	ed
	The changes to define “default initialization” left awkward wording and duplication and were not consistently implemented.
	Change paragraph 11, before the bullet points, to “if an object that has automatic storage duration is not initialized explicitly, its representation is indeterminate. If an object that has static or thread storage duration is not initialized explicitly, or any object is initialized with an empty initializer, then it is subject to default initialization, which initializes an object as follows:”.
Change “;” to “.” at the end of the last bullet point in paragraph 11.
In paragraph 12, change “If the initializer is the empty initializer, the initial value is the same as the initialization of a static storage duration object. Otherwise” to “If the initializer is not the empty initializer”.
In paragraph 20, change “shall be initialized implicitly the same as objects that have static storage duration” to “are subject to default initialization”.
In paragraph 22, change “shall be initialized implicitly the same as objects that have static storage duration” to “is subject to default initialization”.
	Accepted

	GB-083

	
	6.7.10

	14, 17
	te
	When should it be possible to initialize an object of structure or union type with a named constant or compound literal constant of such type? The current wording seems to indicate that it is only possible at automatic storage duration – but when such initialization occurs, it is permitted even when the object being initialized is constexpr. Since the normal rule is that the requirements on constexpr initializers are stricter than those on static storage duration initializers, it is an anomaly to allow named and compound literal constant of structure or union type in constexpr initializers of automatic storage duration but not in any initializers of static storage duration.
	Assuming such initializers are intended to be allowed at static storage duration, in paragraph 14, remove “that has automatic storage duration”. Add a footnote to the end of the paragraph: “If the object being initialized does not have automatic storage duration, this case violates a constraint unless the expression is a named constant or compound literal constant (6.6).”. Also remove “that has automatic storage duration” in J.2 item 81.
	Accepted

	CA1-084

	
	6.7.12

	2
	Te
	Standard attribute syntax errors should be diagnosed as was the intent in C++.
	Add a paragraph after 2 in the constraints section to say that an attribute must be added to something that it can apply to, and that the syntax rules for any argument to the attribute must be as specified for the attribute.
	Rejected

	US 35
-085

	
	6.7.12 and 6.7.12.1

	Para 2, Para 3
	te
	At the C++23 NB comment resolution meeting in Nov 2022, WG21 clarified their model of what it means to ignore an attribute in a way that is incompatible with how WG14 has it specified for C23. Specifically, ignored attributes are not actually ignored in the usual sense of the English phrase, but are instead required to be syntax and semantically checked if the attribute is a standard attribute. e.g., if an application ignores an attribute, it is still required to diagnose incorrect appertainment, presence or absence of an argument list, syntax or semantic errors in the argument list, etc. This was done in the name of improved portability.

Note, there is at least one C++ implementation that has said they will not be implementing that change.
	If being able to syntactically ignore attributes is not important to WG14, we can change our model to match the new C++ model. If this property is critical to WG14, we can diverge from C++ with our model – however, that is user-hostile given how frequently attributes show up in header files shared between C and C++. A third option is for impacted companies or national bodies to vote NO on the ISO/IEC 14882:2023 DIS ballot to reopen the discussion with WG21.
	Rejected (see CA1-084)

	GB-086

	
	6.7.12, 6.7.12.3, 6.7.12.4, 7.17.2.1, 7.17.3, 7.28.3.3, 7.28.3.5, K.3.9.3.1.1

	
	ed
	The C standard normally uses the word “object” instead of “variable” as a noun in normative text, with noun uses of “variable” being limited to the phrases “system variable” and “condition variable”. However, some normative wording, mainly for attributes, atomics and threads, uses “variable” as a noun when “object” would be more consistent with the usual wording practice.
	Change “variable” to “object” when used as a noun in normative text, outside of the phrases referred to. Those phrases using the word should not be changed, use as an adjective should not be changed, and non-normative uses should be considered individually as the informal term “variable” may sometimes be appropriate there.
	Accepted with comment: adopted suggested wording but substituted “the stored values of the objects” for “the values of the variables” in 7.17.3p13.

	US 36
-087

	
	6.7.12.*

	
	te
	There is an ambiguity between 6.10.1p9 (__has_c_attribute returns 0 for an ignored attribute) and 6.7.12.* (each attribute specifies that __has_c_attribute *shall* return a nonzero value).
	The attributes in 6.7.12.* should be amended to say "...when given <attribute name> as the pp-tokens operand<ins> if the implementation supports the attribute</ins>."
	Accepted

	GB-088

	
	6.7.12.2, 6.7.12.6

	
	ed
	The wording “shall be applied to the identifier in a function declaration”, taken literally, would seem to require the syntax “identifier attribute-specifier-sequence[opt]” to be used, rather than other syntax to apply an attribute to a function. Since the examples given show the attribute at the start of the declaration instead, that clearly isn’t intended. Other attributes refer to applying an attribute to a function, so avoiding this issue.
	In 6.7.12.2 (nodiscard) paragraph 1, and 6.7.12.6 (noreturn) paragraph 2, change “the identifier in a function declaration” to “a function”.
	Accepted

	GB-089

	
	6.7.12.5

	1
	te
	It is unclear whether “next block item that would be encountered” refers to next lexically, or in execution order (the latter being problematic for a Constraint, since those are translation-time properties). A similar issue was previously raised for C++ - see https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#2406 – but it appears the resolution for C++ was not applied for C.
	Add the same wording and changes to the example as for C++.
	(wait for homework from Aaron Ballman)

	GB-090

	
	6.7.12.7

	11
	ed
	“execution wide” should have a hyphen.
	Change “execution wide” to “execution-wide”.
	Accepted

	GB-091

	
	6.7.12.7

	2
	ed
	“referred” seems unidiomatic here; it could be made “referenced”, but the word doesn’t actually seem necessary at all.
	Remove “referred”.
	Accepted

	GB-092

	
	6.7.12.7

	3
	ed
	“a such annotated function” seems unidiomatic.
	Change “a such annotated function” to “such a function”.
	Accepted

	GB-093

	
	6.7.12.7

	4
	ed
	“account as” used here seems unidiomatic, as does “allow to query”
	Change “account as objects” to “are considered as objects, for the purposes of these attributes”. Change “allow to query” to “access”. Change “account as lvalue conversions” to “are considered as lvalue conversions, for the purposes of these attributes”. Change “account as store operations” to “are considered as store operations, for the purposes of these attributes”.
	Accepted

	GB-094

	
	6.7.12.7

	footnote 187
	ed
	“if” here seems unidiomatic.
	Change “independently if” to “independently of whether”. Change “or if” to “or whether”.
	Accepted

	GB-095

	
	6.7.12.7.2

	3
	ed
	“the such typed function” seems unidiomatic.
	Change “the such typed function” to “such a function”.
	Accepted

	GB-096

	
	6.7.12.7.2

	4
	ed
	“property if” seems unidiomatic.
	Change “property if” to “property of whether”.
	Accepted

	GB-097

	
	6.7.2.1

	24
	ed
	“sizeof(ouble)” should be “sizeof(double)”.
	Change “sizeof(ouble)” to “sizeof(double)”.
	Accepted

	GB-098

	
	6.7.2.2

	12
	te
	Because of the special semantics of conversions to bool, it seems a bad idea to allow bool as the type with which an enumeration without fixed underlying type is compatible.
	In the wording as modified by the previous comment, change “that is not a bit-precise integer type” to “that is not bool or a bit-precise integer type”.
	Accepted

	GB-099

	
	6.7.2.2

	12
	ed
	The first sentence of this paragraph should end “type” not “types”, and could be read such that “a signed integer type” and “an unsigned integer type that is not a bit-precise integer type[s]” are two separate entries in the list (so allowing a signed bit-precise integer type as the type with which the enum is compatible, which clearly isn’t intended).
	Change “char, a signed integer type, or an unsigned integer type that is not a bit-precise integer types” to “char or a signed or unsigned integer type that is not a bit-precise integer type”.
	Accepted

	GB-100

	
	6.7.2.2

	15
	te
	This paragraph talks about behavior of values of an enumerated type after lvalue conversion, with a footnote about the case of bool. However, most of the special semantics of bool relate to lvalues of that type rather than use of rvalues in arithmetic, and neither the normative text nor the footnote explicitly say that the semantics of conversion to the enumerated type are the same as those of conversion to the compatible type.
	Add a sentence at the end of the paragraph, “Conversion to the enumerated type has the same semantics as conversion to the underlying type.”. Move footnote 153 to be after that sentence. In footnote 153, change “the same as bool” to “the same as bool, conversion to the enumerated type behaves the same as conversion to bool (6.3.1.2)”.
	Accepted

	GB-101

	
	6.7.2.2

	19
	ed
	“initialized to one” should be “initialized to 1” for consistency with the previous paragraph.
	Change “initialized to one” to “initialized to 1” (with “1” in fixed-width type).
	Accepted

	GB-102

	
	6.7.2.2

	3
	ed
	It appears to be intended, for consistency with C++, that if an enum with fixed underlying type bool has an enumeration constant with value 1, and the following enumeration constant does not have a defining constant expression, a constraint is violated because 1 + 1 is not representable in bool. However, it is clear that the conversion of 1 + 1 to bool does not meet the definition of wraparound, and it might not meet the definition of overflow either, so different wording may be needed to ensure this case is a constraint violation.
	Change “The definition of an enumeration constant without a defining constant expression shall neither overflow nor wraparound the fixed underlying type by adding 1 to the previous enumeration constant.” to “If the value of an enumeration constant without a defining constant expression for an enumeration with fixed underlying type is obtained by adding 1 to the previous enumeration constant, the value of that previous enumeration constant shall not be the maximum value of the underlying type.”.
	Accepted

	GB-103

	
	6.7.2.2

	5
	te
	The N2904 version of the proposal for enums with fixed underlying types included a sentence “The underlying type of the enumeration is the unqualified, non-atomic version of the type specified by the type specifiers in the specifier qualifier list.”. That sentence disappeared in the N2963 version and so is not in the current draft, but it appears it is still the intent that the unqualified, non-atomic version of the type be used, and there is no other normative wording to replace that sentence to achieve that effect.
	At the end of paragraph 5, add “The underlying type of the enumeration is the unqualified, non-atomic version of the type specified by the type specifiers in the specifier qualifier list.”.
	Accepted

	GB-104

	
	6.7.2.2

	5
	ed
	The N2904 version of the proposal for enums with fixed underlying types included a sentence “No alignment specifiers shall appear in the specifier qualifier list.”, which disappeared in the N2963 version. There is no actual need for such a normative sentence, since it follows from requirements elsewhere in the standard, but a footnote pointing this out would be helpful.
	At the end of paragraph 5, add a footnote “The specifier qualifier list is not a context listed in 6.7.5 as permitted for alignment specifiers, so the presence of an alignment specifier in the list violates a constraint.”.
	Accepted

	GB-105

	
	6.7.2.2

	7
	te
	There appears to be no Constraint that would explicitly disallow declaring an enum with a fixed underlying type and then defining it without one.
enum e : int;
enum e { A };
	At the end of the Constraints in 6.7.2.2, add a new paragraph (after paragraph 7): “An enumeration with a fixed underlying type shall be defined with an enum type specifier. No enum specifier for an enumeration without a fixed underlying type shall include an enum type specifier.".
	Accepted

	GB-106

	
	6.7.2.3

	10, 11, footnote 156
	te
	Some of the changes related to tags in accepted paper N3030 have not been applied to the working draft.
	Apply the changes to paragraph 10: insert “enum-type-specifier[opt]” in both enum syntax alternatives, after identifier[opt].
Apply the changes to paragraph 11: add “enum identifier enum-type-specifier ;” as a syntax alternative and change “structure or union type” to “structure, union, or enumerated type”.
Apply the changes to footnote 156 as shown in the paper.
	Accepted

	FR-107

	
	6.7.2.3

	p1
	te
	There is a new ambiguity for the initialization of unions if they are redeclared
	see accompanying document
	Accepted with comment: solution from GB-032.

	GB-108

	
	6.7.2.5

	4, 5
	ed
	The typeof specifiers should be referred to as specifying a type, not a “type name” (the latter is a different syntax production for certain sequences of tokens).
	In paragraph 4, remove “the type name representing”. Change “produce the type name” to “designate the same type as the type name”. In paragraph 5, change “non-atomic unqualified type name” to “non-atomic unqualified version of the type”.
	Accepted

	US 28
-109

	
	6.7.2.5

	Example 3
	ed
	This example uses smart quotes rather than straight quotes around the character constants.
	Use straight quotes instead.
	Accepted

	US 27
-110

	
	6.7.2.5

	Examples 1 & 2
	ed
	5.1.2.2.1p1 says that main "shall be defined with a return type of int", so use of typeof and typeof_unqual in these examples are technically violating a constraint.
	Use `int` as the return type for `main()` and pick different examples for those two cases.
	Rejected

	GB-111

	
	6.7.2.5

	footnote 159
	ed
	“type-name” should not be in a fixed-width font.
	Change “type-name” in the footnote out of a fixed-width font.
	Accepted

	GB-112

	
	6.7.3

	9
	ed
	The statement about removing restrict not changing behavior of a conforming program is not strictly accurate for normative text, since _Generic can be used in a way that distinguishes between e.g. pointers to restrict-qualified and non-restrict-qualified types.
	At the end of paragraph 9, insert “, unless _Generic is used to distinguish whether or not a type has that qualifier”.
	Accepted

	US 29
-113

	
	6.7.3.1

	example box
	ed
	Inconsistent use of space in front of operator parentheses.
	Remove space between “sizeof” and “(float)”.
	Accepted

	CA4-114

	
	6.7.6

	1
	Te
	The removal of “K&R” declarations made classes of interfaces impossible and breaks a lot of existing code.
	Either return K&R declarations or allow forward declaration of parameters in some manner.
	Rejected

	US 30
-115

	
	6.7.6

	Para 2
	ed
	“… and asserts that when an operand of the same form as the declarator appears in an expression, it designates a function or object with the scope, storage duration, and type indicated by the declaration specifiers.” Consider:
 static int *g;
 void f() {
 int x;
 g=&x;
 // ...
 }
How does the object `g` designate a scope indicated by the declaration specifiers? Declaration specifiers don’t indicate a scope – the lexical location of the declarator indicates the scope.
Also, the declarator is *g and not g; *g does not have static storage duration, g does.
	I think we can find a more clear way to specify that a declarator declares one identifier and that identifier has properties from the declaration specifiers associated with it.
	(Defer for wording from Aaron Ballman)

	DE-116

	
	6.7.6.2

	Example 2
	ed
	The term “unspecified” is used incorrectly.
	… array of unspecified unknown size ...
	Accepted

	DE-117

	
	6.7.6.2, 6.5.3.4, 6.5.6

	
	te
	The size expression can appear inside a subexpression which is not evaluated according to usual rules. I propose to extend the use of the existing notion of "unspecified size" to arrays with unevaluated size expressions. Existing language rules for evaluation of expressions and for composite types would then give useful behavior for common cases. In other cases, the resulting type would be an array of unspecified size, which then should explicitely be UB in sizeof or pointer arithmetic.
Examples:
if (0) { (char(*)[f()])0; }
0 ? (char(*)[f()])0 : 0;
1 ? (char(*)[f()])0 : (char(*)[g()])0;
int a[n]; sizeof(*(0 ? &a : 0));
sizeof(*(0 ? (char(*)[f()])0 : 0));
	6.7.6.2 Array Declarators
5 … f it occurs in a declaration at function prototype scope, if it is not evaluated, it is treated as if it were replaced by *; … A size expression in a declaration at function prototype scope is not evaluated.
6.5.3.4. sizeof
If the type of the operand is a variable length array type, the operand is evaluated. If the variable length array type has unspecified size, the behavior is undefined. Otherwise, the operand is not evaluated and the result is an integer constant.
6.5.6 Additive operators, Semantics
If one of the operands is a pointer to an array of unspecified size, the behavior is undefined.
6.5.15 Conditional operator, Constraints
5 If either of the second or third operands is a null pointer constant or has type nullptr_t, the other operand shall not be a variably modified type that has an unspecified size if the operand is not evaluated
	Rejected

	US 31
-118

	
	6.7.6.3

	13
	te
	Subclause 6.7.6.3, paragraph 4 says "the type specified for ident is "derived-declarator-type-list function returning the unqualified version of T". Qualified return type is a misleading language feature.
	Add the following paragraph after paragraph 12:
A return type declared to have a qualified type is an obsolescent feature.
	Rejected

	GB-119

	
	6.7.6.3

	footnote 174
	ed
	This footnote, talking specifically about a function definition, was relevant when empty parentheses in a function definition provided a prototype but those in other declarations didn’t. Since the working draft was changed to remove unprototyped functions, this footnote seems no longer relevant.
	Remove footnote 174.
	Accepted

	GB-120

	
	6.7.7

	footnote 175
	ed
	The reference to “no parameter specification” predates the removal of unprototyped functions.
	Change “no parameter specification” to “no parameters”.
	Accepted

	US 32
-121

	
	6.7.9

	
	ge
	As we've been working on implementing this functionality in Clang, we're finding that the specification differences between C and C++ are a significant source of consternation for us. In C++, auto is a type specifier. In C, auto is not a type, it's the *absence* of a type and the use of a storage class specifier.
	Please do not resurrect implicit int with different semantics, but define this as a type specifier. Logically, a deduced type is a type and not a class of storage.
	Rejected

	US 34
-122

	
	6.7.9

	Para 2
	te
	Introduces incompatible semantics with C++ regarding the following example (undefined behavior in C, accepted in C++):
 int i;
 auto good = &i;
 auto *bad = &i; // Cannot specify the pointer
This style is often a coding standard requirement for code bases in C++ due to the improved code readability: e.g., https://llvm.org/docs/CodingStandards.html#beware-unnecessary-copies-with-auto.
	We prefer that it be required to support (optional) pointer and array declarators as part of a deduced type.
	Accepted with comment: wording from N3079 with editorial corrections.

	US 33
-123

	
	6.7.9

	Para 2
	te
	Adds a constraint on programs under a "Description" heading which makes it a bit less clear as to how to interpret the "shall" clauses used. For example, is this code UB or is it simply not possible to write:
 auto a = { 1, 2 };
If it's UB, an implementation could elect to deduce `a` as `int[3]` or `int *` and I don't think we want to allow an extension into that space (FWIW, in C++ that would deduce to a std::initializer_list<int>).
	Clarify the intent by moving the specification either to a Constraints or Semantics section, or remove use of the word “shall
	Accepted with comment: wording from N3079 with editorial corrections.

	GB-124

	
	6.8.4.2

	5
	ed
	One reference to “default label” does not have “default” marked up in a fixed-width font as a keyword.
	In “following the default label”, put “default” in a fixed-width font.
	Accepted

	GB-125

	
	6.8.5

	3
	te
	May a declaration in a for loop use the constexpr storage class specifier (such an object being considered implicitly auto if no other storage class specifier used), or does “having storage class auto or register” exclude that case? (Cf. DR#277 regarding interpretation of that sentence.)
	Change “having storage class auto or register” to “with automatic storage duration”, to avoid ambiguity (assuming the constexpr case should be allowed).
	Accepted with comment: wording from N 3078 subclause 4.3.

	GB-126

	
	6.9.2

	1-2
	te
	The rules on external and tentative definitions do not appear to make a file-scope thread_local declaration of an object without “static” and without an initializer into either an external definition or a tentative definition, contrary to implementation practice.
	If it’s intended for such declarations to be tentative definitions, change “without a storage-class specifier or with the storage-class specifier static” in paragraph 2 to “without the storage-class specifier extern”. Otherwise, say “without the storage-class specifier extern or thread_local” there, and, in paragraph 1, change “an initializer” to “an initializer, or has file scope and the storage-class specifier thread_local”.
	Accepted with comment: the non-tentative definition wording is chosen.

	GB-127

	
	6.9.2

	2
	te
	The “initializer equal to { 0 }” wording is contrary to the intent of making the quantum exponent of a default initialized object of decimal floating type implementation-defined, as taken literally it would prevent the choice of the least possible exponent (all bits zero) if the object with a tentative definition is, or starts with, a scalar with decimal floating type.
	Change “with the composite type as of the end of the translation unit, with an initializer equal to { 0 }.” to “with an empty initializer and type determined as follows: if the composite type as of the end of the translation unit is an array of unknown size, then an array of size one with the composite element type, and otherwise the composite type as of the end of the translation unit.”.
	Accepted

	GB-128

	
	6.10

	1
	ed
	The second alternative in the syntax for pp-balanced-token-sequence is not properly indented.
	Indent that alternative to match the previous alternative.
	Accepted

	GB-129

	
	6.10.1

	8
	ed
	“Unrecognized preprocessor prefixed parameters” is a plural phrase but subsequent verbs in this sentence expect the singular; “to be evaluate” should be “to be evaluated”.
	Change “is not” to “are not”, “causes” to “cause” and “to be evaluate” to “to be evaluated”.
	Accepted

	FR-130

	
	6.10.1 and 6.10.9.1

	
	te
	[bookmark: the-magic-constants-for-__has_embed-shou]The magic constants for __has_embed should have symbolic names

	see accompanying document
	Accepted with comment: wording from N 3072 clause 4 substituting predefined for mandatory.

	FR-131

	
	6.10.3

	
	te
	It seems that #embed offers multiple ways to express the same feature
	see accompanying document
	*Resume here for the second week of ballot resolution

	GB-132

	
	6.10.3.1

	10
	ed
	“Either form” (singular) does not agree with “behave” (plural).
	Change “behave” to “behaves”.
	

	GB-133

	
	6.10.3.1

	15
	ed
	“execution time” should be “execution-time”.
	Change “execution time” to “execution-time”.
	

	GB-134

	
	6.10.3.1

	18
	ed
	In this example, the “first entry” reference is misleading, since scalar initializers inside braces can only contain one expression (the syntax shows that multiple assignment expressions separated by commas are not handled as a use of the comma operator, but as multiple initializers and thus a constraint violation).
	Remove “first entry”, and add the “valid if i.dat produces 1 value,” from the second #embed use in this example to the start of that comment.
	

	GB-135

	
	6.10.3.2

	8
	ed
	Example 4 is a duplicate of Example 3.
	Remove Example 4 (renumbering Example 5 below accordingly).
	

	GB-136

	
	6.10.3.3

	Constraints
	ed
	“suffix” should be in a fixed-width font.
	Put “suffix” in a fixed-width font.
	

	GB-137

	
	6.10.3.3

	Constraints
	ed
	The Constraints paragraph is missing a paragraph number.
	Number this paragraph 1, renumbering paragraphs below accordingly.
	

	GB-138

	
	6.10.3.5

	Constraints
	ed
	The Constraints paragraph is missing a paragraph number.
	Number this paragraph 1, renumbering paragraphs below accordingly.
	

	GB-139

	
	6.10.4.5

	8
	ed
	In the example of valid redefinitions, the redefinition of FUNC_LIKE isn’t actually valid, because the first definition lacks white space separation present in the second one. This appears to be a previously unnoticed mistake introduced by the conversion to LaTeX for C17.
	Restore presence and absence of white space to the state it had in C11, for both the valid and the invalid definitions, as follows. Inside the replacement lists for the first, third and fourth FUNC_LIKE definitions, insert a space after ‘(‘ and one before ‘)’. Additionally, in the second FUNC_LIKE definition, insert a space after ‘(‘ and before ‘)’ in the listing of parameter names (not the replacement list), to illustrate, as in C11, that variation in the presence of space there is OK.
	

	GB-140

	
	6.10.4.5

	9
	ed
	“and”, in the argument to showlist, should not be in bold, since it’s not being used in any way as a standard macro.
	Arrange for “and” to be shown in the same font as the rest of that argument.
	

	GB-141

	
	6.10.5

	3
	ed
	“If a macro invocation spans multiple physical or logical lines” shouldn’t refer to logical lines, since line numbers are always associated with physical lines.
	Remove “or logical”.
	

	US 37
-142

	
	6.10.9.1

	
	ge
	Pages 184+: Should the token "202311L" have italics?
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-143

	
	6.10.9.1

	1
	ed
	The references to “asctime functions” (plural) are left over from when asctime_r was added. Since it was subsequently removed, those references should revert back to singular.
	Change “asctime functions” to “asctime function”, both in the description of __TIME__ and in the forward references.
	

	GB-144

	
	6.10.9.2

	2
	ed
	The example value of __STDC_ISO_10646__ corresponds to a very old revision of ISO/IEC 10646 (amendment 9 to the 1993 edition). A more recent version might be appropriate for the example.
	Change “199712L” to “202012L”.
	

	GB-145

	
	6.10.9.3

	1
	ed
	Footnote 225 (intent for version macros) should be attached to all the macros using a date as a version, not just one.
	Attach footnote 225 also to __STDC_IEC_60559_BFP__, __STDC_IEC_60559_DFP__, __STDC_IEC_60559_COMPLEX__ and __STDC_IEC_60559_TYPES__.
	

	GB-146

	
	6.11.2

	1
	ed
	The introduction of the keyword constexpr provides a new way to declare an identifier with internal linkage at file scope. Since such a new feature should not be immediately considered obsolescent, presumably it should only be the pre-existing case (of redeclaring without static after an initial declaration with static) that is listed as obsolescent.
	Change “static” to “static or constexpr”.
	

	GB-147

	
	7.1.2

	1, 7
	ed
	It’s not just Annex K that defines interfaces to be considered together with the ones in clause 7; Annexes F, G and H do so as well and so should be mentioned together with Annex K.
	In paragraph 1, change “that defines __STDC_LIB_EXT1__ shall conform to the specifications in Annex K and Subclause K.3 should be read as if it” to “that defines __STDC_IEC_60559_BFP__, __STDC_IEC_559__, or __STDC_IEC_60559_DFP__ shall conform to the specifications in Annex F, one that defines __STDC_IEC_60559_COMPLEX__ or __STDC_IEC_559_COMPLEX__ shall conform to the specifications in Annex G, one that defines __STDC_IEC_60559_TYPES__ shall conform to the specifications in Annex H and one that defines __STDC_LIB_EXT1__ shall conform to the specifications in Annex K, and those Annexes should be read as if they”. Change “here or in Annex K” to “here or in Annexes F, G, H, or K”.
In paragraph 7, change “Annex K” to “Annexes F, G, H, or K”.
	Accepted

	CA5-148

	
	7.2

	2
	Te
	It is not clear what the effect of no NDEBUG defined should be for assert with no or multiple parameters passed in given the quasi-prototype listed in 7.2.1.1#1.
	Add to paragraph 2:
The assert macro shall be implemented as a macro with an ellipsis parameter, not as an actual function. If the macro definition is suppressed to access an actual function, the behavior is undefined.NOTE Nevertheless, when NDEBUG is not defined, the macro acts as a function taking one parameter as indicated by the given prototype. For both assert() and assert(1, 1), the number of arguments do not agree with the number of parameters. A diagnostic is required by 6.5.2.2.
	

	GB-149

	
	7.3.1

	5, 6
	te
	To ensure usability in constexpr initializers, the “_Complex_I” and “_Imaginary_I” macros should be required to expand to arithmetic constant expressions.
	Change “constant expression” to “arithmetic constant expression” in paragraphs 5 and 6.
	Accepted

	US 38
-150

	
	7.3.5.1

	
	ed
	Page 194: Remove page break before 7.3.5.2 casin (on page 195).
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-151

	
	7.3.9.2, 7.3.9.6

	
	ed
	The equality stated in footnotes for creal and cimag is only correct if imaginary types are supported and if neither part of the number is a NaN.
	In both footnotes 245 and 246, change “creal(z)+cimag(z)*I” to “CMPLX(creal(z), cimag(z))”. After “of complex type”, insert “, if neither part is a NaN,”.
	Accepted with comment: wording from N 3082.

	GB-152

	
	7.3.9.3

	2
	te
	The CMPLX macros should expand to arithmetic constant expressions to be usable in constexpr initializers, not just those of static or thread storage duration. (But if the implementation has floating expressions that are valid in static initializers but not in constexpr initializers, CMPLX calls with such arguments should have the same property.)
	At the end of the paragraph, add another sentence: “The resulting expression shall be an arithmetic constant expression, provided both arguments are arithmetic constant expressions.”.
	Accepted

	GB-153

	
	7.3.9.5

	2
	te
	The given equivalence is only valid if imaginary types are supported.
	Change “INFINITY + I * copysign(0.0, cimag(z))” to “CMPLX(INFINITY, copysign(0.0, cimag(z)))”.
	Rejected

	GB-154

	
	7.5

	footnote 250
	ed
	The suggested macro definition of errno is not valid because it is not fully protected by parentheses.
	Change “*errno()” to “(*errno())”.
	

	US 39
-155

	
	7.6

	
	te
	Page 208: Add to 7.6 paragraph 13 (one about FE_DOWNWARD): The defined macros expand to integer constant expressions whose values are distinct nonnegative values. [This was in C17]
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Accepted

	GB-156

	
	7.6

	14
	ed
	It seems misleading to say that macros are defined for use with the FENV_DEC_ROUND pragma, when standard pragmas do not macro-expand their arguments, so while those identifiers are used as arguments to the pragma, that’s independent of their definitions as macros.
	Remove “, and with the FENV_DEC_ROUND rounding control pragma (7.6.3) for specifying a constant rounding direction,”.
	Accepted

	GB-157

	
	7.6.1

	2
	te
	The wording seems, in one place, to leave open the possibility that code under an FENV_ACCESS pragma with state “on” changes the dynamic rounding mode, and then control flow passes to code with state “off”, since that doesn’t fall under “establishes non-default floating-point mode settings”, but it probably wasn’t intended to allow code with FENV_ACCESS off to execute with a non-default rounding mode like that.
	Change “establishes” to “establishes or is executed with”.
	Accepted

	FR-158

	
	7.8.1

	after p3
	te
	Add optional macros PRIBN and similar
	see accompanying document
	

	FR-159

	
	7.8.1

	p3 and p5
	te
	PRI and SCN macros are missing for new format specifiers
	see accompanying document
	

	GB-160

	
	7.8.2.1

	footnote 271
	ed
	Now that two’s complement is required, it is known that the absolute value of the most negative integer is definitely not representable.
	Change “may not be” to “is not”.
	

	GB-161

	
	7.11

	footnote 272
	ed
	The current revision of ISO/IEC 9945 is in a single part.
	Change “9945-2” to “9945”.
	

	GB-162

	
	7.11.2.1

	9
	ed
	Since three of the four currencies in the example are no longer in use, the past tense seems more appropriate.
	Change “be used” to “have been used”.
	

	GB-163

	
	7.12

	5, 6, 7, 8, 9, 10
	te
	To be usable in constexpr initializers, constant expressions should be specified as arithmetic constant expressions.
	Change “constant expression” to “arithmetic constant expression”, in paragraphs 5, 6, 7, 8, 9 and 10.
	Accepted

	GB-164

	
	7.12.1

	5
	te
	In previous versions of the C standard, the requirements for setting errno and raising exceptions on overflow only applied when default rounding is in effect. The current wording appears to have those requirements regardless of the rounding direction, but it looks like this was an accidental side effect of splitting a single sentence into multiple sentences, rather than an intended change. Requiring errno setting when the rounding direction results in overflow returning a finite value rather than an infinity is liable to be problematic.
	In the penultimate sentence (errno setting), change “If a floating result overflows” to “If a floating result overflows, default rounding is in effect,”. Likewise in the final sentence (exception raising), unless it’s not desired to restore the previous semantics in that case.
	Accepted with comment: wording from N 3082.

	GB-165

	
	7.12.3

	1
	ed
	The “min” and “max” subscripts in expressions should be in roman font not italics.
	Change them to roman font (LaTeX \min, \max).
	

	US 40
-166

	
	7.12.4.14

	
	te
	Page 243: Add to 7.12.4.14 (tanpi): A pole error may occur if |x| is (n+0.5) for integer n.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Accepted

	US 41
-167

	
	7.12.7.4

	
	ed
	Page 254: 7.12.7.4 (hypot): Paragraph 3 is empty.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-168

	
	7.12.9.10

	2
	ed
	“NaN” should not be in a fixed-width font.
	Change “NaN” out of a fixed-width font.
	

	US 42
-169

	
	7.12.11.04

	
	ed
	Page 265: 7.12.11.4 (nexttoward): Should a "Returns" paragraph be added?
	If added, it should be similar to the “nextafter” one
	(Defer for CFP investigation)

	US 43
-170

	
	7.12.12.02

	
	te
	Page 267: 7.12.12.2 (fmax): Seems like footnotes 297 and 298 are normative; so should not be footnotes, but part of the description.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Rejected

	GB-171

	
	7.12.14

	footnote 299
	ed
	“double” and “long double” should be in a fixed-width font.
	Change “double” and “long double” to a fixed-width font.
	

	US 44
-172

	
	7.12.14.05

	
	ed
	Page 273: 7.12.14.5 (narrow fma): "(" at end of sentence should be moved to next line.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-173

	
	7.12.16.01, 7.12.16.2, 7.12.16.3, 7.12.16.4, H.11.3.1.1, H.11.3.1.2, H.11.3.2.1, H.11.3.2.2, H.12.3.1, H.12.3.2, H.12.4.1, H.12.4.2

	
	te
	Implementation-defined byte ordering made sense originally in TS 18661-2 and TS 18661-3, when there was nothing in the standard defining ways to talk about the implementation’s byte ordering. But now we have <stdbit.h> in the working draft, it seems appropriate, and more useful for users, to specify that the byte ordering matches __STDC_ENDIAN_NATIVE__.
	In each of these twelve subclauses, change “The order of bytes in the array is implementation-defined.” to “The order of bytes in the array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).”. (In H.11.3.2.1, and H.11.3.2.2, the sentence says “arrays” now and should still say “arrays” after the change. In H.12.3.1, H.12.3.2, H.12.4.1, and H.12.4.2, the current text says “arrays”, but it should say “array” after the change since only a single array is involved for each of those functions.) Also remove item 14 in J.3.12.
	Accepted

	US 45
-174

	
	7.12.16.02

	
	ed
	Page 276: 7.12.16.2 (decodedecN): "15" after Description seems wrong.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-175

	
	7.12.16.02

	1
	ed
	There is a stray “15” at the start of the Description.
	Remove “15”.
	

	US 46
-176

	
	7.12.17

	subclause 1-5, paragraph 2 and 3
	ed
	The typeface of parentheses is inconsistent.
	Style all parentheses in the indicated paragraphs like the ones in 7.12.17.1.
	

	US 47
-177

	
	7.12.17.01

	paragraph 2
	ed
	Bad line break between “isgreater” and “(x,y)”.
	Fix bad line break between “isgreater” and “(x,y)”.
	

	US 48
-178

	
	7.12.17.02

	paragraph 2 and 3
	ed
	The intention is to define the macro isgreaterequal(x, y) with reference to the C expression (x) >= (y), not to a mathematical expression. Thus, the three instances of the mathematical symbol for greater than or equal are not correct.
	Replace the three instances of the mathematical symbol for greater than or equal with the C relational operator >= with the appropriate typeface.
	

	GB-179

	
	7.12.17.02, 7.12.17.3, 7.12.17.4, 7.12.17.5

	
	ed
	The descriptions of the type-generic comparison macros are inconsistent about whether the expression used to describe the value returned by the macro is shown as a C expression (all C tokens in a fixed-width font, C operators used with corresponding C semantics) or as some kind of mathematical expression (operators not in a fixed-width font and not always C operators at all). The cases using a mathematical expression do not define semantics for how to go from a mathematical result to a C value in type int. Thus, I think the approach in 7.12.17.1 (isgreater), showing a C expression, is to be preferred over the approach in the following four subclauses.
	In 7.12.17.2 (isgreaterequal), change the expressions to be in a fixed-width font (both parentheses and comparison operator), using the C “>=” operator instead of “≥”; this change applies three times in this subclause.
Likewise in 7.12.17.3 (isless).
Likewise in 7.12.17.4 (islessequal), using “<=” instead of “≤”.
Likewise in 7.12.17.5 (islessgreater) (this case also uses the “||” operator, which looks particularly awkward when not in a fixed-width font).
	

	US 49
-180

	
	7.12.17.03

	paragraph 2 and 3
	ed
	The intention is to define the macro isless(x, y) with reference to the C expression (x) < (y), not to a mathematical expression. Thus, the three instances of the mathematical symbol for less than are not correct.
	Replace the three instances of the mathematical symbol for less than with the C relational operator < with the appropriate typeface.
	

	US 50
-181

	
	7.12.17.04

	
	ed
	Page 278: 7.12.17.4 (islessequal): Better if "(" at end of line were on next line to end up with "(y)".
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 51
-182

	
	7.12.17.04

	paragraph 2
	ed
	Bad line break between “(“ and “y)”.
	Fix bad line break between “(“ and “y)”.
	

	US 52
-183

	
	7.12.17.04

	paragraph 2 and 3
	ed
	The intention is to define the macro islessequal(x, y) with reference to the C expression (x) <= (y), not to a mathematical expression. Thus, the three instances of the mathematical symbol for less than or equal are not correct.
	Replace the three instances of the mathematical symbol for less than or equal with the C relational operator <= with the appropriate typeface.
	

	US 53
-184

	
	7.12.17.05

	paragraph 2
	ed
	Though not incorrect, lack of any space around “||” suggests an erroneous order of operations.
	Add space around “||”.
	

	US 54
-185

	
	7.12.17.05

	paragraph 2 and 3
	ed
	The intention is to define the macro islessgreater(x, y) with reference to the C expression (x) < (y) || (x) > (y), not to a mathematical expression. Thus, use of mathematical symbols in the two instances of the expression is not appropriate.
	Rewrite the two instances of the expression (x) < (y) || (x) > (y) in the style of a C expression, where <, ||, and > have the typeface for C operators.
	

	US 55
-186

	
	7.12.17.05

	paragraph 3
	ed
	Though not incorrect, lack of any space around “||” suggests an erroneous order of operations.
	Add space around “||”.
	

	US 56
-187

	
	7.13

	
	te
	Page 280: 7.13 #3: "the floating-point status flags" -> "the floating-point environment"
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Accepted

	GB-188

	
	7.13

	1-2
	te
	There are no interface changes in setjmp.h, so the addition of a version macro for this header seems inappropriate.
	Remove paragraph 2. In paragraph 1, change “the macros setjmp and __STDC_VERSION_SETJMP_H__” to “the macro setjmp”.
	

	US 57
-189

	
	7.13.2.1

	
	te
	Page 281: 7.13.2.1#3 (longjmp): footnote 305: "the floating-point status flags" -> "the floating-point environment"
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Accepted

	GB-190

	
	7.14.1.1

	5
	te
	AG Reference Bug 728 (https://austingroupbugs.net/view.php?id=728)
=======

Title: Restrictions on signal handlers are excessive

The description of the signal function includes the following:
 If the signal occurs other than as the result of calling the abort or raise function, the behavior is undefined if the signal handler refers to any object with static or thread storage duration that is not a lock-free atomic object other than by assigning a value to an object declared as volatile sig_atomic_t
This is overly restrictive in several cases:
· It does not allow read access to const-qualified objects
· It does not allow read access to string literals
· It does not allow referencing a modifiable object with static or thread storage duration (that is not a lock-free atomic object) whose last modification was sequenced before the call to the signal handler and whose next modification will be sequenced after the call to the signal handler.
	Change the text to:

If the signal occurs other than as the result of calling the abort or raise function, the behavior is undefined if the signal handler refers to any object with static or thread storage duration that is not a lock-free atomic object, not a const-qualified object, and not a string literal, other than by assigning a value to an object declared as volatile sig_atomic_t, unless the previous modification (if any) to the object happens before the signal handler is called and the return from the signal handler happens before the next modification (if any) to the object
	Rejected

	GB-191

	
	7.14.1.1

	5
	te
	It might be appropriate to allow constexpr objects with static storage duration to be accessed in signal handlers.
	Consider the following change: after “not a lock-free atomic object” insert “and that is not declared with the constexpr storage-class specifier”.
	

	FR-192

	
	7.16.1.4

	p4
	te
	[bookmark: va_start-becomes-too-permissive]va_start becomes too permissive
	see accompanying document
	

	NEN/NL6-193

	n/a
	7.16.1.4

	Paragraph 4
	te
	Accepted proposal N2975 is a positive change for the C Standard. However, because it definitively declares that all parameters passed into va_start must be ignored, it leaves no room to add warnings or errors when someone performs an objectively wrong call to va_start, such as

va_list vl;
va_start(vl, 1, 2, djwkdeshfes, xD);

These calls should be diagnosable by most implementations.
	1.) Change the wording of 7.16.1.4, paragraph 4, from:
Any additional arguments are not used by the macro and will not be expanded or evaluated for any reason.
To
Any additional arguments are not used by the macro and shall not be evaluated.

2.) Add a new RECOMMENDED PRACTICE subclause to 7.16.1.4:
Recommended Practice

Additional arguments beyond the first given to the va_start macro may be expanded and used in unspecified contexts where they are unevaluated. For example, an implementation diagnoses potentially erroneous input for a call to va_start such as:

#include <stdarg.h>
void miaou (…) {
 va_list vl;
 va_start(vl, 1, 3.0, “12”, xd); // diagnostic encouraged
 /* .. */
 va_end(vl);
}

Simultaneously, va_start usage consistent with older revisions of this document should not produce a diagnostic:

#include <stdarg.h>
void neigh (int last_arg, …) {
 va_list vl;
 va_start(vl, last_arg); // no diagnostic
 /* .. */
 va_end(vl);
}
	

	GB-194

	
	7.17.4.1

	2
	ed
	It’s unfortunate that the final semicolon of the second list item is now pushed onto the next line when previously it was not. (Similar issues with formatting around code fragments appear elsewhere as well.)
	Avoid line breaks between code fragments in text and adjacent punctuation.
	

	GB-195

	
	7.17.6

	1
	te
	“same representation and alignment requirements” leaves open whether other semantics match the corresponding direct type; in particular, whether conversions to atomic_bool have the semantics of conversions to bool.
	Preferably, change “a type that has the same representation and alignment requirements as the corresponding direct type” to “a typedef name for the corresponding direct type”, and remove footnote 316. If that is considered problematic, however, add “and other semantics” after “alignment requirements”, and, at the end of footnote 316, add a sentence “Other semantics include that conversions to atomic_bool behave the same as conversions to bool.”.
	

	GB-196

	
	7.17.7.5

	1
	te
	The last “For address types” sentence doesn’t seem to apply to anything, if “address types” means “pointer types”, since these operations only apply to integer types, not pointers.
	Remove the last sentence.
	

	GB-197

	
	7.17.7.5

	1
	te
	“any atomic integer type” is not entirely clear as to whether it means any of the types listed in subclause 7.17.6 (Atomic integer types) or whether it includes the atomic version of any integer type; the latter seems the more natural reading, unless some rule of interpretation means the subclause heading serves as a definition. This means that disallowing atomic_bool fails to disallow the atomic versions of enumerations with bool as underlying type, even though those have the same semantics as bool and so probably should be disallowed, because those are different types compatible with bool. Depending on the resolution of the previous comment, it might also not disallow _Atomic bool if that can be different from atomic_bool.
	At the end of the first sentence, change “atomic integer type” to “atomic integer type other than _Atomic bool or the atomic version of an enumeration with underlying type bool”. Remove the second sentence. If the first proposed change for the previous comment is not accepted, “, atomic_bool,” should be inserted before “or”.
	

	GB-198

	
	7.17.7.5

	5
	ed
	“the compound assignment operators are not guaranteed to operate atomically” is incorrect; they are defined as memory_order_seq_cst operations. However, other differences with the compound assignment operators are not mentioned here.
	Change “The only differences are that the compound assignment operators are not guaranteed to operate atomically, and” to “The only differences are that the compound assignment operators have undefined behavior on signed integer overflow, support more types, and”.
	

	GB-199

	
	7.18

	
	ed
	The practice used for paragraph numbering in this subclause does not match that used elsewhere. In this subclause only the Synopsis for each function family is numbered; the practice used elsewhere would indicate having three numbered paragraphs in each Description / Returns, where at present the paragraphs are unnumbered.
	Add the paragraph numbers in Description / Returns.
	

	NEN/NL7-200

	n/a
	7.18

	n/a
	te
	Users have commented that the bit utility functions would be easier to read if the suffix had a leading underscore in front of it.
	Add a “_” before the “us”, “ui”, “uc”, “ul” and “ull” suffixes for the functions present in this clause and any added before the final revision of this C standard.
	

	NEN/NL3-201

	n/a
	7.18

	n/a
	te
	Due to time constraints and wording issues, fundamental bit utilities found in N3022. One of the chief issues was in the proposal trying to accommodate CHAR_BIT ≠ 8 platforms (in particular, allow any platform where CHAR_BIT was a multiple of 8, such as CHAR_BIT ≡ 16,32, or 64). While noble, this effectively tanked useful functionality that could be present if these contentions were not present.
	Two potential changes based on N3022 should be polled by the Committee:
· Accept “Endian Aware Load/Store”, but with the change that CHAR_BIT must be equivalent to 8.
· Accept “Memory Reversal”, but with the change that CHAR_BIT must be equivalent to 8.
	

	NEN/NL2-202

	n/a
	7.18

	n/a
	te
	Due to time constraints and wording issues, fundamental bit utilities found in N3022 were not voted on, despite some entities and representatives donating extra time to try. We believe that some effort should be made again to add the rotate bit functionality.
	Poll whether the committee should accept “Rotate Left” and “Rotate Right” functions, with the caveat that they use unsigned integers. This removes the undefined behavior issue for dealing with the most negative argument values.
	

	US 58
-203

	
	7.18.*

	1
	te
	From N3022 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3022.htm section 5.1.2 Question 1
Use unsigned integers for the function parameters for counts and the count-like return value types.

	Change the return types for the following functions:
· stdc_count_ones (and all derivatives) from int to unsigned int
· stdc_count_zeros (and all derivatives) from int to unsigned int
· stdc_leading_ones (and all derivatives) from int to unsigned int
· stdc_leading_zeros (and all derivatives) from int to unsigned int
· stdc_trailing_ones (and all derivatives) from int to unsigned int
· stdc_trailing_zeros (and all derivatives) from int to unsigned int
· stdc_first_leading_one (and all derivatives) from int to unsigned int
· stdc_first_leading_zero (and all derivatives) from int to unsigned int
· stdc_first_trailing_one (and all derivatives) from int to unsigned int
· stdc_first_trailing_zero (and all derivatives) from int to unsigned int
stdc_bit_width (and all derivatives) from int to unsigned int
	

	NEN/NL4-204

	n/a
	7.18.3 to 7.18.12, 7.18.14

	(all)
	te
	The bit and byte utilities which count the number of bits under some criteria have fine definitions but return signed numbers. Signed numbers have undefined behavior associated with their usage and present representation problems when maximally negative integer values are used.
	Change all of the synopses and definitions for the following functions/macros with the given prefix to return “unsigned int” or “suitably large unsigned integer(type)” numbers:
stdc_bit_width, stdc_count_(ones/zeros), stdc_first_(leading/trailing)_(one/zero), stdc_count_(leading/trailing_(ones/zeros).
	

	GB-205

	
	7.18.11, 7.18.14

	
	ed
	There is no apparent reason for the wording about generic_return_type for stdc_count_zeros and stdc_bit_width to be different from that used for other similar generic functions.
	Replace the two sentences about generic_return_type for stdc_count_zeros (7.18.11) and stdc_bit_width (7.18.14) by a copy of the one sentence used for stdc_count_ones.
	

	US 59
-206

	
	7.18.17

	1
	te
	From N3022 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3022.htm
section 5.1.1 Question 0
Adopt an UnsignedType
stdc_rotate(UnsignedType value, int count);

	7.18.17 Rotate
Synopsis
unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);
Description
The stdc_rotate functions perform a bitwise rotate left or right. This operation is typically known as a left or right circular shift.
Returns
Let N be the width corresponding to the type of the input value. Let r be count % N.
— If r is 0, returns value;
— otherwise, if r is positive, returns (value << r) | (value >> (N - r));
— otherwise, if r is negative, returns (value >> -r) | (value << (N - -r)).
The type-generic function (marked by its generic_value_type argument) returns the above-described result for a given input value so long as the generic_value_type is an
— standard unsigned integer type, excluding bool;
— extended unsigned integer type;
— or bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.
The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

	

	GB-207

	
	7.22.1.5

	footnote 321
	ed
	This footnote should mention bit-precise types as possibly being wider than uintmax_t.
	Change “exception of” to “exception of unsigned bit-precise integer types and”.
	

	GB-208

	
	7.22.5

	1
	ed
	“0 of the corresponding type” doesn’t allow for integer promotions.
	After “0 of the corresponding type” insert “, converted according to the integer promotions,”.
	

	GB-209

	
	7.23.2

	7-8
	te
	AG Reference Bug 689 (https://austingroupbugs.net/view.php?id=689)

=======

Title: Possibly unintended allowance for stdio deadlock

7.23.2 Streams states:

7 Each stream has an associated lock that is used to prevent data races when multiple threads of execution access a stream, and to restrict the interleaving of stream operations performed by multiple threads. Only one thread may hold this lock at a time. The lock is reentrant: a single thread may hold the lock multiple times at a given time.
8 All functions that read, write, position, or query the position of a stream lock the stream before accessing it. They release the lock associated with the stream when the access is complete.

and 7.23.3 Files states in para 3:

 When a stream is line buffered, characters are intended to be transmitted to or from the host environment as a block when a new-line character is encountered. Furthermore, characters are intended to be transmitted as a block to the host environment when a buffer is filled, when input is requested on an unbuffered stream, or when input is requested on a line buffered stream that requires the transmission of characters from the host environment.

Although support for the latter is implementation-defined, if the "when input is requested" parts are implemented, it creates the potential for deadlock.

For example, if thread A is holding the lock associated with a line-buffered output stream and its progress is blocked waiting for thread B to do something, and thread B happens to use stdio for reading any unbuffered (or line buffered with an empty buffer) stream as part of its operation, the requirement in 7.23.2 para 8 means the program will deadlock. This behavior seems highly undesirable and unintended.
	
Requiring deadlock detection seems too onerous, given that POSIX makes it optional for pthread_mutex_lock, but perhaps there ought at least to be an attempt at detection. The question is then what to do if deadlock is not detected but nor has it been established that a deadlock situation does not exist. Since implementing support for the flush is optional anyway, just not doing the flush seems like an acceptable solution.

After:

 All functions that read, write, position, or query the position of a stream lock the stream before accessing it. They release the lock associated with the stream when the access is complete.

add:

 If the lock is not immediately available, the function waits for it to become available, except in the following circumstances. If the stream is line buffered and is open for writing or for update, and the reason the function is attempting to lock the stream is because it is going to request input on another stream that is unbuffered, or is line buffered and requires the transmission of characters from the host environment (see 7.23.3), then the function attempts to determine whether a deadlock situation exists. If a deadlock situation is found to exist, the function shall fail. If the function is able to establish that a deadlock situation does not exist, it shall wait for the lock to become available. If the function does not establish whether or not a deadlock situation exists, it shall continue as if it had already locked the stream, found its buffer to be empty, and released the lock.
	Rejected

	GB-210

	
	7.23.5.3

	3
	te
	The undefined behaviour with the mode string would seem to be better classified as implementation defined (which forces a conforming implementation to document it).
	Change “is undefined” to “is implementation-defined”.
	

	IE-211

	
	7.23.5.3

	5
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf
	From N3059 Section 1.1:
Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file already exists or cannot be created. Otherwise, the file is created with exclusive (also known as non-shared) access to the extent that the underlying system supports exclusive access. The check for the existence of the file and the creation of the file if it does not exist is atomic with respect to other threads and processes. If the implementation is not capable of performing the check for the existence of the file and the creation of the file atomically, it shall fail instead of performing a non-atomic check and creation.
	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	US 60
-212

	
	7.23.5.3

	5
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf

	From N3059 Section 1.1:
Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file already exists or cannot be created. Otherwise, the file is created with exclusive (also known as non-shared) access to the extent that the underlying system supports exclusive access. The check for the existence of the file and the creation of the file if it does not exist is atomic with respect to other threads and processes. If the implementation is not capable of performing the check for the existence of the file and the creation of the file atomically, it shall fail instead of performing a non-atomic check and creation.

	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	IE-213

	
	7.23.5.3

	6
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf
	From N3059 Section 1.2:
Opening a file with append mode (’a’ as the first character in the mode argument) causes all subsequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual write, regardless of intervening calls to the fseek function, fsetpos, or rewind functions. Incrementing the current end-of-file by the amount of data written is atomic with respect to other threads writing to the same file provided the file was also opened in append mode. If the implementation is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing non-atomic end-of-file writes. In some implementations, opening a binary file with append mode (’b’ as the second or third character in the above list of mode argument values) may initially position the file position indicator for the stream beyond the last data written, because of null character padding.
	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	US 61
-214

	
	7.23.5.3

	6
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf

	From N3059 Section 1.2:
Opening a file with append mode (’a’ as the first character in the mode argument) causes all subsequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual write, regardless of intervening calls to the fseek function, fsetpos, or rewind functions. Incrementing the current end-of-file by the amount of data written is atomic with respect to other threads writing to the same file provided the file was also opened in append mode. If the implementation is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing non-atomic end-of-file writes. In some implementations, opening a binary file with append mode (’b’ as the second or third character in the above list of mode argument values) may initially position the file position indicator for the stream beyond the last data written, because of null character padding.

	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	US 62
-215

	
	7.23.6.1

	paragraph 6
	ed
	In the “#” bullet, the “b” in “For b conversion, …” has the wrong typeface.
	In the “#” bullet, fix the typeface for the “b” in “For b conversion, …”.
	

	US 63
-216

	
	7.23.6.1

	paragraph 8
	ed
	In the a,A bullet, in the text beginning with, “If the precision p is present”, the capitalization and italics for the p’s is wrong. The (formatting) precision is denoted P (upper case, italic); the format of the (decimal floating) type is denoted by p (lower case, italic).

	In the a,A bullet, change the capitalization and italics of the p’s in the text beginning with, “If the precision p is present” to get “If the precision P is present (in the conversion specification) and is zero or at least as large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the precision were missing. If the precision P is present (and nonzero) and less than the precision p of the decimal floating type …”.
	Accepted

	FR-217

	
	7.23.6.1 and 7.31.2.1

	
	te
	Make %B optional
	see accompanying document
	

	GB-218

	
	7.23.6.1, 7.23.6.2, 7.24.1.3, 7.29.3.5, 7.31.2.1, 7.31.2.2

	
	te
	Similar to the above comment on 7.23.5.2 fopen the undefined behaviour with an invalid conversion specification would be better stated as being an implementation defined behaviour because the implementation can choose how to handle the invalid specification, and its not the same problem arising from a mismatch between the type indicated in the format specification and the type of the object supplied as a function argument, which is UB. (Note that unsupported %wN and %wfN are defined as errors rather than as undefined behavior.)
	In each appropriate place (depending on whether the committee considers this appropriate for all the places describing ways format strings can be invalid), change “undefined” to “implementation-defined”. This does not apply to cases where a format argument has a bad type or value.
	

	GB-219

	
	7.23.6.1, 7.31.2.1

	
	ed
	The description of %n wrongly refers to plural “length modifiers”, when a single conversion specification has only a single length modifier (which may consist of multiple characters).
	Change (for both fprintf and fwprintf) “by the length modifiers” to “by the length modifier”. Change “no length modifiers are” to “no length modifier is”.
	

	GB-220

	
	7.23.6.1, 7.31.2.1

	
	ed
	The description of %a and %A output for decimal floating types is confusing because it inconsistently uses p for two different precisions.
	The following fix (for both fprintf and fwprintf) should be checked carefully by the C floating-point group. It is written on the basis that the formatting precision is intended to be uppercase P while the precision of the type is intended to be lowercase p.
In the part of the description starting “If the precision p”, change that to “If the precision P” (P in italics). Later in that sentence, in “as the precision p (5.2.4.2.2) should have p put in italics but remain lowercase. In the following sentence, also starting “If the precision p”, also change that to “If the precision P” (P in italics); the second reference to p in that sentence should remain as a lowercase, italic p.
	Accepted

	GB-221

	
	7.23.6.1, 7.31.2.1

	
	ed
	The formatting of references to conversion specifiers and their output is inconsistent.
	In 7.23.6.1 paragraph 6, ‘#’ flag, do not use bold for ‘b and ‘0b’. In paragraph 7, each integer length modifier, do not use bold for ‘n’. In paragraph 8, content of the description of unsigned integer specifiers, use fixed-wifth type for ‘b’. In paragraph 13, do not use bold for ‘e’. In paragraph 14, do not use bold for ‘0B’. Likewise in the same paragraphs in 7.31.2.1 (fwprintf).
	

	GB-222

	
	7.23.6.2, 7.31.2.2

	
	ed
	In the description of %lc, there is no space before the sentence “No null wide character is added.”.
	Add such a space (for both fscanf and fwscanf).
	

	GB-223

	
	7.23.6.2, 7.31.2.2

	
	ed
	The description of the ‘l’ length modifier is missing the ‘b’ conversion specifier.
	In paragraph 11 (for both fscanf and fwscanf), add ‘b’ to the start of the list of conversion specifiers to which ‘l’ results in an argument of type pointer to long int or unsigned long int.
	

	GB-224

	
	7.23.7.2, 7.31.3.2

	
	te
	The description of fgets is unclear about the semantics when n is zero or negative, when “reads at most one less than the number of characters specified by n” would mean reading a negative number of characters. The same issue applies to fgetws.
	If undefined behavior is intended, add “If n is negative or zero, the behavior is undefined.” to the end of 7.23.7.2 paragraph 2 and 7.31.3.2 paragraph 2. If some defined behavior is intended, appropriate wording would need to be added depending on what exactly that behavior should be (whether any characters, even a null character, should be written, and what the return value should be).
	

	GB-225

	
	7.23.9.1

	3
	ed
	The early page break at the end of the fgetpos subclause seems inconsistent with the lack of page breaks after other functions here.
	Remove that page break.
	

	GB-226

	
	7.23.9.4

	3
	ed
	The return value -1L appears to be intended as a C token (as shown by the suffix), so should be in a fixed-width font.
	Change “-1L” to a fixed-width font.
	

	GB-227

	
	7.24

	1
	ed
	The reference to “five types” is outdated.
	Change “five types” to “six types”.
	

	FR-228

	
	7.24.1, 7.31.4.1, K.3.5.3 and K.3.9.1

	
	te
	There are semantic changes and inconsistencies for strtol, scanf and similar functions
	see accompanying document
	

	GB-229

	
	7.24.1.3

	2
	te
	The description of strfromf as being equivalent to a call to snprintf is unclear about whether the equivalence includes the default argument promotions that occur at the call site when a float argument is passed in variable arguments. In particular, if the default argument promotions are part of the equivalence, that would imply a convertFormat operation (so converting signaling NaNs to quiet with “invalid” raised, and possible other effect on NaN payloads, for example, that could be relevant when the snprintf output for NaN uses an implementation-defined n-char-sequence). Whereas if that’s not part of the equivalence, it’s implementation-defined whether a convertFormat operation is applied in argument passing, and any such operation would be conversion to the same format.
	After “except that”, insert “the default argument promotions are not applied and”.
	Accepted

	GB-230

	
	7.24.1.5, 7.31.4.1.2

	
	te
	Where the Returns paragraphs for strtod and wcstod say “If no conversion could be performed, zero is returned.”, this doesn’t specify the sign.
	Change “zero” to “positive or unsigned zero”, for both strtod and wcstod.
	Accepted

	GB-231

	
	7.24.1.5, 7.31.4.1.2

	
	ed
	Paragraph 4 of 7.24.1.5 appears as two paragraphs (when it was previously one) but only the first is given a paragraph number. Likewise paragraph 10 has three paragraphs. The same applies to wcstod (7.31.4.1.2) paragraphs 3 and 9.
	Add paragraph numbers to all the paragraphs in question.
	

	GB-232

	
	7.24.1.7,
7.31.4.1.4

	
	te
	AG Reference Bug 700 (https://austingroupbugs.net/view.php?id=700)

=======

Title: strtol cannot return LONG_MIN with two's complement long

The description of strtol, strtoll, strtoul, and strtoull states:

 If the subject sequence begins with a minus sign, the value resulting from the conversion is negated (in the return type).

The parenthetical phrase "(in the return type)" was added in C99 in response to DR #006 http://www.open-std.org/jtc1/sc22/wg14/docs/rr/dr_006.html

This clarified the behavior of strtoul but it broke strtol, because with two's complement signed long, it is not possible to produce the value LONG_MIN by negating a positive value "in the return type".
Likewise for the equivalent wcsto* functions.
	Change the text to:

 If the subject sequence begins with a minus sign, the value resulting from the conversion is negated; for functions whose return type is an unsigned integer type this negation is performed in the return type.

Make the same change for wcstol, wcstoll, wcstoul, and wcstoull.
	Accepted with comment: We will attempt to improve the wording this week.

	GB-233

	
	7.24.1.7, 7.31.4.1.4

	
	ed
	In the description of base 2 for strtol and wcstol, ‘0b’ and ‘0B’ should not be in bold, since ‘0x’ and ‘0X’ aren’t.
	For both strtol and wcstol, change ‘0b’ and ‘0B’ out of bold type.
	

	GB-234

	
	7.24.2.1

	4
	ed
	Whilst the intent of the paragraph is fair, it would seem to be a Note (nay warning) rather than Recommend Practice.
	Change to a Note.
	

	GB-235

	
	7.24.3, 7.24.3.1

	
	te
	The general description of memory management functions in 7.24.3 paragraph 1 implies that the result of aligned_alloc is suitably aligned for “any type of object with a fundamental alignment requirement and size less than or equal to the size requested”, while the specific wording in 7.24.3.1 paragraph 2 refers to alignment specified by a function argument. These are consistent with each other, but it’s not clear if the consequence (the alignment must be sufficient for whichever is greater of max_align_t (subject to object size) and that passed as an argument) is as intended.
	First, it’s necessary to decide whether it should be possible for aligned_alloc to return a pointer that is less-aligned than malloc would be required to return for the same size, or whether the consequence of the existing wording is as desired.
In the first case (aligned_alloc should be able to return a less-aligned pointer), change 7.24.3 paragraph 1: “The pointer returned” should change to “The pointer returned by calloc, malloc, and realloc”.
In the second case (aligned_alloc should be required to satisfy the same alignment requirements as malloc, in addition to its own), a footnote in 7.24.3.1 paragraph 2 would be appropriate: after “whose alignment is specified by alignment,”, add a footnote “The alignment requirements from 7.24.3 also apply even if alignment < alignof(max_align_t).”.
	

	GB-236

	
	7.24.6.1

	footnote 368
	ed
	Now that two’s complement is required, it is known that the absolute value of the most negative integer is definitely not representable.
	Change “may not be” to “is not”.
	

	GB-237

	
	7.24.6.3

	4
	ed
	In “a subsequent call to the strerror function”, “strerror” should be in a fixed-width font.
	Change “strerror” in that phrase to a fixed-width (and bold) font.
	

	GB-238

	
	7.24.7

	1
	te
	AG Reference Bug 708 (https://austingroupbugs.net/view.php?id=708)

=======

Title: mblen, mbtowc, and wctomb data races

As per https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2396.htm#dr_498 it seems that in Oct 2018 the committee agreed in principle with the goal of N2281, and solicited a new paper from the author.

Hopefully a new paper has been submitted and will lead to a satisfactory outcome. However, if that is not the case then the Austin Group strongly recommends that the fallback position should not be the status quo, but to align with POSIX.

The current situation is that the C standard requires mblen, mbtowc, and wctomb to avoid data races, but POSIX says that they need not be thread-safe. POSIX currently still refers to C99, so this will not become a problem until the next POSIX revision, which will refer to C17, is approved. (It is in the late stages of development.)

Since DRs for C17 are not being accepted, in order not to force POSIX implementations to change, the next POSIX revision will need to state that it does not defer to C17 regarding thread-safety of these functions. Hopefully the revision after next will be able to return to deferring to the C standard, but this will depend on whether, and under what conditions, the relevant future C standard still requires them to avoid data races.

If wording cannot be agreed for C23 that specifies the precise conditions under which these functions avoid data races, then the standard should simply change to match POSIX and state that they need not avoid data races.
	Append to 7.24.7 para 1:

 These functions are not required to avoid data races with other calls to the same function.
	Accepted with comment: Substitute the following replacement text. “It is implementation-defined whether these functions avoid data races with other calls to the same function.”

	NEN/NL8-239

	n/a
	7.29.1

	Paragraph 4
Paragraph 5
	te
	Previously, N2878 was held up because it needed approval from the Austin Group. During the meeting the paper was postponed and corrections were asked for, F.T. stated that the Austin Group approves the changes and direction. This paper is a tiny fix that is about as close to editorial as possible, changes the paper to match existing practice, and allows for more implementation flexibility.
	Add the wording of N2878 (or its successor revision) to the C Standard. Paragraph 4 should have the following text added:

 nsec_t

which is an implementation-defined integer type capable of representing the range [0, 999999999];

 and paragraph 5 should have the following change done for the timespec structure:

long tv_nsec; // nanoseconds – [0, 999999999]
nsec_t tv_nsec; // nanoseconds -- [0, 999999999]
	Accepted with comment: The proposed wording from N 3066 will be adopted instead of the proposed wording here.

	GB-240

	
	7.29.2.3

	3
	te
	AG Reference Bug 1614 (https://austingroupbugs.net/view.php?id=1614)
========

Title: meaning of (time_t)-1 return from mktime

The mktime description states, under "Returns":

 The mktime function returns the specified calendar time encoded as a value of type time_t. If the calendar time cannot be represented, the function returns the value (time_t)(-1).

An application writer reading this is likely to infer from the way it is worded that when mktime returns (time_t)-1 it means that the calendar time to be returned was not representable.

Indeed, searching open source applications for calls to mktime turns up many uses where a return of (time_t)-1 is assumed to indicate this. For example, the Python time module turns an error return of (time_t)-1 from the C library mktime function into a PyExc_OverflowError exception. A limited search also found no applications that treat a return of (time_t)-1 as possibly indicating some other kind of failure, although an extensive search might do so.

However, this interpretation of the "Returns" text seems to be at odds with the committee's response in 1994 to DR #136, which says that mktime can return (time_t)-1 for broken-down times that refer to times in the "spring-forward gap" (see https://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_136.html)

One way to reconcile the two is to observe that, since local time and Daylight Saving Time are implementation-defined, an implementation could define them in such a way that times in the spring-forward gap are converted to a value that cannot be represented. For example, it could say they are converted to UINT64_MAX if time_t is a signed 64-bit integer type. Then the C standard would require mktime to return (time_t)-1 because UINT64_MAX can't be represented in that time_t type.

If this was the committee's reasoning in 1994, then it would be helpful to have this confirmed. Another possibility is that they simply overlooked the significance of the way the "Returns" clause is worded.

Deciding what the standard currently requires is one thing, but there is also the (perhaps more important) matter of what C23 should require.

The current state of applications is the result of a combination of factors:

1. Application writers interpreting the "Returns" text in the way described above.

2. Almost all implementations not returning (time_t)-1 for times in the spring-forward gap, with the consequence that, over the decades, applications have been mostly developed and run on such systems. This is known because the original NIST-PCTS tested for this behavior (as stated in DR #136) and The Open Group test suite, which has been used to certify dozens of systems as POSIX conforming (since 2003) and (since 1990) as XPG3, XPG4, and UNIX conforming, also tests for it. The list of certified systems includes Microsoft Windows (NT 3.5, 3.51 and 4.0 were certified POSIX conforming). Running the example program from DR #136 on some non-certified systems identified that glibc and FreeBSD do not return (time_t)-1. So far NetBSD is the only system that has been confirmed as returning (time_t)-1, but it can actually behave both ways: there is a NO_ERROR_IN_DST_GAP compile time option to control it (with the (time_t)-1 return as the default). DR #136 says that Arthur David Olson's popular "tz" time zone software returned (time_t)-1 (in 1994) and this may have influenced the response to that DR, as it is known to have been adopted by many systems. However, it is now evident that almost all (if not all) systems that adopted it modified it so that it does not return (time_t)-1.

3. Even when run on an implementation that does return (time_t)-1 for times in the spring-forward gap, occurrences of this condition are rare, and the occasional application misbehavior (by treating it the same as the "cannot be represented" case) may have gone unnoticed.

Given that almost all implementations of mktime do not return (time_t)-1 for times in the spring-forward gap, and that applications which can handle a return of (time_t)-1 appropriately for any condition other than the calendar time to be returned being unrepresentable seem to be exceedingly rare, it would benefit application portability if C23 upholds the meaning of the (time_t)-1 return as being that the calendar time to be returned cannot be represented and disallows returning (time_t)-1 for other reasons.

If mktime can return (time_t)-1 for other reasons, this creates a problem for applications if they want to to distinguish the different cases. If (time_t)-1 is returned when tm_isdst is negative, they can try a second call with tm_isdst set to 0 (or 1) and assume that if this succeeds the original return of (time_t)-1 was caused by a DST transition, but this additional code is unnecessary on almost all systems, and it only handles that one additional case. If (time_t)-1 is returned when tm_isdst is not negative, how are applications to distinguish the "cannot be represented" case from other cases that they might prefer to treat as non-fatal?

If the source of the broken-down time was from a file or database, or user input, then perhaps it is not much of a problem if the return of (time_t)-1 is treated as a fatal error (with a misleading error message), but when mktime is used to perform manipulations of the struct tm members, it is more of a problem. DR #136 suggests that tm_isdst is left as 0 or 1 when doing such manipulations, and that may be true when the time adjustment is small, but when adding or subtracting any whole number of days, setting tm_isdst to -1 is a perfectly reasonable thing for an application to do.

Not returning (time_t)-1 is simply better for applications. The glibc source contains this comment about it:

 The requested time probably falls within a spring-forward gap of size DT. Follow the common practice in this case, which is to return a time that is DT away from the requested time, [...] In practice, this is more useful than returning -1.

On a system which does not return (time_t)-1, if an application wants to detect whether the broken-down time is in a spring-forward gap, all it needs to do is look for appropriate changes to the struct tm fields after mktime returns. (In the example from DR #136, tm_hour changes from 2 to either 1 or 3.)

Finally, there is also a subtle problem with the "cannot be represented" wording. It is not clear if it means cannot be represented in a time_t, or cannot be represented in the time_t encoding used for the return value. Microsoft Windows, and perhaps some other systems, uses a time_t encoding that does not include negative values (even though its time_t is signed), and thus returns (time_t)-1 if the calculated calendar time is negative. To ensure this is clearly allowed, the wording should be changed to "cannot be represented in the time_t encoding used for the return value".
	Four options are given based on two independent decisions (what C17 requires and what C23 should require). The Austin Group has a strong preference for options 1 and 2 over options 3 and 4.

Option 1

A return of (time_t)-1 means that the calendar time to be returned could not be represented. Implementations can return (time_t)-1 for times in the spring-forward gap by defining local time and Daylight Saving Time in such a way that times in the spring-forward gap are converted to a value that cannot be represented, but for the sake of application portability this loophole should be closed in C23 by changing:

 ... not restricted to the ranges indicated above. 389) On successful completion, the values of the tm_wday and tm_yday components of the structure are set appropriately, and the other components are set to represent the specified calendar time, but with their values forced to the ranges indicated above; the final value of tm_mday is not set until tm_mon and tm_year are determined.

to:

 ... not restricted to the ranges indicated above. If the local time to be used for the conversion is one that includes Daylight Saving Time adjustments, a positive or zero value for tm_isdst causes the mktime function to perform the conversion as if Daylight Saving Time, respectively, is or is not in effect for the specified time. A negative value causes it to attempt to determine whether Daylight Saving Time is in effect for the specified time; if it determines that Daylight Saving Time is in effect it produces the same result as an equivalent call with a positive tm_isdst value, otherwise it produces the same result as an equivalent call with a tm_isdst value of zero. 389) On successful completion, the components of the structure are set to the same values that would be returned by a call to the localtime function with the calculated calendar time as its argument.

and changing footnote 389 to read:

 If the broken-down time specifies a time that is either skipped over or repeated when a transition to or from Daylight Saving Time occurs, it is unspecified whether the mktime function produces the same result as an equivalent call with a positive tm_isdst value or as an equivalent call with a tm_isdst value of zero.

Also, under "Returns" change:

 If the calendar time cannot be represented

to:

 If the calendar time cannot be represented in the time_t encoding used for the return value

Option 2

A return of (time_t)-1 can mean other things than that the calendar time to be returned could not be represented, because [insert explanation here], but for the sake of application portability C23 should disallow this by changing:

 ... not restricted to the ranges indicated above. 389) On successful completion, the values of the tm_wday and tm_yday components of the structure are set appropriately, and the other components are set to represent the specified calendar time, but with their values forced to the ranges indicated above; the final value of tm_mday is not set until tm_mon and tm_year are determined.

to:

 ... not restricted to the ranges indicated above. If the local time to be used for the conversion is one that includes Daylight Saving Time adjustments, a positive or zero value for tm_isdst causes the mktime function to perform the conversion as if Daylight Saving Time, respectively, is or is not in effect for the specified time. A negative value causes it to attempt to determine whether Daylight Saving Time is in effect for the specified time; if it determines that Daylight Saving Time is in effect it produces the same result as an equivalent call with a positive tm_isdst value, otherwise it produces the same result as an equivalent call with a tm_isdst value of zero. 389) On successful completion, the components of the structure are set to the same values that would be returned by a call to the localtime function with the calculated calendar time as its argument.

and changing footnote 389 to read:

 If the broken-down time specifies a time that is either skipped over or repeated when a transition to or from Daylight Saving Time occurs, it is unspecified whether the mktime function produces the same result as an equivalent call with a positive tm_isdst value or as an equivalent call with a tm_isdst value of zero.

Also, under "Returns" change:

 If the calendar time cannot be represented

to:

 If the calendar time cannot be represented in the time_t encoding used for the return value

Option 3

A return of (time_t)-1 means that the calendar time to be returned could not be represented. Implementations can return (time_t)-1 for times in the spring-forward gap by defining local time and Daylight Saving Time in such a way that times in the spring-forward gap are converted to a value that cannot be represented, but they should not need to use this loophole to do so, and C23 should change:

 If the calendar time cannot be represented, the function returns the value (time_t)(-1).

to:

 If the calendar time cannot be represented in the time_t encoding used for the return value, or if the function does not succeed for some other reason, the function returns the value (time_t)(-1).

Option 4

A return of (time_t)-1 can mean other things than that the calendar time to be returned could not be represented, because [insert explanation here], and this should be clarified in C23 by changing:

 If the calendar time cannot be represented, the function returns
 the value (time_t)(-1).

to:

 If the calendar time cannot be represented in the time_t encoding used for the return value, or if the function does not succeed for some other reason, the function returns the value (time_t)(-1).
	Accepted with comment: Option 1 is adopted.

	FR-241

	
	7.29.3

	
	te
	Misspecification of the time conversion functions
	see accompanying document
	

	GB-242

	
	7.29.3

	2
	ed
	This paragraph does not properly reflect the removal of asctime_r and ctime_r.
	Remove “asctime, ctime,”. Change “the following functions” to “asctime, ctime, gmtime and localtime”.
	

	GB-243

	
	7.29.3.2

	4
	ed
	“asctime functions” (plural) should be “asctime function”.
	Change “asctime functions” to “asctime function”.
	

	GB-244

	
	7.29.3.4

	2
	ed
	“converts” should be “convert” to agree with “functions”.
	Change “converts” to “convert”.
	

	GB-245

	
	7.29.3.5

	3
	te
	Section 7.29.3.5 Para 3

AG Reference Bug 739 (https://austingroupbugs.net/view.php?id=739)
=======

Title: strftime %F conversion claims to provide ISO 8601 date format but does so only for a limited year range

The strftime %F conversion is described as:

 %F is equivalent to "%Y-%m-%d" (the ISO 8601 date format)

However, if the year is between 0 and 999 this produces at most a three digit year, whereas ISO 8601 specifies a minimum of four digits for years in that range.

Also, if the year is outside the range 0 to 9999, according to wikipedia "To represent years before 0000 or after 9999, [ISO 8601] also permits the expansion of the year representation but only by prior agreement between the sender and the receiver. An expanded year representation [±YYYYY] must have an agreed-upon number of extra year digits beyond the four-digit minimum, and it must be prefixed with a + or − sign".
	There are three different solutions, depending on how much equivalence to ISO 8601 is to be claimed.

Suggested resolution:

Option 1 - only claim ISO 8601 equivalence for years 1000 to 9999

Change the %F description to:

 %F is equivalent to "%Y-%m-%d" (the ISO 8601 date format, when the year is between 1000 and 9999 inclusive)

Option 2 - only claim ISO 8601 equivalence for years 0 to 9999

Change the %F description to:

 %F is equivalent to "%Y-%m-%d", except that the stored year is filled
 as needed with leading zeros so that if the year is between 0 and 999 inclusive, four digits are stored. (This provides the ISO 8601 date format when the year is between 0 and 9999 inclusive.)

Option 3 - full ISO 8601 equivalence

 Since "An expanded year representation [±YYYYY] must have an agreed-upon number of extra year digits beyond the four-digit minimum", there needs to be a way for that agreed-upon number to be used in the strftime format string. This would require adding field widths: the wording could be adapted from POSIX.1-2017. The requirement that the year must be prefixed with a + or − sign could be handled either by adding the + flag from POSIX.1-2017 or by stating the need for a + sign for years > 9999 in the description of %F.
	Accepted with comment: Option 1 is adopted.

	GB-246

	
	7.30.1.2, 7.30.1.4

	
	ed
	In paragraph 3 of each of 7.30.1.2 and 7.30.1.4, “pointed to by s” should have “s” in a fixed-width font. (For 7.30.1.6, c32rtomb, it’s already OK.)
	Change “s” to a fixed-width font in both those sentences (c8rtomb and c16rtomb).
	

	US 64
-247

	
	7.31.2.1

	paragraph 8
	ed
	In the a,A bullet, in the text beginning with, “If the precision p is present”, the capitalization and italics for the p’s is wrong. The (formatting) precision is denoted P (upper case, italic); the format of the (decimal floating) type is denoted by p (lower case, italic).

	In the a,A bullet, change the capitalization and italics of the p’s in the text beginning with, “If the precision p is present” to get “If the precision P is present (in the conversion specification) and is zero or at least as large as the precision p (5.2.4.2.2) of the decimal floating type, the conversion is as if the precision were missing. If the precision P is present (and nonzero) and less than the precision p of the decimal floating type …”.
	

	GB-248

	
	7.31.6.3.2

	4
	ed
	The formatting of the return values (size_t)(-2) and (size_t)(-1) is inconsistent.
	Either use a fixed-width font for the whole of the first return value, or variable-width (with a minus sign, not a hyphen) for the operand of the cast in the second return value; a fixed-width font would probably be most appropriate in all such cases. In either case, it would be desirable to ensure consistency with the return values of all other functions with similar lists of return values, and individual return values (e.g. wcrtomb and mbsrtowcs show similar inconsistency; see also uchar.h functions).
	

	FR-249

	
	7.33.6 and 7.33.14

	
	te
	Add features to future library directions
	see accompanying document
	

	US 65
-250

	
	A 4.2

	
	ed
	Page 468: A.4.2: "n-wchar-sequence:" should be shifted left.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 66
-251

	
	A 5.2

	
	ed
	Page 469: A.5.2: "d-wchar-sequence:" should be shifted left.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-252

	
	A.2.2

	
	ed
	A stray string “[-2ex]” appears after the struct-or-union syntax. A stray string “[-7ex]” appears after the function-specifier syntax.
	Remove those strings.
	

	GB-253

	
	A.2.3

	
	ed
	Stray strings “[-6ex]” appear in four places.
	Remove those strings.
	

	US 1
-254

	
	Abstract
Pg vi

	
	ed
	Page vi: "to from" in "Missing macros were added to from <float.h> and <limits.h>."
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-255

	
	Annex B

	
	ed
	None of the subclauses list the “__STDC_VERSION_*_H__” macros.
	Add those macros to the library summary for each header that has such a macro.
	

	FR-256

	
	Annex B.29

	
	
	The type char8_t is missing in the list.
	Add it
	

	GB-257

	
	Annex E

	2
	ed
	Since BOOL_WIDTH is an exact value, this should be noted here.
	Add a comment “// exact value” to the definition of BOOL_WIDTH.
	

	FR-258

	
	Annex M

	
	ed
	missing mention of new interface timegm
	add to the same line as for timespec_getres
	

	GB-259

	
	Annexes C, E, I

	
	ed
	In Annexes not divided into clauses, the page footer shows a clause number from the previous Annex (for example, B.31 on page 498 for Annex C).
	Fix the footers.
	

	GB-260

	
	B.16

	
	ed
	The stdatomic.h summary is missing ATOMIC_CHAR8_T_LOCK_FREE and atomic_char8_t.
	Add those to the summary.
	

	GB-261

	
	B.19

	
	ed
	The stddef.h summary is missing the unreachable macro.
	Add that to the summary.
	

	GB-262

	
	B.22

	
	ed
	The stdlib.h summary is missing once_flag and call_once.
	Add those to the summary.
	

	GB-263

	
	B.5

	
	ed
	The fenv.h summary is missing femode_t, FE_DFL_MODE and FE_TONEARESTFROMZERO.
	Add those to the summary.
	

	GB-264

	
	B.9

	
	ed
	The limits.h summary is missing BITINT_MAXWIDTH.
	Add that to the summary.
	

	GB-265

	
	Bibliography

	
	ed
	The entries for IEEE standards are inconsistent about use of a hyphen or an en dash to separate the standard number and date.
	Make items 9, 10 and 11 consistent in whatever way is considered appropriate. (The standards themselves appear to use a hyphen, so indicating changing en dash to hyphen in items 9 and 10.)
	

	US 89
-266

	
	Bibliography

	
	ed
	Page 672+: The footer on the Index is "Bibliography".
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-267

	
	F.10.1.1, F.10.1.8, F.10.3.11, F.10.5.3

	1
	ed
	The return value +0 for acos(1), acospi(1), log(1), lgamma(1) and lgamma(2) is in a different font from other such return values.
	Change “+0” to “$+0$” in the LaTeX source, in each of those five places.
	Accepted

	GB-268

	
	F.10.3.7

	4
	te
	The example implementation of frexp is not valid because it would raise spurious “invalid” exceptions for infinities and quiet NaNs.
	Change “value == 0” to “value == 0 || !isfinite(value)”.
	Accepted

	GB-269

	
	F.10.4.2

	1
	ed
	Although not strictly required (it follows from the general semantics), consistency with the descriptions of other functions would indicate stating explicitly the values of compoundn with first argument a positive infinity and second nonzero.
	Add two more bullet points: “compoundn(+∞, n) returns +∞ for n > 0.” and “compoundn(+∞, n)” returns +0 for n < 0.”.
	Accepted

	US 68
-270

	
	F.10.4.7

	
	te
	Page 524: F.10.4.7 (powr): Add to extra "powr(+1, y)": returns a NaN and raises the "invalid" floating-point exception for infinite y.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-271

	
	F.10.4.7

	1
	ed
	The second powr(+1, y) bullet point is incomplete.
	Change that bullet point to “powr(+1, ±∞) returns a NaN and raises the “invalid” floating-point exception.”.
	Accepted

	US 69
-272

	
	F.10.6.8

	
	ed
	Page 527: F.10.6.8 (roundeven): Paragraph 1 is on the wrong line.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-273

	
	F.10.6.8

	1
	ed
	There is excess white space at the top of this paragraph before the bullet points start.
	Remove that white space.
	

	US 70
-274

	
	F.10.7.1

	
	ed
	Page 528: F.10.7.1 (fmod): "returns x for x finite x." -> "returns x for x finite."
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 71
-275

	
	F.10.8.1

	
	ed
	Page 528: F.10.8.1 (copysign): "specified in the Appendix to IEC 60559." -> "specified in IEC 60559."
	Either do the change or delete the entire line.
	Accepted with comment: delete the entire line.

	GB-276

	
	F.10.8.7

	footnote 455
	ed
	The second sentence in the footnote seems incorrect in that context; that expression seems like a valid implementation even in the FE_SNANS_ALWAYS_SIGNAL case. That incorrect sentence was in the initial integration of TS 18661-1, and appears to be a misapplication of the footnote that N2314 said was to be added to C11 footnote 374 (on the fmax sample implementation; footnote 456 in the CD, i.e. the next footnote).
	Move this sentence to the end of the next footnote, on fmax.
	Accepted

	GB-277

	
	F.10.8.7

	footnote 455
	ed
	The expression “*x * 1e0” should be in a fixed-width font, as a C source expression.
	Change it into a fixed-width font.
	

	US 67
-278

	
	F.3

	
	ed
	Page 508: F.3#8: "854" -> "854-1987".
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	Accepted

	GB-279

	
	F.8.4, F.8.5

	
	te
	What evaluation rules apply to initializers for objects with automatic storage duration declared with the constexpr storage-class specifier? Are the same rules applied as for static and thread storage duration (so allowing such an initializer that might raise exceptions if evaluated at execution time, e.g. “constexpr double x = (double)(1.0 / 3.0);”? Or are execution-time evaluation rules applied, resulting in a constraint violation because (double)(1.0 / 3.0) is not considered to evaluate to a constant? And does this differ depending on whether the FENV_ACCESS pragma is in effect, the FENV_ROUND or FENV_DEC_ROUND pragma is in effect, or both?
	Make some suitable change (both to normative text, if any such initializers are to be accepted that would raise exceptions at execution time, and adding examples, in any case) to clarify the handling of such initializers, following any recommendations from the C floating-point group.
	Accepted with comment: wording from N 3078 and N 3082.

	US 72
-280

	
	G.6.1.1

	
	ed
	Page 539: G.6.1.1 (cacos): Replace "pi" with pi symbol.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-281

	
	G.6.1.1

	1
	ed
	In the sixth bullet point, “pi” should be “π”.
	Change “pi” to “π”.
	

	GB-282

	
	G.6.2.6

	1
	ed
	In the seventh bullet point, “sin” should not be in italics.
	Change it out of italics (use \sin in LaTeX).
	

	US 75
-283

	
	H.11

	
	ed
	Page 556: H.11#6: Bullet list has two items too far to the left.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 76
-284

	
	H.11

	paragraph 6
	ed
	In the first instance of _DecimalN, the “N” is not italicized per usual style.
	In the first instance of _DecimalN italicize the “N”.
	

	GB-285

	
	H.11.2

	1
	ed
	“sublause” should be “subclause”.
	Change “sublause” to “subclause”.
	

	GB-286

	
	H.12.2

	2
	ed
	Since there are no wide string analogs of the new functions being added (no wcstofN analogous to strtofN, for example), a footnote should be added to that effect, like that for the strfrom functions.
	Add a footnote “As with the strfromd functions, there are no wide string analogs of these functions; see 7.31.4.1.1. (Alternatively, such wide string analogs could be added.)
	(Defer for further CFP work)

	GB-287

	
	H.12.2

	3
	te
	The semantics described in this paragraph, for strtodN accepting hexadecimal floating constants, are incompatible with the base standard: an implementation following those semantics would not conform to the base standard, in that there are function inputs that have defined behavior both with the base standard and with the Annex in effect, but where the results required to be returned are different in the two cases. This is contrary to the normal practice, where optional Annexes only define things that were undefined or unspecified behavior without the Annex or that in the absence of the Annex would be rejected as a syntax violation. The example “0x1.8p+4” given in 7.24.1.6 illustrates this issue: the semantics required by the normative text in 7.24.1.6 are as shown for the example, whereas H.12.2 paragraph 3 would require it to be accepted in its entirety and converted to the number 24 (quantum exponent unclear, but should be 0, as per the previous comment).
	This might sensibly be addressed by requiring the support for hexadecimal floating constants unconditionally in strtodN, with the relevant text (including anything relating to quantum exponent, and an update to the Example) moved to 7.24.1.6. However this is addressed, the C floating-point group should propose appropriate wording for the exact changes.
	(Defer for further CFP work)

	GB-288

	
	H.12.2

	3
	te
	The quantum exponent resulting from conversion of hexadecimal numbers is not clearly specified.
	Specify a preferred quantum exponent of 0 if the hexadecimal number can be exactly represented in the decimal type and the least possible if not, as for conversions from non-decimal floating types, in order to meet IEC 60559 requirements; the C floating-point group should propose appropriate wording for this.
	Acceped with comment: wording from N 3082.

	US 77
-289

	
	H.12.3.1

	heading
	ed
	There is a space before the “N” in the function name.
	Remove the space between “strfromencf” and “N”.
	

	US 80
-290

	
	H.12.4

	paragraph 1
	ed
	The “N” in “for each N” is not italicized per usual practice.
	Italicize the “N” in “for each N”.
	

	US 81
-291

	
	H.13

	
	ed
	Page 576: H.13: Type-generic macros <tgmath.h>: last table: “fmul(dc, d)” Move first "undefined" down one line.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-292

	
	H.13

	6
	ed
	The example for f32xsqrt(n) should call f32xsqrtf64x: n is an int, which is mapped to double, there is no corresponding function whose parameters have type exactly double, so _FloatNx types are preferred, and _Float64x exists (as remarked for a subsequent example), and can represent all double values (since those are the same as _Float64 values).
	In that example, change “f32xsqrtf64” to “f32xsqrtf64x”.
	

	GB-293

	
	H.13

	6
	ed
	The table of examples for “Macros that round the result to a narrower type” includes an entry “undefined” where the final “d” is in a different font
	Change that “d” to the same font as the rest of the word.
	

	GB-294

	
	H.13

	6
	ed
	In the first table of example, “pow32x” should be “powf32x”.
	Change “pow32x” to “powf32x”.
	

	US 82
-295

	
	H.13

	paragraph 5
	ed
	In the second level bullet beginning “For prefix f:”, the first line has a bad line break.
	In the second level bullet beginning “For prefix f:”, fix the bad line break at the end of the first line.
	

	US 83
-296

	
	H.13

	paragraph 6
	ed
	In the text right after the program text box, the first line has a bad line break.
	In the text right after the program text box, fix the bad line break at the end of the first line.
	

	US 84
-297

	
	H.13

	paragraph 6, table following “Macros that round the result to a narrower type…”
	ed
	In the second column, “undefined” should be in the same row as “fmul(dc, d)” in the first column.
	In the second column, lower “undefined” to be in the same row as “fmul(dc, d)” in the first column.
	

	GB-298

	
	H.2, H.2.1

	
	ed
	The initial paragraphs in these subclauses should be numbered.
	Add paragraph numbers (adjusting numbers of subsequent paragraphs accordingly).
	

	GB-299

	
	H.2.1

	1
	ed
	“encodng” should be “encoding”.
	Change “encodng” to “encoding”.
	

	GB-300

	
	H.2.1, H.2.3, H.3

	
	ed
	In the tables in H2.1., and the Example below (paragraph 1), and in H.2.3 paragraph 1, and in H.3 paragraph 4 and paragraph 7 (MIN_EXP, MIN_10_EXP, MAX_EXP, MAX_10_EXP, MAX, MIN, TRUE_MIN descriptions), “max” and “min” should not be in italics.
	Change them out of italics throughout the places listed (use LaTeX \max and \min).
	

	US 85
-301

	
	H.2.2

	paragraph 2
	ed
	Bad line break in second line.
	Fix the bad line break in para 2, second line.
	

	GB-302

	
	H.2.4

	5
	ed
	“sublcause” should be “subclause”.
	Change “sublcause” to “subclause”.
	

	US 74
-303

	
	H.3

	
	ed
	Page 550: H.3: *_EPSILON: Add "normalized" before "value".
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 73
-304

	
	H.3

	
	te
	Page 550: H.3: *_MAX_EXP: "maximum negative integer" -> "maximum positive integer"
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-305

	
	Index

	
	ed
	“_DECIMAL_DIG”, “_H__”, “_r” should not be indexed under “identifier prefix” (they are suffixes not prefixes). “___Noreturn__” should not be indexed under “pragma” (it’s an attribute).
	Relocate those index entries to more appropriate categories.
	

	GB-306

	
	Index

	
	ed
	The index has many entries that are inappropriate, or inappropriately described, as identified for J.6.1 and J.6.2 above. For example, the entry for pp_param (local notation in an example, not a pragma), generic_*_type (not types, just local notation), frompfp (no such functions), and fragments of function and macro names (could be indexed if described appropriately as function or macro families, but not when described as functions or macros). Likewise for some uppercase variants such as ADDD, ADDF, XADDD, XADDF (macro name fragments).
	Remove or change descriptions for all entries described as problematic for J.6.1 and J.6.2 above.
	

	US 93
-307

	
	Index

	
	ed
	Page 711: The following are missing from index for "identifier suffix":
 _DECIMAL_DIG
 _DIG
 _EPSILON
 _MANT_DIG
 _MAX_10_EXP
 _MAX_EXP
 _MIN_10_EXP
 _MIN_EXP
 _SNAN
 _TRUE_MIN
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 92
-308

	
	Index

	
	ed
	Page 601: The entry "_EXT__" should be removed.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 91
-309

	
	Index

	
	ed
	Page 693: There are 2 index entries for "IEC 60559". I assume that they should be merged together.
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	US 90
-310

	
	Index

	
	ed
	Pages 674 & 710: There are several suffix terms in the index that are listed as prefix terms:
 _DECIMAL_DIG identifier prefix,
 _H__ identifier prefix,
 _r identifier prefix,
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-311

	
	Introduction

	7
	ed
	www.open-std.org now uses https so the link should be updated accordingly. Also, the Rationale and the log of Defect Reports may not be the best examples of additional information present there, since the Rationale hasn’t been updated for C11 or later standard revisions and reported issues are no longer referred to as Defect Reports because they do not generally meet current ISO requirements for Defect Reports.
	Change http to https. Make other changes to the examples of additional information based on discussion of what might be the best examples to give.
	

	FR-312

	
	Introduction

	p7
	ed
	[bookmark: there-is-no-and-will-not-be-a-related-ra]There is no related “Rationale” document

	remove reference to such a document from the text
	

	GB-313

	
	J.1

	1
	ed
	Item 56 has a stray “c” before “7.31.6.4.1”.
	Replace that “c” by a space.
	

	GB-314

	
	J.2

	1
	ed
	Item 54 does not reflect changes to the definition of constant expressions.
	Change “enumeration constants” to “named and compound literal constants of arithmetic type”.
	

	GB-315

	
	J.2

	1
	ed
	Item 53 does not reflect changes to the definition of constant expressions.
	Insert “a named constant, a compound literal constant,” at the start of the list.
	

	GB-316

	
	J.2

	1
	ed
	Item 52 does not reflect changes to the definition of constant expressions.
	Change “enumeration constants” to “named and compound literal constants of integer type”. Change “floating constants” to “floating, named, and compound literal constants of floating type”.
	

	GB-317

	
	J.3.12

	1
	ed
	Item 43 contains a stray “)”.
	Remove that “)”.
	

	US 86
-318

	
	J.6.1

	
	ed
	Pages 604, 606, 675, 686: What are "__suffix__" and "__prefix__" that only appear in J.6.1 Rule based identifiers and the index? (page 168 uses "prefix" and "suffix").
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-319

	
	J.6.1

	2
	ed
	_EXT__, _Float, FP_FAST_D, FP_FAST_F, stdc_, strfromencbind, strfromencdecd, strfromencf, strto, strtoencbind, strtoencdecd, strtoencf are fragments of identifiers or keywords (of no significance by themselves) and should not appear in this list.
	Remove those entries from this list.
	

	GB-320

	
	J.6.1

	2
	ed
	__alignas_is_defined and __alignof_is_defined were removed so should not appear in this list.
	Remove __alignas_is_defined and __alignof_is_defined from this list.
	

	GB-321

	
	J.6.1, J.6.2

	
	ed
	__pp_param__ and pp_param are an example in text, not identifiers with any special significance, and should not appear in these lists.
	Remove __pp_param__ and pp_param from these lists.
	

	GB-322

	
	J.6.2

	1
	ed
	The names reserved for complex.h by 7.33.1 are only listed in their “double” forms, not the corresponding float and long double identifiers.
	Add the corresponding “float” and “long double” identifiers to the list.
	

	GB-323

	
	J.6.2

	1
	ed
	generic_count_type, generic_return_type, generic_value type, QChar, QVoid and QWchar_t are notation used for some type-generic function declarations and have no special significance as identifiers.
	Remove those entries from the list.
	

	GB-324

	
	J.6.2

	1
	ed
	The eight entries starting “frompfp” (note the first ‘p’) are entirely spurious; there are no such standard identifiers.
	Remove those entries from the list.
	

	GB-325

	
	J.6.2

	1
	ed
	acosd, acoshd, acospid, addd, addf, asind, asinhd, asinpid, atan2d, atan2pid, atand, atanhd, atanpid, canonicalized, cbrtd, ceild, compoundnd, copysignd, cosd, coshd, cospid, DEC, DECN_, DECN, decodebin, decodebind, decodedec, decodedecd, decodef, divd, divf, encbind, encdecd, encf, encodebin, encodebind, encodedec, encodedecd, encodef, erfcd, erfd, exp10d, exp10m1d, exp2d, exp2m1d, expd, expm1d, fabsd, fdimd, Float, floord, FLT, FLTN_, FLTN, fmad, fmaxd, fmaximumd, fmaximum_magd, fmaximum_mag_numd, fmaximum_numd, fmind, fminimumd, fminimum_magd, fminimum_mag_numd, fminimum_numd, fmodd, frexpd, fromfpd, fromfpxd, getpayloadd, HUGE_VAL_D, HUGE_VAL_F, hypotd, ilogbd, ldexpd, lgammad, llogbd, llquantexpd, llrintd, llroundd, log10d, log10p1d, log2d, log2p1d, logbd, logd, log1pd, lrintd, lroundd, modfd, muld, mulf, N, nand, nearbyintd, nextafterd, nextdownd, nextupd, powd, pownd, powrd, quantized, quantumd, remainderd, rintd, rootnd, roundd, roundevend, rsqrtd, samequantumd, scalblnd, scalbnd, sind, sinhd, sinpid, sqrtd, subd, subf, tand, tanhd, tgammad, truncd, ufromfpd, ufromfpxd, X_, xaddd, xaddf, xdivd, xdivf, xfmad, xfmaf, xmuld, xmulf, xsqrtd, xsqrtf, xsubd, xsubf are fragments of identifiers (of no significance by themselves) and should not appear in this list.
	Remove those entries from the list (without affecting their formatting elsewhere in the document).
	

	IE-326

	
	K.3.5.2.1

	7
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf
	From N3059 Section 1.3:
To the extent that the underlying system supports the concepts, files opened for writing shall be opened with exclusive (also known as non-shared) access. If the file is being created, and the first 2 character of the mode string is not ’u’ , to the extent that the underlying system supports it, the file shall have a file permission that prevents other users on the system from accessing the file. If the file is being created and first character of the mode string is ’u’ , then by the time the file has been closed, it shall have the system default file access permissions.
	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	US 87
-327

	
	K.3.5.2.1

	7
	te
	Adopt changes from N3059 https://www.open-std.org/jtc1/sc22/WG14/www/docs/n3059.pdf

	From N3059 Section 1.3:
To the extent that the underlying system supports the concepts, files opened for writing shall be opened with exclusive (also known as non-shared) access. If the file is being created, and the first 2 character of the mode string is not ’u’ , to the extent that the underlying system supports it, the file shall have a file permission that prevents other users on the system from accessing the file. If the file is being created and first character of the mode string is ’u’ , then by the time the file has been closed, it shall have the system default file access permissions.

	Accepted with comment: Adopted wording from N 3059 with “process” replaced by “other concurrent program executions”.

	US 88
-328

	
	K.3.9.2.2

	paragraph 3
	ed
	Bad line break and inconsistent use of space in front of operator parentheses.
	Remove space after “sizeof”, which should fix the bad line break there.
	

	GB-329

	
	L.3

	2
	ed
	In the penultimate bullet point, “free” and “realloc” should be in fixed-width type.
	Change “free” and “realloc” to fixed-width type.
	

	GB-330

	
	M.1

	1
	ed
	The ptrdiff_t entry has a wording issue.
	Change “of at least 16” to “of width at least 16”.
	

	GB-331

	
	M.1

	1
	ed
	The stdbit.h entry has some wording issues.
	Change “implementation’s” to “implementations’” (moving apostrophe after ‘s’). Change “efficiency” to “efficient”.
	

	GB-332

	
	M.1

	1
	ed
	The _BitInt entry is badly worded.
	Change “added the _BitInt the bit-precise integer types” to “added bit-precise integer types _BitInt(N) and unsigned _BitInt(N)”.
	

	NEN/NL9-333

	n/a
	n/a

	n/a
	te
	N3031 failed gain consensus at the last WG14 meeting not due to fundamental disagreements about the necessity of the functionality being introduced in that paper, but due to minor details (naming of the functionality, potential about potential performance, and the nuances of initializing and handling the “mbstate_t” object). However, the situation as outlined in the motivation of that paper, paired with the ubiquity and centrality of C, means that correctly processing text is fragile and complex.

Especially when it comes to human names, this is fundamentally at odds with legislation that emphasizes the right of people to have their name represented correctly (e.g. GDPR; also confirmed in court recently); EU citizens with non-ASCII characters in their birth names are affected by this in a variety of services, from banking to airline tickets to online purchases. In addition to the motivation outlined in N3031, the immensely widespread occurrence of mojibake upon entering non-ASCII characters is testament to the fact this is not merely a problem of inadequately skilled programmers and programmers, but a fundamental shortcoming of the current standardization.

We also fundamentally believe the functionality would have made it into C23 at the previous meeting if the author had more time to address the wording needs at an earlier date (the changes requested came in some 2 days before the author was meant to tweak). We do not blame anyone for this (everyone is busy), but a fresh look after the comments were addressed in post may help.
	Consider taking a poll to adopt N3031 (or a suitably modified version or successor revision) for C23. Particularly, the functionality as it relates to <stdmchar.h> header and it’s encoding translation functionality.
	

	FR-334

	
	overall

	
	ed
	[bookmark: there-are-mis-classifications-of-identif]There are mis-classifications of identifiers

	see accompanying document
	

	FR-335

	
	overall

	
	te
	Diverging policies for version numbering
	see accompanying document

	

	FR-336

	
	overall

	
	ed
	Colors for code snippets
	see accompanying document

	

	US 2
-337

	
	Pg vii

	
	ed
	Page vii: "heads" in "The wording for freestanding heads for <string.h>"
	Please make any proposed change as necessary. for each of these issues (unless noted otherwise)
	

	GB-338

	
	throughout

	
	ed
	The formatting of footnote references is inconsistent throughout the draft; sometimes the footnote number appears before punctuation, sometimes after, sometimes preceded by a space, sometimes not.
	Change to follow usual practice consistently: no space before the footnote number, and, if adjacent to punctuation, coming after rather than before that punctuation.
	

	WG 14 N 3091 / Template for comments and secretariat observations
	Date:2022-12-22
	Document:
	Project:

	MB/
NC1
	Line number
	Clause/
Subclause
	Paragraph/
Figure/Table
	Type of comment2
	Comments
	Proposed change
	Disposition

1	MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2	Type of comment:	ge = general	te = technical	ed = editorial
Page 2 of 44
ISO_IEC CD 9899_AFNOR.doc: Collation successful
ISO_IEC CD 9899_ANSI.docx: Collation successful
ISO_IEC CD 9899_BSI.doc: Collation successful
ISO_IEC CD 9899_DIN.docx: Collation successful
ISO_IEC CD 9899_NEN.docx: Collation successful
ISO_IEC CD 9899_NSAI.docx: Collation successful
ISO_IEC CD 9899_SCC.doc: Collation successful
ISO_IEC CD 9899_SIS.docx: Collation successful
Collation of files was successful. Number of collated files: 8
SELECTED (number of files): 8
PASSED TEST (number of files conformed to CCT table model): 8
FAILED TEST (number of files conformed to CCT table model): 0
CCT - Version 2020.1

image2.emf
n2359.pdf

n2359.pdf
ISO/IEC JTC 1/SC 22/WG14 FNELe]

March 30, 2019 vl
Remove conditional “WANT” macros from numbered clauses
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The recent integration of TS 18661-1 has moved the use of “WANT” macros into the main body of the
C standard, making the added interfaces optional. We think that this is not optimal, neither for user code
nor for implementations, an propose to change that to a set of more straight forward feature test macros
for the version of the included headers. Along with that also a long list of names have been imposed to the
standard. We propose some mild modifications to reduce the pain of the transition and keep C open for
future directions.

1. INTRODUCTION

When it was designed, TS 18661-1 (and follow ups) invented a mechanism that would allow
implementations to provide that extension in the concerned headers without imposing a
pollution of the user name space for code that was not TS 18661-1 aware. Whereas in that
context the approach made complete sense, continuing with the same setting once integrated
into ISO/IEC 9899 is not very constructive.

— It makes interfaces optional that shouldn’t be.
— It reduces exposure of the new interfaces to a very restricted set of applications.
— It adds unnecessary complexity to implementations.

On the other hand, adding new mandatory interfaces to standard headers also has its cost,
namely the increasing risk of name conflicts with an existing code base. This risk is relatively
high for TS 18661-1:

— TS 18661-1 adds about 150 (13%) new interfaces (functions and macros) to the C standard.

— Some of these interfaces use plain English words (canonicalize), short abbreviations
(daddl) or introduce unusual naming schemes (fromfp), that have an even higher risk of
name conflicts that the usual prefix-oriented additions.

The proposal of this paper is to remove the conditionality of these interfaces by

(1) removing the dependency from the __STDC_WANT_IEC_60559_BFP_EXT__ macro,

(2) by adding version test macros such as __STDC_FENV_VERSION__ to the headers that un-
dergo changes,

(3) by revisiting some of the naming choices, and

(4) by reserving some identifier prefixes for future use.

2. REMOVING DEPENDENCY FROM __STDC_WANT_IEC_60559_BFP_EXT__

The only construct in the standard that would be similar to
__STDC_WANT_IEC_60559_BFP_EXT__ is __STDC_WANT_LIB_EXT1__ as it used by Annex K.
Since the features of Annex K are optional (testable by __STDC_LIB_EXT1__) such a macro
makes complete sense there, because we don’t want an implementation that has Annex K
to pollute the name space of all its users.

For the integration of TS 18661-1 the situation is different. It has mainly (see below) in-
tegrated directly into the body of the standard, and there is no reason (or feature test
macro) that indicates that the interfaces should be optional. In the contrary, most of them
are useful additions that should make coding with floating point data more convenient and
numerical algorithms more robust.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N9999:2 Jens Gustedt

There are only a few new interfaces that are not integrated into the body of the standard but
into Annex F, where a dependency from __STDC_WANT_IEC_60559_BFP_EXT__ makes perfect
sense, namely for the same reasons as mentioned above for Annex K.

Therefore we simply propose

— to move the boilerplate for WANT macros from 7.1.2 (Standard headers) to Annex F.
— to remove the use of __STDC_WANT_IEC_60559_BFP_EXT__ from all numbered clauses, but
to keep it in Annex F.

Editorially these two steps are quite easy, and we show their application in the attached
diffmarks.

3. ADDING VERSION TEST MACROS

The addition of about 150 new interfaces for a new C version can be quite a burden for
large code bases that wish to migrate to C2x. Conflicts will not occur often, but they are
likely to occur somewhere and should be easy to track and to manage.

Therefore we should provide an easy-to-use tool that allows for user code to control the
possible damage, but on the other hand will not impose much of a maintenance burden for
implementations either.

Another difficulty that appears when the community moves to a new C standard is the fact
that nowadays compilers and C libraries often come from different hands, and thus their
synchronization concerning a new standard is not trivial. History has shown that this has
been mayor hurdle for early acceptance of new C standards, and that dependency of one
single “language” version macro __STDC_VERSION__ is not enough to clarify the situation.
Therefore we propose to use a set of new macros of the form __STDC_ XXXX_VERSION__.
For example <math.h> sets a new macro __STDC_MATH_VERSION__ to a value greater than
202000L, and users can then test this as follows.

#include <math.h>

#if __STDC_MATH_VERSION__ > 202000L

error "this_code_likes_to_daddl,_fix_before_going_further”
#endif

There is already large experience with the use of such version macros for library headers
in ISO/IEC 9945, POSIX. There, such macros are defined for major branches of the stan-
dard and applications have learned to deal with them to adapt their code to the actual
environment.

4. REVISITING SOME OF THE NAMING CHOICES

Many of the new interfaces would better have been introduced with a name prefix, much as
other headers did when they were added to the C standard. It seems that this opportunity
has been missed, though I think that we still could take a turn and use names such as
fp_canonicalize instead of canonicalize, fp_add instead of fadd, etc.

Where these additions are particularly bad is where they introduce a new naming scheme
(without admitting it) that is even contraproductive to a future encapsulation of these
interfaces in a type generic function. These are the functions

fromfpf fromfpx1 strfromd ufromfpf ufromfpx1
fromfpl fromfpx strfromf ufromfpl ufromfpx
fromfpxf fromfp strfroml ufromfpxf ufromfp

Remove conditional “WANT"” macros from numbered clauses N9999:3

Here the usage of the particle from has no precedent in the standard. It is not a good choice
because in C conversions do usually not specify the source type of a conversion (it can be
deduced from the context) but, if so, the target type. By the naming choice, these interfaces
cannot be easily extended to type generic interfaces, since by their nature these should have
the source type implicit and the target type of feature explicit.

Therefore we propose to rename these interfaces to names starting with the reserved prefix
to, namely

tointf tointxl tostrd touintf touintxl
tointl tointx tostrf touintl touintx
tointxf toint tostrl touintxf touint

This clears up the type generic interfaces in <tgmath.h> (to toint and touint) and will
permit to propose another type generic interface in the sequel, in particular a macro tostr
for a type generic and safe conversion interface conversion from any base type to a string.

5. RESERVE ACTIVE PREFIXES FOR FUTURE USE

The integration of T'S 18661-1 has also shown that four prefixes are actively used for new
macro interfaces (namely DBL_, FLT_, LDBL_ and FP_) and should thus not be used by user
code. Therefore we propose to reserve these for future use. In addition, we propose also
to extend the future use clauses of some other prefixes to the header files were they are
actually used.

Appendix: pages with diffmarks of the proposed changes
against the March 2019 working draft.

The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)!”

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Sizes of integer types <limits.h>
The felowing-identifiers-are-defined-enly

19)See “future language directions” (6.11.3).

20 Environment §524.21

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)

ELONG-_WIDTH-
ULLONG-_WIDTH-

The-values given below shall be replaced by constant expressions suitable for use in #if prepro-
cessing directives. Moreover, except for CHAR_BIT and MB_LEN_MAX, and the width-of-type macros,
the following shall be replaced by expressions that have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Their
implementation-defined values shall be equal or greater in magnitude (absolute value) to those
shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

I
| CHAR_BIT 8
L

— minimum value for an object of type signed char

| SCHAR_MIN 127 /7 —(27 - 1)

— maximum value for an object of type signed char

iSCHAR_MAx +127 // 2" -1

— width of type signed char

i SCHAR_WIDTH 8

— maximum value for an object of type unsigned char

[
| UCHAR_MAX 255 // 2° -1
L

— width of type unsigned char

[
| UCHAR_WIDTH 8
L

— minimum value for an object of type char

| CHAR_MIN see below
L

— maximum value for an object of type char

[
| CHAR_MAX see below
L

— width of type char

§524.2.1 Environment 21

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

<stdnoreturn.h> <threads.h> <wchar.h>
<string.h> <time.h> <wctype.h>
<tgmath.h> <uchar.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers eontingenton-whethereertain-macros-whose

WQQQWMIQMWMMM
users to adapt to that situation, they also define a version macro for feature test of the form
—STDC_ }QW'M\'MMWMWWWMM&G
i —corresponding

W

Any definition of an object-like macro described in this clause or Annex K shall expand to code that
is fully protected by parentheses where necessary, so that it groups in an arbitrary expression as if it
were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use, except those identifiers which are lexically identical to
keywords.!??

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.!?

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

190) Allowss identifiers spelled with a leading underscore followed by an uppercase letter that match the spelling of a keyword
to be used as macro names by the program.
19D The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

136 Library §7.13

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.6 Floating-point environment <fenv.h>

The header <fenv. h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.!V) A floating-point status flag is a
system variable whose value is set (but never cleared) when a floating-point exception is raised, which
occurs as a side effect of exceptional floating-point arithmetic to provide auxiliary information.?'?)
A floating-point control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point en-
vironment includes the dynamic floating-point control modes and the floating-point status flags.

The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it at the time of creation.

Certain programming conventions support the intended model of use for the dynamic floating-point
environment:*'¥

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

The feature test macro ___STDC_FENV_VERSION__ expands to the token ymmL.,
The type

[|
\ fenv_t
L |

represents the entire dynamic floating-point environment.

The type

i femode_t i
L |

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

The type

2 This header is designed to support the floating-point exception status flags and directed-rounding control modes required
by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability among all
systems.

212 A floating-point status flag is not an object and can be set more than once within an expression.

213)With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

154 Library §7.6

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

<stdlib.h> | atof, strfromd, —strfremf——strfroemlt—strtod, strtof,
strtold, tostrd, tostrf, tostrl

<wchar.h> wcstod, westof, westold

<stdio.h> printf and scanf families

<wchar.h> | wprintf and wscanf families

Each <math. h> function listed in the table above indicates the family of functions of all supported
types (for example, acosf and acosl as well as acos).

NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts:
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __swapround(__savedrnd);

where __swapround is defined by:

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new) ;
return old;

7.6.3 Floating-point exceptions

The following functions provide access to the floating-point status flags.?? The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.3.1 The feclearexcept function
Synopsis

#include <fenv.h>
int feclearexcept(int excepts);

Description

The feclearexcept function attempts to clear the supported floating-point exceptions represented
by its argument.

22)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

158 Library §7.6.3.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.12 Mathematics <math.h>

The header <math.h> declares two types and many mathematical functions and defines several
macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and 1 suffixes, which are corresponding functions with float and long double
parameters, return values, or both.?*» Integer arithmetic functions and conversion functions are
discussed later.

29 Particularly on systems with wide expression evaluation, a <math. h> function might pass arguments and return values
in wider format than the synopsis prototype indicates.

§7.12 Library 177

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

The feature test macro __STDC_MATH_VERSION__ expands to the token ymmL.
The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.?*

The macro

\ HUGE_VAL

25)The types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.

178 Library §7.12

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.23%

The macro

\ INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time.?%”)

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The signaling NaN macros

SNANF
SNAN
SNANL

each is defined if and only if the respective type contains signaling NaNs (5.2.4.2.2). They expand to
a constant expression of the respective type representing a signaling NaN. If a signaling NaN macro
is used for initializing an object of the same type that has static or thread-local storage duration, the
object is initialized with a signaling NaN value.

The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer
constant expressions with distinct values suitable for use as the second argument to the fromfp;-

ufromfp, fromfpx andufremfpx-toint, touint, tointx, and touintx functions.

236)JUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.
237)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

§7.12 Library 179

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

| _____intmax t toint(double x, int round, unsigned int width);
_____intmax_t tointf(float x, int round, unsigned int width);
_____intmax_t_tointl(long double x, int round, unsigned int width);
_____uintmax_t fouint(double x, int round, unsigned int width);
_____uintmax_t touintf(float x, int round, unsigned int width);
_____uintmax_t touintl(long double x, int round, unsigned int width);
L

Description

The fromfpand-ufromfp-toint and touint functions round x, using the math rounding direction
indicated by round, to a signed or unsigned integer, respectively, of width bits, and return the result
value in the integer type designated by intmax_t or uintmax_t, respectively. If the value of the
round argument is not equal to the value of a math rounding direction macro, the direction of
rounding is unspecified. If the value of width exceeds the width of the function type, the rounding
is to the full width of the function type. The fromfp-and-ufremfp-toint and touint functions do
not raise the “inexact” floating-point exception. If x is infinite or NaN or rounds to an integral value
that is outside the range of any supported integer type?*® of the specified width, or if width is zero,
the functions return an unspecified value and a domain error occurs.

Returns
The fremfp-and-ufremfp-toint and touint functions return the rounded integer value.
EXAMPLE Upward rounding of doub'le x to type int, without raising the “inexact” floating-point exception, is achieved by

(i E) 0 p()(: —IN 7HFWARB—‘I‘NT—W'I—B:FH‘)’, p—
___(int)toint(x, FP_INT_UPWARD, INT_WIDTH

7.12.9.11 The tointx and touintx functions
Synopsis

——#define —STBEWANT—TEFCE—66559-—BFP—FEXF—
#include <stdint.h>
#include <math.h>

_____intmax t tointxf(float x, int round, unsigned int width);
_____uintmax_t_touintx(double x, int round, unsigned int width);
_____uintmax_t_touintxl(long double x, int round, unsigned int width);

Description

The fromfpx-and-ufremfpxtointx and touintx functions differ from the fromfp-and-ufromfp-

toint and touint functions, respectively, only in that the fremfpx-and-ufromfpx-—tointx and

touintx functions raise the “inexact” floating-point exception if a rounded result not exceeding the
specified width differs in value from the argument x.

Returns
The fromfpx-and-ufromfpx-tointx and touintx functions return the rounded integer value.

NOTE Conversions to integer types that are not required to raise the inexact exception can be done simply by rounding to
integral value in floating type and then converting to the target integer type. For example, the conversion of long double x
to uint64_t, using upward rounding, is done by

248)For signed types, 6.2.6.2 permits three representations, which differ in whether a value of —(2), where M is the number

of value bits, can be represented.

§7.12.9.11 Library 199

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

\ (uint64_t)ceill(x)

7.12.10 Remainder functions
7.12.10.1 The fmod functions
Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

Description
The fmod functions compute the floating-point remainder of x/y.

Returns

The fmod functions return the value x — ny, for some integer n such that, if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.10.2 The remainder functions
Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

Description

The remainder functions compute the remainder x REM y required by IEC 60559.24%)

Returns

The remainder functions return x REM vy. If y is zero, whether a domain error occurs or the functions
return zero is implementation defined.

7.12.10.3 The remquo functions
Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int xquo);

long double remquol(long double x, long double y, int *quo);

Description

The remquo functions compute the same remainder as the remainder functions. In the object pointed
to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo
2" to the magnitude of the integral quotient of x /y, where n is an implementation-defined integer
greater than or equal to 3.

Returns

The remquo functions return x REM y. If y is zero, the value stored in the object pointed to by quo
is unspecified and whether a domain error occurs or the functions return zero is implementation
defined.

29)“When y # 0, the remainder » = x REM y is defined regardless of the rounding mode by the mathematical relation
r = x — ny, where n is the integer nearest the exact value of =/y; whenever [n — x/y| = 1/2, then n is even. If r = 0, its sign
shall be that of z.” This definition is applicable for all implementations.

200 Library §7.12.10.3

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.20 Integer types <stdint.h>

The header <stdint.h> declares sets of integer types having specified widths, and defines corre-
sponding sets of macros.?’? It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)
Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides,?”® <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as “required”,
but need not provide any of the others (described as “optional”).

The feature test macro__STDC_STDINT_VERSION__ expands to the token yyyymmL.

7.20.1 Integer types

When typedef names differing only in the absence or presence of the initial u are defined, they shall
denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types

The typedef name intN_t designates a signed integer type with width N, no padding bits, and a
two’s complement representation. Thus, int8_t denotes such a signed integer type with a width of
exactly 8 bits.

275)See “future library directions” (7.31.12).
276)Some of these types might denote implementation-defined extended integer types.

§7.20.1.1 Library 231

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.22 General utilities <stdlib.h>

The header <stdlib.h> declares five types and several functions of general utility, and defines
several macros.>"”)

strfremt-The feature test macro __STDC_STDLIB_VERSION__ expands to the token yyyymmL.
The types declared are size_t and wchar_t (both described in 7.19),

\ div_t

which is a structure type that is the type of the value returned by the div function,

\ ldiv_t

which is a structure type that is the type of the value returned by the ldiv function, and

| lldiv_t

which is a structure type that is the type of the value returned by the 11div function.
The macros defined are NULL (described in 7.19);

\ EXIT_FAILURE

| EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

\ RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

\ MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of
bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX.

7.22.1 Numeric conversion functions

The functions atof, atoi, atol, and atoll need not affect the value of the integer expression errno
on an error. If the value of the result cannot be represented, the behavior is undefined.

7.22.1.1 The atof function

Synopsis

#include <stdlib.h>
double atof(const char xnptr);

307)See “future library directions” (7.31.14).

268 Library §7.22.1.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Description

The atof function converts the initial portion of the string pointed to by nptr to double representa-
tion. Except for the behavior on error, it is equivalent to

\ strtod(nptr, (char *x)NULL)

Returns
The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.22.1.4).

7.22.1.2 The atoi, atol, and atoll functions
Synopsis

#include <stdlib.h>

int atoi(const char xnptr);

long int atol(const char *nptr);

long long int atoll(const char xnptr);

Description

The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to
int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, (char =x)NULL, 10)
atol: strtol(nptr, (char *x)NULL, 10)
atoll: strtoll(nptr, (char *x)NULL, 10)

Returns
The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.5).

7.22.1.3 The tostrd, tostrf, and tostrl functions
Synopsis

#define ——STRCWANT—TIEC-60559—BFP—EXT—
#include <stdlib.h>

int tostrd(char xrestrict s, size_t n, const char xrestrict format, double fp);

int tostrf(char xrestrict s, size_t n, const char xrestrict format, float fp);

int tostrl(char *restrict s, size_t n, const char xrestrict format, long double fp);

Description

The strfremd—strfromfand-strfromt—tostrd, tostrf, and tostrl functions are equivalent
to snprintf(s, n, format, fp) (7.21.6.5), except that the format string shall only contain the
character %, an optional precision that does not contain an asterisk *, and one of the conversion
specifiers a, A, e, E, f, F, g, or G, which applies to the type (double, float, or Llong double) indicated
by the function suffix (rather than by a length modifier).

Returns

The strfromd,strfromfand-strfromt-tostrd, tostrf, and tostrl functions return the number
of characters that would have been written had n been sufficiently large, not counting the terminating
null character. Thus, the null-terminated output has been completely written if and only if the
returned value is less than n.

§7.22.1.3 Library 269

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.25 Type-generic math <tgmath.h>

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several
type-generic macros.

feature test macro ___STDC_TGMATH_VERSION__ expands to the token yyyymmL.

Of the <math.h>and <complex. h>functions without an f (float) or 1 (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function,
except the functions that round result to narrower type (7.12.14) (which are covered below) and
modf, there is a corresponding type-generic macro.3*®® The parameters whose corresponding real
type is double in the function synopsis are generic parameters. Use of the macro invokes a function
whose corresponding real type and type domain are determined by the arguments for the generic
parameters.3??)

Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

— First, if any argument for generic parameters has type long double, the type determined is
long double.

— Otherwise, if any argument for generic parameters has type double or is of integer type, the
type determined is double.

— Otherwise, the type determined is float.

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a c prefix, the corresponding type-generic macro (for both functions) has the
same name as the function in <math.h>. The corresponding type-generic macro for fabs and cabs
is fabs.

<math.h> <complex.h> type-generic

function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

328)Like other function-like macros in standard libraries, each type-generic macro can be suppressed to make available the

corresponding ordinary function.
3291f the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is
undefined.

§7.25 Library 293

10

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

For each unsuffixed function in <math . h> without a c-prefixed counterpart in <complex. h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

atan2 fdim frexp 1lrint nearbyint round

cbrt floor fromfptoint 1lround nextafter roundeven

ceil fma fromfpxtointx logl0 nextdown scalbn

copysign fmax hypot loglp nexttoward scalbln

erf fmaxmag ilogb log2 nextup tgamma

erfc fmin ldexp logb remainder trunc

exp2 fminmag lgamma lrint remquo wfremfptouint
expml fmod 1logb lround rint wfremfpxtouintx

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro is undefined.

For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

carg cimag conj cproj creal

Use of the macro with any real or complex argument invokes a complex function.

The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any 1 suffix**” from the function names. Thus, the macros are:

fadd fsub fmul fdiv ffma fsqrt
dadd dsub dmul ddiv dfma dsqrt

All arguments shall be real. If any argument has type long double, or if the macro prefix is d, the
function invoked has the name of the macro with an 1 suffix. Otherwise, the function invoked has
the name of the macro (with no suffix).

A type-generic macro corresponding to a function indicated in the table in 7.6.2 is affected by
constant rounding modes (7.6.3).

NOTE The type-generic macro definition in the example in 6.5.1.1 does not conform to this specification. A conforming
macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: chrtl(X), \
default: _Roundwise_cbrt(X), \
float: chrtf(X) \

)

where _Roundwise_cbrt() is equivalent to cbrt() invoked without macro-replacement suppression.

330)There are no functions with these macro names and the f suffix.

294 Library §7.25

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.31 Future library directions

The following names are grouped under individual headers for convenience. All external names
described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
The function names

cerf cexpml clog2
cerfc cloglo clgamma
cexp2 cloglp ctgamma

and the same names suffixed with f or 1 may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>

Function names that begin with either is or to, and a lowercase letter may be added to the declara-
tions in the <ctype. h> header.

7.31.3 Errors <errno.h>

Macros that begin with E and a digit or E and an uppercase letter may be added to the macros
defined in the <errno. h> header.

7.31.4 Floating-point environment <fenv.h>

Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the
<fenv.h> header.

7.31.5 Format conversion of integer types <inttypes.h>

Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the
macros defined in the <inttypes.h> header.

Function names that begin with str, orwcs and a lowercase letter may be added to the declarations
in the <inttypes.h> header.

7.31.6 Localization <locale.h>

Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the
<locale.h> header.

7.31.7 Mathematics <math.h>
Function names that begin with either is or to, and a lowercase letter may be added to the

declarations in the <math. h> header.

Macros that begin with DBL_ FLT_, FP_, or LDBL_ and an uppercase letter may be added to the

macros defined in the <math.h>header.

7.31.8 Signal handling <signal.h>

Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be
added to the macros defined in the <signal.h> header.

7.31.9 Atomics <stdatomic.h>

Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined
in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_
and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

The macro ATOMIC_VAR_INIT is an obsolescent feature.

354 Library §7.319

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.31.10 Boolean type and values <stdbool. h>

The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent
feature.

7.31.11 Integer types <stdint.h>

Typedef names beginning with int or uint and ending with _t may be added to the types defined
in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
—WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.12 Input/output <stdio.h>

Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and
fscanf. Other characters may be used in extensions.

The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.13 General utilities <stdlib.h>

Function names that begin with str or wcs and a lowercase letter may be added to the declarations
in the <stdlib.h> header.

Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.14 String handling <string.h>

Function names that begin with str, mem, or wcs and a lowercase letter may be added to the
declarations in the <string.h> header.

7.31.15 Date and time <time.h>

Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

7.31.16 Threads <threads.h>

Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,
or tss_, and a lowercase letter may be added to the declarations in the <threads . h> header.

7.31.17 Extended multibyte and wide character utilities <wchar.h>

Function names that begin with wcs and a lowercase letter may be added to the declarations in the
<wchar. h> header.

Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

7.31.18 Wide character classification and mapping utilities <wctype.h>

Function names that begin with is or to and a lowercase letter may be added to the declarations in
the <wctype.h> header.

§7.31.18 Library 355

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

rsize_t

errno_t memcpy_s(void *restrict sl, rsize_t slmax, const void *restrict s2, rsize_t n);
errno_t memmove_s(void *sl, rsize_t slmax, const void *s2, rsize_t n);
errno_t strcpy_s(char xrestrict sl, rsize_t slmax, const char xrestrict s2);
errno_t strncpy_s(

char *restrict sl, rsize_t slmax, const char xrestrict s2, rsize_t n);
errno_t strcat_s(char *restrict sl, rsize_t slmax, const char xrestrict s2);
errno_t strncat_s(

char *restrict sl, rsize_t slmax, const char xrestrict s2, rsize_t n);
char xstrtok_s(

char xrestrict sl, rsize_t xrestrict slmax,

const char xrestrict s2, char xxrestrict ptr);
errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)
errno_t strerror_s(char xs, rsize_t maxsize, errno_t errnum);
size_t strerrorlen_s(errno_t errnum);
size_t strnlen_s(const char *xs, size_t maxsize);

B.24 Type-generic math <tgmath.h>

382 Library summary

acos erf 1lround ufremfptouint
asin erfc logl0 ufremfpxtouintx
atan exp2 loglp carg
acosh expml log2 cimag
asinh fdim logb conj
atanh floor lrint cproj
cos fma lround creal
sin fmax nearbyint fadd
tan fmaxmag nextafter dadd
cosh fmin nextdown fsub
sinh fminmag nexttoward dsub
tanh fmod nextup fmul
exp frexp remainder dmul
log fromfptoint remquo fdiv
pow Ffromfpxtointx rint ddiv
sqrt hypot round ffma
fabs ilogb roundeven dfma
atan2 ldexp scalbn fsqrt
chrt lgamma scalbln dsqrt
ceil 1logb tgamma
copysign 1lrint trunc
_ STDC_WANT_IEC_60559_BFP_EXT__

totalorder

totalordermag
B.25 Threads <threads.h>
—STDC_NO_THREADS _ mtx_t thrd_timedout
thread_local tss_dtor_t thrd_success
ONCE_FLAG_INIT thrd_start_t thrd_busy
TSS_DTOR_ITERATIONS once_flag thrd_error
cnd_t mtx_plain thrd_nomem
thrd_t mtx_recursive
tss_t mtx_timed

§B.25

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Annex F
(normative)

IEC 60559 floating-point arithmetic

F1 Introduction

This annex specifies C language support for the IEC 60559 floating-point standard. The IEC 60559
floating-point standard is specifically Floating-point arithmetic (ISO/IEC/IEEE 60559:2011), also desig-
nated as IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008). The IEC 60559 floating-point
standard supersedes the IEC 60559:1989 binary arithmetic standard, also designated as IEEE Standard
for Binary Floating-Point Arithmetic (IEEE 754-1985). IEC 60559 generally refers to the floating-point
standard, as in IEC 60559 operation, IEC 60559 format, etc.

The IEC 60559 floating-point standard specifies decimal, as well as binary, floating-point arithmetic.
It supersedes IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE 854-1987)
which generalized the binary arithmetic standard (IEEE 754-1985) to remove dependencies on radix
and word length.

An implementation that defines __STDC_IEC_60559_BFP_ to yyyymmL shall conform to the specifi-
cations in this annex and shall also define __STDC_IEC_559__ to 1.3”® Where a binding between
the C language and IEC 60559 is indicated, the IEC 60559-specified behavior is adopted by reference,
unless stated otherwise.

This annex amends some standard headers with declarations or definitions of identifiers contingent
on whether certain macros whose names begin with __STDC_WANT_IEC_60559_ and end with
_EXT__ are defined (by the user) at the point in the code where the header is first included. Within

a preprocessing translation unit, the same set of such macros shall be defined for the first inclusion
of all such headers.

E2 Types
The C floating types match the IEC 60559 formats as follows:

— The float type matches the IEC 60559 binary32 format.
— The double type matches the IEC 60559 binary64 format.

— The long double type matches the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format,¥”% else a non-IEC 60559 extended format, else the IEC 60559 binary64 format.

Any non-IEC 60559 extended format used for the Long double type shall have more precision than
IEC 60559 binary64 and at least the range of IEC 60559 binary64.5”> The value of FLT_ROUNDS
applies to all IEC 60559 types supported by the implementation, but need not apply to non-IEC
60559 types.

Recommended practice

The long double type should match the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format.

F2.1 Infinities and NaNs

Since negative and positive infinity are representable in IEC 60559 formats, all real numbers lie
within the range of representable values (5.2.4.2.2).

The NAN and INFINITY macros and the nan functions in <math. h> provide designations for IEC 60559
quiet NaNs and infinities. The SNANF, SNAN, and SNANL macros in <math . h> provide designations
for IEC 60559 signaling NaNs.

373 Implementations that do not define either of __STDC_IEC_60559_BFP__ and __STDC_IEC_559__ are not required to
conform to these specifications. New code should not use the obsolescent macro __STDC_IEC_559__ to test for conformance
to this annex.

S7TEC 60559 binary64-extended formats include the common 80-bit IEC 60559 format.

375 A non-TEC 60559 long double type is required to provide infinity and NaNss, as its values include all double values.

§F2.1 IEC 60559 floating-point arithmetic 391

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

This annex does not require the full support for signaling NaNs specified in IEC 60559. This
annex uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of
signaling NaNs is not provided, the behavior of signaling NaNs is implementation-defined (either
treated as an IEC 60559 quiet NaN or treated as an IEC 60559 signaling NaN).37®

Any operator or <math.h> function that raises an “invalid” floating-point exception, if delivering a
floating type result, shall return a quiet NaN.

In order to support signaling NaNs as specified in IEC 60559, an implementation should adhere to
the following recommended practice.

Recommended practice

Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless
explicitly specified otherwise, raises an “invalid” floating-point exception.

NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y) returns infinity if x or y is
infinite and the other is a quiet NaN. The recommended practice in this subclause specifies that such functions (and others)

raise the “invalid” floating-point exception if an argument is a signaling NaN, which also implies they return a quiet NaN in
these cases.

The <fenv.h> header defines the macro FE_SNANS_ALWAYS_SIGNAL if and only if the implemen-
tation follows the recommended practice in this subclause. If defined, FE_SNANS_ALWAYS_SIGNAL
expands to the integer constant 1.

E3 Operations

C operators, functions, and function-like macros provide the operations required by IEC 60559 as
shown in the following table. Specifications for the C facilities are provided in the listed clauses.
The C specifications are intended to match IEC 60559, unless stated otherwise.

Operation binding
IEC 60559 operation C operation Clause
roundTolntegralTiesToEven roundeven 7.12.9.8, F10.6.8
roundTolntegralTiesAway round 7.12.9.6, F.10.6.6
roundTolntegralTowardZero trunc 7.12.9.9,E10.6.9
roundToIntegralTowardPositive ceil 7.129.1, F10.6.1
roundTolntegralTowardNegative floor 7.129.2,F10.6.2
roundToIntegralExact rint 7.1294,F10.6.4
nextUp nextup 7.12.11.5, F10.8.5
nextDown nextdown 7.12.11.6, F10.8.6
remainder remainder, remquo 7.12.10.2, E10.7.2,
7.12.10.3, F10.7.3
minNum fmin 7.12.12.3, F10.9.3
maxNum fmax 7.12.12.2,F10.9.2
minNumMag fminmag 7.12.12.5,F10.9.5
maxNumMag fmaxmag 7.12.12.4,F10.9.4
scaleB scalbn, scalbln 7.12.6.14,E10.3.14
logB logb, ilogb, 1logb 7.12.6.12, F.10.3.12,
712.6.5, F10.3.5,
7.12.6.7, F10.3.7
addition +, fadd, faddl, daddl 6.5.6, 7.12.14.1,
F10.11
subtraction -, fsub, fsubl, dsubl 6.5.6, 7.12.14.2,
F10.11
multiplication *, fmul, fmull, dmull 6.5.5, 7.12.14.3,
F10.11

376)Since NaNs created by IEC 60559 operations are always quiet, quiet NaNs (along with infinities) are sufficient for closure
of the arithmetic.

392

IEC 60559 floating-point arithmetic

§E3

N2359

working draft — March 30, 2019 ISO/IEC 9899:202x (E)

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.14.4,
F10.11

squareRoot sqrt, fsqrt, fsqrtl, dsqrtl 7.12.7.5, E10.4.5,
7.12.14.6, F10.11

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F10.10.1,
7.12.14.5,F10.11

convertFromInt cast and implicit conversion 6.3.14,6.54

convertTolntegerTiesToEven fromfp,ufromfp-toint, touint | ??,??

convertTolntegerTowardZero

convertToIntegerTowardPositive

convertToIntegerTowardNegative

convertToIntegerTiesToAway fromfpufromfp-toint, touint, | 22, 2?2, 7.1297,

lround, 1lround E10.6.7

convertToIntegerExactTiesToEven fromfpx—ufromfpx—tointx, | 2?,??

convertTolntegerExactTowardZero touintx

convertTolntegerExactTowardPositive

convertTolntegerExactTowardNegative

convertToIntegerExactTiesToAway

convertFormat - different formats cast and implicit conversions 6.3.1.5,6.5.4

convertFormat - same format

canonicalize

7.12.11.7, F10.8.7

convertFromDecimalCharacter

strtod, wcstod, scanf, wscanf,

72214, 729411,

decimal floating constants 7.21.64, 7.29.2.12,
F5

convertToDecimalCharacter printf, wprintf, strfremd— | 7.21.6.3, 7.29.2.11,

tostrd ??,E5
convertFromHexCharacter strtod, wcstod, scanf, wscanf, | 7.22.1.4, 7.294.1.1,

hexadecimal floating constants 7.21.6.4, 7.29.2.12,

E5

convertToHexCharacter printf, wprintf, strfremd— | 7.21.6.3, 7.29.2.11,

tostrd ??,E5
copy memcpy, memmove 7.242.1,7.24.2.2
negate - (x) 6.5.3.3
abs fabs 7.12.72,F10.4.2
copySign copysign 7.12.11.1, F10.8.1
compareQuietEqual == 6.5.9,F9.3
compareQuietNotEqual = 6.5.9,F9.3
compareSignalingEqual iseqsig 7.12.15.7, F10.14.1
compareSignalingGreater > 6.5.8, F9.3
compareSignalingGreaterEqual >= 6.5.8, F9.3
compareSignalingLess < 6.5.8, F9.3
compareSignalinglLessEqual <= 6.5.8, F9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.15.7,F10.14.1
compareSignalingNotGreater I (x >y) 6.5.8, F9.3
compareSignalingLessUnordered ' (x >=y) 6.5.8, 9.3
compareSignalingNotLess ' (x <) 6.5.8, F.9.3
compareSignalingGreaterUnordered ' (x <= y) 6.5.8, F9.3
compareQuietGreater isgreater 7.12.15.1
compareQuietGreaterEqual isgreaterequal 7.12.15.2
compareQuietLess isless 7.12.15.3
compareQuietLessEqual islessequal 7.12.15.4
compareQuietUnordered isunordered 7.12.15.6
compareQuietNotGreater ! isgreater(x, y) 7.12.15.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.15.2
compareQuietNotLess I isless(x,) 712153

IEC 60559 floating-point arithmetic 393

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359
compareQuietGreaterUnordered I islessequal(x, Y) 7.12.15.4
compareQuietOrdered ! isunordered(x, y) 7.12.15.6
class fpclassify, signbit, 7123.1, 7.12.3.7,

issignaling 7.12.3.8
isSignMinus signbit 7.123.7
isNormal isnormal 7.12.3.6
isFinite isfinite 7.12.3.3
isZero iszero 7.12.3.10
isSubnormal issubnormal 7.12.3.9
isInfinite isinf 71234
isNalN isnan 7.12.3.5
isSignaling issignaling 7.12.3.8
isCanonical iscanonical 7.12.3.2
radix FLT_RADIX 52422
totalOrder totalorder F10.12.1
totalOrderMag totalordermag F10.12.2
lowerFlags feclearexcept 7.6.3.1
raiseFlags fesetexcept 7.6.3.4
testFlags fetestexcept 7.6.3.7
testSavedFlags fetestexceptflag 7.6.3.6
restoreFlags fesetexceptflag 7.6.3.5
saveAllFlags fegetexceptflag 7.6.3.2
getBinaryRoundingDirection fegetround 7.64.2
setBinaryRoundingDirection fesetround 7.6.4.4
saveModes fegetmode 7.6.4.1
restoreModes fesetmode 7.64.3
defaultModes fesetmode (FE_DFL_MODE) 7.643,7.6

The IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.1.8) and function-call
argument conversions (6.5.2.2). For example, the following operations take float f and double d
inputs and produce a long double result:

(long double)f * d
powl(f, d)

Whether C assignment (6.5.16) (and conversion as if by assignment) to the same format is an
IEC 60559 convertFormat or copy operation®””) is implementation-defined, even if <fenv . h> defines
the macro FE_SNANS_ALWAYS_SIGNAL (F2.1). If the return expression of a return statement is
evaluated to the floating-point format of the return type, it is implementation-defined whether a
convertFormat operation is applied to the result of the return expression.

The unary - operator raises no floating-point exceptions, even if the operand is a signaling NaN.

The C classification macros fpclassify, iscanonical, isfinite, isinf, isnan, isnormal,
issignaling, issubnormal, and iszero provide the IEC 60559 operations indicated in the ta-
ble above provided their arguments are in the format of their semantic type. Then these macros
raise no floating-point exceptions, even if an argument is a signaling NaN.

The C nearbyint functions (7.12.9.3, F10.6.3) provide the nearbyinteger function recommended in
the Appendix to (superseded) ANSI/IEEE 854.

The C nextafter (7.12.11.3, F10.8.3) and nexttoward (7.12.11.4, F.10.8.4) functions provide the

377)Where the source and destination formats are the same, convertFormat operations differ from copy operations in
that convertFormat operations raise the “invalid” floating-point exception on signaling NaN inputs and do not propagate
non-canonical encodings.

394 IEC 60559 floating-point arithmetic §E3

10

11

12

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a minor
change to better handle signed zeros).

The C getpayload, setpayload, and setpayloadsig (F.10.13) functions provide program access to
NaN payloads, defined in IEC 60559.

The macros (7.6) FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, and FE_UPWARD, which are used in
conjunction with the fegetround and fesetround functions and the FENV_ROUND pragma, represent
the IEC 60559 rounding-direction attributes round TowardNegative, roundTiesToEven, roundTo-
wardZero, and roundTowardPositive, respectively.

The C fegetenv (7.6.5.1), feholdexcept (7.6.5.2), fesetenv (7.6.5.3) and feupdateenv (7.6.5.4)
functions provide a facility to manage the dynamic floating-point environment, comprising the
IEC 60559 status flags and dynamic control modes.

IEC 60559 requires operations with specified operand and result formats. Therefore, math functions
that are bound to IEC 60559 operations (see table above) must remove any extra range and precision
from arguments or results.

IEC 60559 requires operations that round their result to formats the same as and wider than the
operands, in addition to the operations that round their result to narrower formats (see 7.12.14).
Operators @, - , *, and /) whose evaluation formats are wider than the semantic type (5.2.4.2.2)
might not support some of the IEEE 60559 operations, because getting a result in a given format
might require a cast that could introduce an extra rounding error. The functions that round result to
narrower type (7.12.14) provide the IEC 60559 operations that round result to same and wider (as
well as narrower) formats, in those cases where built-in operators and casts do not. For example,

ddivl(x, y) computes a correctly rounded double divide of float x by float y, regardless of
the evaluation method.

F4 Floating to integer conversion

If the integer type is_Bool, 6.3.1.2 applies and the conversion raises no floating-point exceptions if
the floating-point value is not a signaling NaN. Otherwise, if the floating value is infinite or NaN
or if the integral part of the floating value exceeds the range of the integer type, then the “invalid”
floating-point exception is raised and the resulting value is unspecified. Otherwise, the resulting
value is determined by 6.3.1.4. Conversion of an integral floating value that does not exceed the
range of the integer type raises no floating-point exceptions; whether conversion of a non-integral
floating value raises the “inexact” floating-point exception is unspecified.’’®)

E5 Conversions between binary floating types and decimal character se-
quences

Conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and

back is the identity function.’”?)

Conversions involving IEC 60559 formats follow all pertinent recommended practice. In particular,
conversion between any supported IEC 60559 format and decimal with DECIMAL_DIG or fewer
significant digits is correctly rounded (honoring the current rounding mode), which assures that
conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and
back is the identity function.

The <float.h> header defines the macro

\ CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro at the point in the source

S8IEC 60559 recommends that implicit floating-to-integer conversions raise the “inexact” floating-point exception for

non-integer in-range values. In those cases where it matters, library functions can be used to effect such conversions with or
without raising the “inexact” floating- point exception. See fremfp-toint , ufremfp-touint , fremfpx-tointx , ufremfpx-
touintx, rint, lrint, 1lrint, and nearbyint in <math.h>.

3791f the minimum-width TEC 60559 binary64-extended format (64 bits of precision) is supported, DECIMAL_DIG is at least
21. If IEC 60559 binary64 (53 bits of precision) is the widest IEC 60559 format supported, then DECIMAL_DIG is at least 17. (By
contrast, LDBL_DIG and DBL_DIG are 18 and 15, respectively, for these formats.)

§E5 IEC 60559 floating-point arithmetic 395

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

file where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integral constant
expression suitable for use in #if preprocessing directives whose value is a number such that
conversions between all supported types with IEC 60559 binary formats and character sequences
with at most CR_DECIMAL_DIG significant decimal digits are correctly rounded. The value of

CR_DECIMAL_DIG shall be at least DECIMAL_DIG + 3. If the implementation correctly rounds for
all numbers of significant decimal digits, then CR_DECIMAL_DIG shall have the value of the macro

UINTMAX_MAX.

Conversions of types with IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal digits
to types with IEC 60559 binary formats shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction,
and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to
the destination type. The “inexact” floating-point exception is raised (once) if either conversion
is inexact.®®?) (The second conversion may raise the “overflow” or “underflow” floating-point
exception.)

Functions such as strtod that convert character sequences to floating types honor the rounding
direction. Hence, if the rounding direction might be upward or downward, the implementation
cannot convert a minus-signed sequence by negating the converted unsigned sequence.

The fprintf family of functions in <stdio.h> and the fwprintf family of functions in <wchar.h>
should behave as if floating-point operands were passed through the canonicalize function of the
same type.*D

F.6 The return statement

If the return expression is evaluated in a floating-point format different from the return type, the
expression is converted as if by assignment®*? to the return type of the function and the resulting
value is returned to the caller.

E7 Contracted expressions

A contracted expression is correctly rounded (once) and treats infinities, NaNs, signed zeros, sub-
normals, and the rounding directions in a manner consistent with the basic arithmetic operations
covered by IEC 60559.

Recommended practice

A contracted expression should raise floating-point exceptions in a manner generally consistent
with the basic arithmetic operations.

F.8 Floating-point environment

The floating-point environment defined in <fenv. h> includes the IEC 60559 floating-point exception
status flags and directed-rounding control modes. It includes also IEC 60559 dynamic rounding
precision and trap enablement modes, if the implementation supports them 383

F8.1 Environment management

IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. These changes to the floating-point state are treated as side effects which respect
sequence points.¥¥

380)The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits are 0.

31This is a recommendation instead of a requirement so that implementations may choose to print signaling NaNs
differently from quiet NaNs.

382) Assignment removes any extra range and precision.

383) This specification does not require dynamic rounding precision nor trap enablement modes.

389If the state for the FENV_ACCESS pragma is “off”, the implementation is free to assume the dynamic floating-point control
modes will be the default ones and the floating-point status flags will not be tested, which allows certain optimizations (see

396 IEC 60559 floating-point arithmetic §F8.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

— trunc(£0) returns +0.

— trunc(£o0) returns +oo.

The returned value is exact and is independent of the current rounding direction mode.

F10.6.10 The toint and touint functions

The fromfp-and-ufremfp-toint and touint functions raise the “invalid” floating-point exception
and return an unspecified value if the floating-point argument x is infinite or NaN or rounds to an
integral value that is outside the range of any supported integer type of the specified width.

These functions do not raise the “inexact” floating-point exception.

F10.6.11 The tointx and touintx functions

The fromfpxand-ufremfpx-tointx and touintx functions raise the “invalid” floating-point excep-
tion and return an unspecified value if the floating-point argument x is infinite or NaN or rounds to
an integral value that is outside the range of any supported integer type of the specified width.

These functions raise the “inexact” floating-point exception if a valid result differs in value from the
floating-point argument x.
F10.7 Remainder functions

E10.7.1 The fmod functions
— fmod(+£0, y) returns £0 for y not zero.

— fmod(z, y) returns a NaN and raises the “invalid” floating-point exception for z infinite or y
zero (and neither is a NaN).
(

— fmod(z, £00) returns z for x not infinite.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

The double version of fmod behaves as though implemented by

#include <math.h>

#include <fenv.h>

#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)

{
double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);
}

F10.7.2 The remainder functions
— remainder(=£0, y) returns £0 for y not zero.

— remainder(z,y) returns a NaN and raises the “invalid” floating-point exception for z infinite
or y zero (and neither is a NaN).

— remainder(xz, +oo) returns x for x not infinite.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F10.7.3 The remquo functions

The remquo functions follow the specifications for the remainder functions. They have no further
specifications special to IEC 60559 implementations.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

§F10.7.3 IEC 60559 floating-point arithmetic 409

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

J.5.11 Multiple external definitions

There may be more than one external definition for the identifier of an object, with or without the
explicit use of the keyword extern; if the definitions disagree, or more than one is initialized, the
behavior is undefined (6.9.2).

J.5.12 Predefined macro names

Macro names that do not begin with an underscore, describing the translation and execution
environments, are defined by the implementation before translation begins (6.10.8).

J.5.13 Floating-point status flags

If any floating-point status flags are set on normal termination after all calls to functions registered
by the atexit function have been made (see 7.22.4.4), the implementation writes some diagnostics
indicating the fact to the stderr stream, if it is still open,

J.5.14 Extra arguments for signal handlers

Handlers for specific signals are called with extra arguments in addition to the signal number
(7.14.1.1).

J.5.15 Additional stream types and file-opening modes
Additional mappings from files to streams are supported (7.21.2).

Additional file-opening modes may be specified by characters appended to the mode argument of
the fopen function (7.21.5.3).

J.5.16 Defined file position indicator

The file position indicator is decremented by each successful call to the ungetc or ungetwc function
for a text stream, except if its value was zero before a call (7.21.7.10, 7.29.3.10).

J.5.17 Math error reporting

Functions declared in <complex.h> and <math.h> raise SIGFPE to report errors instead of, or in
addition to, setting errno or raising floating-point exceptions (7.3, 7.12).

J.6 Reserved identifiers and keywords

Alot of identifier preprocessing tokens are used for specific purposes in regular clauses or appendices
from translation phase 3 onwards. Using any of these for a purpose different from their description
in this document, even if the use is in a context where they are normatively permitted, may have an
impact on the portability of code and should thus be avoided.

J.6.1 Rule based identifiers

The following 29-33_regular expressions characterize identifiers that are systematically reserved by
some clause this document.

atomic_[a-z][a-zA-Z0-9_1%*
ATOMIC_[A-Z][a-zA-Z0-9_1x
_la-zA-Z_1[a-zA-Z0-9_1%
cnd_[a-z][a-zA-Z0-9_]1%
DBL_[A-Z][a-zA-Z0-9_1]x
E[0-9A-Z]1[a-zA-Z0-9_1x
FE_[A-Z][a-zA-Z0-9_]x*
INT[a-zA-Z0-9_]x*_C
INT[a-zA-Z0-9_]*_MAX
INT[a-zA-Z0-9_]*_MIN
int[a-zA-70-9_]x_t
INT[a-zA-Z0-9_]*_WIDTH

§J.6.1

is[a-z][a-zA-Z0-9_]x
LC_[A-Z][a-zA-Z0-9_]x
mem[a-z][a-zA-Z0-9_]x*
mtx_[a-z][a-zA-Z0-9_]x*
LDBL_[A-Z][a-zA-Z0-9_]x
PRI[a-zX][a-zA-Z0-9_1]x
SCN[a-zX][a-zA-Z0-9_]x
SIG[A-Z][a-zA-Z0-9_]x
SIG_[A-Z][a-zA-Z0-9_]x
str[a-z][a-zA-Z0-9_]x*
thrd_[a-z][a-zA-Z0-9_]x
TIME_[A-Z][a-zA-Z0-9_]x*
to[a-z][a-zA-Z0-9_]x
tss_[a-z][a-zA-Z0-9_]x*

Portability issues 451

ISO/IEC 9899:202x (E)

UINT[a-zA-Z0-9_]*_C
UINT[a-zA-Z0-9_]x_MAX
uint[a-zA-Z0-9_]x_t

working draft — March 30, 2019

UINT[a-zA-Z0-9_1*_WIDTH
wcs[a-z][a-zA-Z0-9_]x*

C201903. NOWANT N2359

The following 462-554 identifiers or keywords match these patterns and have particular semantics

provided by this document.

_Alignas
—_alignas_is_defined
—Alignof
——alignof_is_defined
—Atomic

atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_charlé6_t
ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong

atomic_compare_exchange_strong_explicit

atomic_compare_exchange_weak

atomic_compare_exchange_weak_explicit

atomic_exchange
atomic_exchange_explicit
atomic_fetch_
atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag
atomic_flag_clear
atomic_flag_clear_explicit
ATOMIC_FLAG_INIT
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit
atomic_init

atomic_int
atomic_int_fastl6_t
atomic_int_fast32_t
atomic_int_fast64_t
atomic_int_fast8_t
atomic_int_leastl6_t
atomic_int_least32_t
atomic_int_least64_t
atomic_int_least8_t
ATOMIC_INT_LOCK_FREE
atomic_intmax_t
atomic_intptr_t

452

atomic_is_lock_free
atomic_1llong
ATOMIC_LLONG_LOCK_FREE
atomic_load
atomic_load_explicit
atomic_long
ATOMIC_LONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
atomic_ptrdiff_t
atomic_schar
atomic_short
ATOMIC_SHORT_LOCK_FREE
atomic_signal_fence
atomic_size_t
atomic_store
atomic_store_explicit
atomic_thread_fence
atomic_uchar
atomic_uint
atomic_uint_fastl6_t
atomic_uint_fast32_t
atomic_uint_fast64_t
atomic_uint_fast8_t
atomic_uint_leastl6_t
atomic_uint_least32_t
atomic_uint_least64_t
atomic_uint_least8_t
atomic_uintmax_t
atomic_uintptr_t
atomic_ullong
atomic_ulong
atomic_ushort
ATOMIC_VAR_INIT
atomic_wchar_t
ATOMIC_WCHAR_T_LOCK_FREE
—Bool
—_bool_true_false_are_defined
cnd_broadcast
cnd_destroy

cnd_init

cnd_signal

cnd_t

cnd_timedwait

cnd_wait
=Complex-DBL_DECIMAL DIG
=Complex=I DBL_DIG

—cplusplus DBL_EPSILON.
—DATE— DBL_HAS_SUBNORM

DBL_MANT_DIG_

Portability issues

§J.6.1

N2359 working draft — March 30, 2019

DBL_MAX
DBL_MAX_10_EXP_
DBL_MAX_EXP

DBL_MIN
DBL_MIN_10_EXP_
DBL_MIN_EXP
DBL_TRUE_MIN_

EDOM

EILSEQ

EOF

EOL

ERANGE

—Exit

EXIT_FAILURE
EXIT_SUCCESS

_EXT__

FE_ALL_EXCEPT
FE_DFL_ENV
FE_DFL_MODE
FE_DIVBYZERO
FE_DOWNWARD
FE_DYNAMIC
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_SNANS_ALWAYS_SIGNAL
FE_TONEAREST
FE_TOWARDZERO
FE_UNDERFLOW
FE_UPWARD
—FILE—FLT_DECIMAL DIG
—fune—FLT_DIG
—Generic FLT_EPSILON

~Imaginary FLT_EVAL METHOD

=Imaginary=I-FLT_HAS_SUBNORM

FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP_
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP_
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS
FLT_TRUE_MIN
FP_CONTRACT
FP_FAST_DADDL
FP_FAST_DDIVL
FP_FAST_DFMAL
FP_FAST_DMULL _
FP_FAST_DSQRTL_
FP_FAST_DSUBL _
FP_FAST_FADD _
FP_FAST_FADDL
FP_FAST_FDIV _
FP_FAST_FDIVL

§J.6.1

ISO/IEC 9899:202x (E)

FP_FAST_FFMA_
FP_FAST_FFMAL
FP_FAST_FNA
FP_FAST_FMAF _
FP_FAST_FMAL _
FP_FAST_FMUL _
FP_FAST_FMULL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_FSUB _
FP_FAST_FSUBL
FP_ILOGBO
FP_TLOGBNAN
FP_INFINITE
FP_INT_DOWNWARD
FP_INT_TONEAREST
FP_INT_TONEARESTFROMZERO
FP_INT_TOWARDZERQ
FP_INT_UPWARD
FP_LLOGBO
FP_LLOGBNAN
FP_NAN_
FP_NORMAL
FP_SUBNORMAL _
FP_ZERQ

INT16_C
INT16_MAX
INT16_MIN
intlé_t
INT32_C
INT32_MAX
INT32_MIN
int32_t
INT64_C
INT64_MAX
INT64_MIN
int64_t
INT8_C
INT8_MAX
INT8_MIN
int8_t
int_fastl6_t
int_fast32_t
int_fast64_t
int_fast8_t
int_leastlé6_t
int_least32_t
int_least64_t
int_least8_t
INT_MAX
INTMAX_C
INTMAX_MAX
INTMAX_MIN
intmax_t
INTMAX_WIDTH
INT_MIN

Portability issues 453

ISO/IEC 9899:202x (E)

INTPTR_MAX
INTPTR_MIN
intptr_t
INTPTR_WIDTH
INT_WIDTH
_IOFBF
_IOLBF
_IONBF
isalnum
isalpha
isblank
iscanonical
iscntrl
isdigit
iseqsig
isfinite
isgraph
isgreater
isgreaterequal
isinf
isless
islessequal
islessgreater
islower
isnan
isnormal
isprint
ispunct
issignaling
isspace
issubnormal
isunordered
isupper
iswalnum
iswalpha
iswblank
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
isxdigit
iszero
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

—LINE— LDBL_DECIMAL_DIG

LDBL_DIG

454

working draft — March 30, 2019 N2359

LDBL_EPSILON
LDBL_HAS_SUBNORM_
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP_
LDBL_MAX_EXP _
LDBL_MIN
LDBL_MIN_10_EXP_
LDBL_MIN_EXP _
LDBL_TRUE_MIN
memchr
memcmp
memcpy
memcpy_s
memmove
memmove_s
memory_order
memory_order_acqg_rel
memory_order_acquire
memory_order_consume
memory_order_relaxed
memory_order_release
memory_order_seq_cst
memset
memset_s
mtx_destroy
mtx_init
mtx_lock
mtx_plain
mtx_recursive
mtx_t
mtx_timed
mtx_timedlock
mtx_trylock
mtx_unlock
—Noreturn
—Pragma
PRId32
PRId64
PRIAFAST32
PRIAFAST64
PRIALEAST32
PRIALEAST64
PRIdMAX
PRIAPTR
PRIi32
PRIi64
PRIiFAST32
PRIiFAST64
PRIiLEAST32
PRIiLEAST64
PRIiMAX
PRIiPTR
PRIo32
PRIo64
PRIOFAST32

Portability issues §J.6.1

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)
PRIOFAST64 __STDC_NO_THREADS __
PRIOLEAST32 __STDC_NO_VLA__
PRIOLEAST64 __STDC_UTF_16__
PRIoMAX _ STDC_UTF_32__
PRIoPTR __STDC_VERSION_ _
PRIu32 —_STDC_WANT_IEC_60559_
PRIu64 __STDC_WANT_IEC_60559_BFP_EXT__
PRIuFAST32 —_STDC_WANT_LIB_EXT1 _
PRIuUFAST64 strcat
PRIuULEAST32 strcat_s
PRIULEAST64 strchr

PRIuMAX strcmp

PRIuPTR strcoll

PRIX32 strcpy

PRIX64 strcpy_s
PRIXFAST32 strcspn
PRIXFAST64 strerror
PRIXLEAST32 strerrorlen_s
PRIXLEAST64 strerror_s
PRIXMAX strfromd-
PRIXPTR strfromf-
SCNdMAX strfromt
SCNdPTR strftime

SCNiMAX strlen

SCNiPTR strncat

SCNoMAX strncat_s
SCNoPTR strncmp

SCNuMAX strncpy

SCNuPTR strncpy_s
SCNxMAX strnlen_s
SCNxPTR strpbrk

SIGABRT strrchr
SIG_ATOMIC_MAX strspn
SIG_ATOMIC_MIN strstr
SIG_ATOMIC_WIDTH strtod

SIG_DFL strtof

SIG_ERR strtoimax

SIGFPE strtok

SIG_IGN strtok_s

SIGILL strtol

SIGINT strtold

SIGSEGV strtoll

SIGTERM strtoul
_Static_assert strtoull
—STDC_ strtoumax
—_STDC_ANALYZABLE__ struct
—STDC_HOSTED__ strxfrm

— STDC_IEC_559__ thrd_busy
—STDC_IEC_559_COMPLEX _ thrd_create
—STDC_IEC_60559_BFP__ thrd_current
—STDC_IEC_60559_COMPLEX _ thrd_detach
—STDC_IS0_10646__ thrd_equal
—STDC_LIB_EXT1 _ thrd_error
—_STDC_MB_MIGHT_NEQ_WC__ thrd_exit
—STDC_NO_ATOMICS _ thrd_join
—STDC_NO_COMPLEX__ thrd_nomem

§J.6.1 Portability issues 455

ISO/IEC 9899:202x (E)

thrd_sleep
thrd_start_t
thrd_success
thrd_t
thrd_timedout
thrd_yield
—Thread_local
—TIME__
TIME_UTC
toint_
tointf
tointx.
tointxf
tointxl
tolower
tostrd
tostrf
tostrld
totalorder
totalorderf
totalorderl
totalordermag
totalordermagf
totalordermagl
touint
touintf
touintl
touintx
touintxf
touintxl
toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set

tss_t
UINT16_C
UINT16_MAX
uintl6_t
UINT32_C
UINT32_MAX
uint32_t
UINT64_C
UINT64_MAX
uint64_t
UINT8_C
UINT8_MAX
uint8_t
uint_fastl6_t
uint_fast32_t
uint_fast64_t

456

working draft — March 30, 2019

uint_fast8_t
uint_leastl6_t
uint_least32_t
uint_least64_t
uint_least8_t
UINT_MAX
UINTMAX_C
UINTMAX_MAX
uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t
UINTPTR_WIDTH
UINT_WIDTH
—VA_ARGS__
wcscat
wcscat_s
wcschr

wcscmp
wcscoll
wcscpy
WCSCpy—s
wcscspn
wcsftime
wcslen
wcsncat
wcsncat_s
wcsncmp
wcsncpy
wcsncpy-_s
wcsnlen_s
wcspbrk
wcsrchr
wcsrtombs
wcsrtombs_s
wcsspn

wcsstr

wcstod

wcstof
wcstoimax
wcstok
wcstok_s
wecstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm
=WIDTH_Alignas
~Alignof
Atomic
—Bool_
_Complex

Portability issues

N2359

§J.6.1

N2359 C201903.NOWANT

~Complex_I
<Exit
EXT—
~Generic

~Imaginary

~Imaginary I
IOFBF

IOLBF
~IONBF
Noreturn
~Pragma
~Static_assert
~Thread_local
WIDTH_

~bool_true_false_are_defined
~cplusplus

—DATE__

—FILE

~func__

—LINE__
~—STDC_ANALYZABLE__
—STDC_FENV_VERSION__
—STDC_HOSTED___

J.6.2 Particular identifiers or keywords

working draft — March 30, 2019

ISO/IEC 9899:202x (E)

_STDC_IEC 559_COMPLEX___
_STDC_IEC 559__
—STDC_IEC_ 60559 _BFP__
_STDC_IEC_60559_COMPLEX __
_STDC_IS0_10646__
_STDC_LIB EXTL_
—STDC_MATH_VERSION
_STDC_MB_MIGHT_NEQ_WC___
_STDC_NO_ATOMICS__
__STDC_NO_COMPLEX___
—_STDC_NO_THREADS___
_STDC_NO_VLA___
—STDC_STDINT_VERSION _
_STDC_STDLIB_VERSION _
—STDC_TGMATH_VERSION _
_STDC_UTF_16___
_STDC_UTF_32__~
_STDC_VERSION___
_STDC_WANT_TEC_60559.
—STDC_WANT_IEC_60559_BFP_EXT__
 STDC_WANT_LIB EXT1 _
_STDC__
TIME
_VA_ARGS.

The following 808721 identifiers or keywords are not covered by the above and have particular

semantics provided by this document.

abort atan2f cabsf
abort_handler_s atan2l cabsl

abs atanf cacos

acos atanh cacosf

acosf atanhf cacosh

acosh atanhl cacoshf
acoshf atanl cacoshl
acoshl atexit cacosl

acosl atof calloc
alignas atoi call_once
aligned_alloc atol canonicalize
alignof atoll canonicalizef
and at_quick_exit canonicalizel
and_eq auto carg

asctime bitand cargf
asctime_s bitor cargl

asin bool case

asinf break casin

asinh bsearch casinf

asinhf bsearch_s casinh

asinhl btowc casinhf

asinl BUFSIZ casinhl
assert clértomb casinl

atan c32rtomb catan

atan2 cabs catanf

§J.6.2 Portability issues 457

ISO/IEC 9899:202x (E)

catanh
catanhf
catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil
ceilf
ceill
cerf
cerfc
cexp
cexp2
cexpf
cexpl
cexpml
char
charleé_t
char32_t
CHAR_BIT
CHAR_MAX
CHAR_MIN
CHAR_WIDTH
cimag
cimagf
cimagl
clearerr
clgamma
clock
CLOCKS_PER_SEC
clock_t
clog
cloglo
cloglp
clog2
clogf
clogl
CMPLX
CMPLXF
CMPLXL
compl
complex
conj
conjf
conjl
const
constraint_handler_t
continue
copysign

458

working draft — March 30, 2019

copysignf
copysignl
cos

cosf

cosh
coshf
coshl
cosl

cpow
cpowf
cpowl
cproj
cprojf
cprojl
CR_DECIMAL_DIG
creal
crealf
creall
csin
csinf
csinh
csinhf
csinhl
csinl
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanh
ctanhf
ctanhl
ctanl
ctgamma
ctime
ctime_s
currency_symbol
CX_LIMITED_RANGE
dadd

PBL_TRUE-MIN-ddivl
ddiv

ddivl

DECIMAL_DIG
decimal_point

Portability issues

N2359

DEFAULT
define
defined
dfma
dfmal
difftime
div
div_t
dmul
dmull
do
double
double_t
dsqrt
dsqrtl
dsub
dsubl
elif
else
endif
enum
erf
erfc
erfcf
erfcl
erff
erfl
errno
errno_t
error
exit
exp
exp2
exp2f
exp2l
expf
expl
expml
expmlf
expmll
extern
fabs
fabsf
fabsl
fadd
faddl
false
fclose
fdim
fdimf
fdiml
fdiv
fdivl
feclearexcept
fegetenv
fegetexceptflag

§J.6.2

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)

fegetmode fmaxmagf fputc
fegetround fmaxmagl fputs
feholdexcept fmin fputwc
femode_t fminf fputws
FENV_ACCESS fminl FP—-ZERO-
FENV_ROUND fminmag frac_digits
fenv_t fminmagf fread

feof fminmagl free
feraiseexcept fmod freopen
ferror fmodf freopen_s
fesetenv fmod1l frexp
fesetexcept fmul frexpf
fesetexceptflag fmull frexpl
fesetmode fopen fromfp-
fesetround FOPEN_MAX fromfpf-
fetestexcept fopen_s fromfpt-
fetestexceptflag for fromfpx-
feupdateenv fpclassify fromfpxf-frexp
fexcept_t FP_CONTRACT- fromfpxt-fscanf_s
fflush FP-FAST-DADDL- fscanf
ffma FP=FAST-DDIVH- fscanf_s
ffmal FP-FAST-DFMAL- fseek
fgetc FP_FAST-DMULL- fsetpos
fgetpos FP_FAST-DSQRTL- fsqrt
fgets FP—FAST-DSUBL- fsqrtl
fgetwc FP_FAST-FADD- fsub
fgetws FP_FAST-FADDL- fsubl

FILE FP_FAST-FDIV- ftell
FILENAME_MAX FP_FAST-FDIVL- fwide
float FP_FAST_FFMA- fwprintf
float_t FP_FAST-FFMAL- fwprintf_s
floor FP_FAST-FMA- fwrite
floorf FP_FAST-_FMAF- fwscanf
floorl FP_FAST-_FMAL- fwscanf_s
FLT-DECIMAL-DIG- FP_FAST-_FMUL- getc
FLT-DIG- FP_FAST-_FMULL- getchar
FLT=EPSILON- FP-FAST-FSQRT- getenv
FLT-EVAL-_METHOD- FP_FAST-FSQRTL- getenv_s
FLTF-HAS-_SUBNORM- FP_FAST-FSUB- getpayload
FLET-MANT-DIG- FP_FAST-FSUBL- getpayloadf
FETMAX- FP_ILOGBO- getpayloadl
FLET=MAX=10-EXP- FP_TILOGBNAN- gets
FLET=MAX=EXP- FP_INFINITE- gets_s
FLET=MIN- FP_INT—DOWNWARD- getwc
FET-MIN-TO_EXP- FP_INT_TONEAREST- getwchar
FET-MIN-EXP- FP_INT_TONEARESTFROMZERO gmtime
FLT=RADIX- FP_INT-TOWARDZERO- gmtime_s
FLT-ROUNDS- FP_INT-UPWARD- goto
FLET=TRUE-MIN- FP—LLOGBO- grouping
fma-floor FP_LLOGBNAN HUGE_VAL
fmaf FP-NAN- HUGE_VALF
fmal FP_NORMAL- HUGE_VALL
fmax fpos_t hypot
fmaxf fprintf- hypotf
fmax1 fprintf_s hypotl
fmaxmag FP=SUBNORMAL-fprintf I

§J.6.2 Portability issues 459

ISO/IEC 9899:202x (E)

if

ifdef

ifndef
ignore_handler_s
ilogb

ilogbf

ilogbl

imaginary

imaxabs

imaxdiv

imaxdiv_t

include

INFINITY

inline
int_curr_symbol
int_frac_digits
int_n_cs_precedes
int_n_sep_by_space
int_n_sign_posn
int_p_cs_precedes
int_p_sep_by_space
int_p_sign_posn
jmp_buf
kill_dependency
labs

lconv

ldexpf
ldexpl
ldiv
ldiv_t
lgamma
lgammaf
lgammal
line
1labs
1ldiv
1ldiv_t
1logh
1logbf
1logbl
LLONG_MAX
LLONG_MIN
LLONG_WIDTH

460

working draft — March 30, 2019

1lrint
1lrintf
1lrintl
1lround
1lroundf
1lroundl
localeconv
localtime
localtime_s
log

logl0
loglof
loglol
loglp
loglpf
loglpl
log2

log2f
log21

logb

logbf
logbl

logf

logl

long
longjmp
LONG_MAX
LONG_MIN
LONG_WIDTH
lrint
lrintf
lrintl
lround
lroundf
lroundl
L_tmpnam
L_tmpnam_s
main
malloc
MATH_ERREXCEPT
math_errhandling
MATH_ERRNO
max_align_t
MB_CUR_MAX
mblen
MB_LEN_MAX
mbrlen
mbrtocl6
mbrtoc32
mbrtowc
mbsinit
mbsrtowcs
mbsrtowcs_s
mbstate_t
mbstowcs
mbstowcs_s

Portability issues

mbtowc

mktime

modf

modff

modfl
mon_decimal_point
mon_grouping
mon_thousands_sep
nan

nanf

nanl
n_cs_precedes
NDEBUG
nearbyint
nearbyintf
nearbyintl
negative_sign
nextafter
nextafterf
nextafterl
nextdown
nextdownf
nextdownl
nexttoward
nexttowardf
nexttowardl
nextup
nextupf
nextupl
noreturn

not

not_eq
n_sep_by_space
n_sign_posn
NULL

OFF

offsetof

ON

once_flag
ONCE_FLAG_INIT
or

or_eq
p—cs_precedes
perror
positive_sign
pow

powf

powl

pragma

printf
printf_s
p—sep_by_space
p—sign_posn
PTRDIFF_MAX
PTRDIFF_MIN
ptrdiff_t

N2359

§J.6.2

N2359

PTRDIFF_WIDTH
putc
putchar
puts

putwc
putwchar
gsort
gsort_s
quick_exit
raise

rand
RAND_MAX
realloc
register
remainder
remainderf
remainderl
remove
remquo
remquof
remquol
rename
restrict
return
rewind
rint

rintf
rintl
round
roundeven
roundevenf
roundevenl
roundf
roundl
RSIZE_MAX
rsize_t
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scanf
scanf_s
SCHAR_MAX
SCHAR_MIN
SCHAR_WIDTH
SEEK_CUR
SEEK_END
SEEK_SET
setbuf
set_constraint_handler_s
setjmp
setlocale
setpayload
setpayloadf

§J.6.2

working draft — March 30, 2019

setpayloadl
setpayloadsig
setpayloadsigf
setpayloadsigl
setvbuf
short
SHRT_MAX
SHRT_MIN
SHRT_WIDTH
sig_atomic_t
signal
signbit
signed

sin

sinf

sinh

sinhf

sinhl

sinl
SIZE_MAX
sizeof
size_t
SIZE_WIDTH
SNAN

SNANF

SNANL
snprintf
snprintf_s
snwprintf_s
sprintf
sprintf_s
sqrt

sqrtf

sqrtl

srand
sscanf
sscanf_s
static
static_assert
STDC

stderr
stdin
stdout
switch
swprintf
swprintf_s
swscanf
swscanf_s
system

tan

tanf

tanh

tanhf

tanhl

tanl

tgamma

Portability issues

ISO/IEC 9899:202x (E)

tgammaf
tgammal
thousands_sep
thread_local
time
timespec
timespec_get
time_t

tm

tm_hour
tm_isdst
tm_mday
tm_min
tm_mon
tmpfile
tmpfile_s
TMP_MAX
TMP_MAX_S
tmpnam
tmpnam_s
tm_sec
tm_wday
tm_yday
tm_year

true

trunc

truncf
truncl
TSS_DTOR_ITERATIONS
tv_nsec
tv_sec
typedef
UCHAR_MAX
UCHAR_WIDTH

ULLONG_MAX
ULLONG_WIDTH
ULONG_MAX
ULONG_WIDTH
undef
ungetc
ungetwc
union
unsigned
USHRT_MAX
USHRT_WIDTH
va_arg
va_copy
va_end
va_list
va_start

461

ISO/IEC 9899:202x (E)

vfprintf
vfprintf_s
vfscanf
vfscanf_s
vfwprintf
vfwprintf_s
vfwscanf
vfwscanf_s
void
volatile
vprintf
vprintf_s
vscanf
vscanf_s
vsnprintf
vsnprintf_s
vsnwprintf_s
vsprintf
vsprintf_s
vsscanf
vsscanf_s

462

working draft — March 30, 2019

vswprintf
vswprintf_s
vswscanf
vswscanf_s
vwprintf
vwprintf_s
vwscanf
vwscanf_s
WCHAR_MAX
WCHAR_MIN
wchar_t
WCHAR_WIDTH
wcrtomb
wcrtomb_s
wctob
wctomb
wctomb_s
wctrans
wctrans_t
wctype
wctype_t

Portability issues

N2359

WEOF
while
WINT_MAX
WINT_MIN
wint_t
WINT_WIDTH
wmemchr
wmemcmp
wmemcpy
wmemcpy_s
wmemmove
wmemmove_s
wmemset
wprintf
wprintf_s
wscanf
wscanf_s
xor

xor_eq

§J.6.2

image3.emf
n2359.pdf

n2359.pdf
ISO/IEC JTC 1/SC 22/WG14 FNELe]

March 30, 2019 vl
Remove conditional “WANT” macros from numbered clauses
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The recent integration of TS 18661-1 has moved the use of “WANT” macros into the main body of the
C standard, making the added interfaces optional. We think that this is not optimal, neither for user code
nor for implementations, an propose to change that to a set of more straight forward feature test macros
for the version of the included headers. Along with that also a long list of names have been imposed to the
standard. We propose some mild modifications to reduce the pain of the transition and keep C open for
future directions.

1. INTRODUCTION

When it was designed, TS 18661-1 (and follow ups) invented a mechanism that would allow
implementations to provide that extension in the concerned headers without imposing a
pollution of the user name space for code that was not TS 18661-1 aware. Whereas in that
context the approach made complete sense, continuing with the same setting once integrated
into ISO/IEC 9899 is not very constructive.

— It makes interfaces optional that shouldn’t be.
— It reduces exposure of the new interfaces to a very restricted set of applications.
— It adds unnecessary complexity to implementations.

On the other hand, adding new mandatory interfaces to standard headers also has its cost,
namely the increasing risk of name conflicts with an existing code base. This risk is relatively
high for TS 18661-1:

— TS 18661-1 adds about 150 (13%) new interfaces (functions and macros) to the C standard.

— Some of these interfaces use plain English words (canonicalize), short abbreviations
(daddl) or introduce unusual naming schemes (fromfp), that have an even higher risk of
name conflicts that the usual prefix-oriented additions.

The proposal of this paper is to remove the conditionality of these interfaces by

(1) removing the dependency from the __STDC_WANT_IEC_60559_BFP_EXT__ macro,

(2) by adding version test macros such as __STDC_FENV_VERSION__ to the headers that un-
dergo changes,

(3) by revisiting some of the naming choices, and

(4) by reserving some identifier prefixes for future use.

2. REMOVING DEPENDENCY FROM __STDC_WANT_IEC_60559_BFP_EXT__

The only construct in the standard that would be similar to
__STDC_WANT_IEC_60559_BFP_EXT__ is __STDC_WANT_LIB_EXT1__ as it used by Annex K.
Since the features of Annex K are optional (testable by __STDC_LIB_EXT1__) such a macro
makes complete sense there, because we don’t want an implementation that has Annex K
to pollute the name space of all its users.

For the integration of TS 18661-1 the situation is different. It has mainly (see below) in-
tegrated directly into the body of the standard, and there is no reason (or feature test
macro) that indicates that the interfaces should be optional. In the contrary, most of them
are useful additions that should make coding with floating point data more convenient and
numerical algorithms more robust.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N9999:2 Jens Gustedt

There are only a few new interfaces that are not integrated into the body of the standard but
into Annex F, where a dependency from __STDC_WANT_IEC_60559_BFP_EXT__ makes perfect
sense, namely for the same reasons as mentioned above for Annex K.

Therefore we simply propose

— to move the boilerplate for WANT macros from 7.1.2 (Standard headers) to Annex F.
— to remove the use of __STDC_WANT_IEC_60559_BFP_EXT__ from all numbered clauses, but
to keep it in Annex F.

Editorially these two steps are quite easy, and we show their application in the attached
diffmarks.

3. ADDING VERSION TEST MACROS

The addition of about 150 new interfaces for a new C version can be quite a burden for
large code bases that wish to migrate to C2x. Conflicts will not occur often, but they are
likely to occur somewhere and should be easy to track and to manage.

Therefore we should provide an easy-to-use tool that allows for user code to control the
possible damage, but on the other hand will not impose much of a maintenance burden for
implementations either.

Another difficulty that appears when the community moves to a new C standard is the fact
that nowadays compilers and C libraries often come from different hands, and thus their
synchronization concerning a new standard is not trivial. History has shown that this has
been mayor hurdle for early acceptance of new C standards, and that dependency of one
single “language” version macro __STDC_VERSION__ is not enough to clarify the situation.
Therefore we propose to use a set of new macros of the form __STDC_ XXXX_VERSION__.
For example <math.h> sets a new macro __STDC_MATH_VERSION__ to a value greater than
202000L, and users can then test this as follows.

#include <math.h>

#if __STDC_MATH_VERSION__ > 202000L

error "this_code_likes_to_daddl,_fix_before_going_further”
#endif

There is already large experience with the use of such version macros for library headers
in ISO/IEC 9945, POSIX. There, such macros are defined for major branches of the stan-
dard and applications have learned to deal with them to adapt their code to the actual
environment.

4. REVISITING SOME OF THE NAMING CHOICES

Many of the new interfaces would better have been introduced with a name prefix, much as
other headers did when they were added to the C standard. It seems that this opportunity
has been missed, though I think that we still could take a turn and use names such as
fp_canonicalize instead of canonicalize, fp_add instead of fadd, etc.

Where these additions are particularly bad is where they introduce a new naming scheme
(without admitting it) that is even contraproductive to a future encapsulation of these
interfaces in a type generic function. These are the functions

fromfpf fromfpx1 strfromd ufromfpf ufromfpx1
fromfpl fromfpx strfromf ufromfpl ufromfpx
fromfpxf fromfp strfroml ufromfpxf ufromfp

Remove conditional “WANT"” macros from numbered clauses N9999:3

Here the usage of the particle from has no precedent in the standard. It is not a good choice
because in C conversions do usually not specify the source type of a conversion (it can be
deduced from the context) but, if so, the target type. By the naming choice, these interfaces
cannot be easily extended to type generic interfaces, since by their nature these should have
the source type implicit and the target type of feature explicit.

Therefore we propose to rename these interfaces to names starting with the reserved prefix
to, namely

tointf tointxl tostrd touintf touintxl
tointl tointx tostrf touintl touintx
tointxf toint tostrl touintxf touint

This clears up the type generic interfaces in <tgmath.h> (to toint and touint) and will
permit to propose another type generic interface in the sequel, in particular a macro tostr
for a type generic and safe conversion interface conversion from any base type to a string.

5. RESERVE ACTIVE PREFIXES FOR FUTURE USE

The integration of T'S 18661-1 has also shown that four prefixes are actively used for new
macro interfaces (namely DBL_, FLT_, LDBL_ and FP_) and should thus not be used by user
code. Therefore we propose to reserve these for future use. In addition, we propose also
to extend the future use clauses of some other prefixes to the header files were they are
actually used.

Appendix: pages with diffmarks of the proposed changes
against the March 2019 working draft.

The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)!”

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single member declaration list

5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Sizes of integer types <limits.h>
The felowing-identifiers-are-defined-enly

19)See “future language directions” (6.11.3).

20 Environment §524.21

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)

ELONG-_WIDTH-
ULLONG-_WIDTH-

The-values given below shall be replaced by constant expressions suitable for use in #if prepro-
cessing directives. Moreover, except for CHAR_BIT and MB_LEN_MAX, and the width-of-type macros,
the following shall be replaced by expressions that have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Their
implementation-defined values shall be equal or greater in magnitude (absolute value) to those
shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

I
| CHAR_BIT 8
L

— minimum value for an object of type signed char

| SCHAR_MIN 127 /7 —(27 - 1)

— maximum value for an object of type signed char

iSCHAR_MAx +127 // 2" -1

— width of type signed char

i SCHAR_WIDTH 8

— maximum value for an object of type unsigned char

[
| UCHAR_MAX 255 // 2° -1
L

— width of type unsigned char

[
| UCHAR_WIDTH 8
L

— minimum value for an object of type char

| CHAR_MIN see below
L

— maximum value for an object of type char

[
| CHAR_MAX see below
L

— width of type char

§524.2.1 Environment 21

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

<stdnoreturn.h> <threads.h> <wchar.h>
<string.h> <time.h> <wctype.h>
<tgmath.h> <uchar.h>

If a file with the same name as one of the above < and > delimited sequences, not provided as part of
the implementation, is placed in any of the standard places that are searched for included source
files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in a given
scope, with no effect different from being included only once, except that the effect of including
<assert.h>depends on the definition of NDEBUG (see 7.2). If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares, or to any of the types or macros it defines. However, if
an identifier is declared or defined in more than one header, the second and subsequent associated
headers may be included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the inclusion of the
header or when any macro defined in the header is expanded.

Some standard headers define or declare identifiers eontingenton-whethereertain-macros-whose

WQQQWMIQMWMMM
users to adapt to that situation, they also define a version macro for feature test of the form
—STDC_ }QW'M\'MMWMWWWMM&G
i —corresponding

W

Any definition of an object-like macro described in this clause or Annex K shall expand to code that
is fully protected by parentheses where necessary, so that it groups in an arbitrary expression as if it
were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in Annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and optionally
declares or defines identifiers listed in its associated future library directions subclause and identifiers
which are always reserved either for any use or for use as file scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another under-
score are always reserved for any use, except those identifiers which are lexically identical to
keywords.!??

— All identifiers that begin with an underscore are always reserved for use as identifiers with file
scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library directions)
is reserved for use as specified if any of its associated headers is included; unless explicitly
stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the future
library directions) and errno are always reserved for use as identifiers with external linkage.!?

— Each identifier with file scope listed in any of the following subclauses (including the future
library directions) is reserved for use as a macro name and as an identifier with file scope in
the same name space if any of its associated headers is included.

190) Allowss identifiers spelled with a leading underscore followed by an uppercase letter that match the spelling of a keyword
to be used as macro names by the program.
19D The list of reserved identifiers with external linkage includes math_errhandling, setjmp, va_copy, and va_end.

136 Library §7.13

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.6 Floating-point environment <fenv.h>

The header <fenv. h> defines several macros, and declares types and functions that provide access to
the floating-point environment. The floating-point environment refers collectively to any floating-point
status flags and control modes supported by the implementation.!V) A floating-point status flag is a
system variable whose value is set (but never cleared) when a floating-point exception is raised, which
occurs as a side effect of exceptional floating-point arithmetic to provide auxiliary information.?'?)
A floating-point control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

A floating-point control mode may be constant (7.6.2) or dynamic. The dynamic floating-point en-
vironment includes the dynamic floating-point control modes and the floating-point status flags.

The dynamic floating-point environment has thread storage duration. The initial state for a thread’s
dynamic floating-point environment is the current state of the dynamic floating-point environment
of the thread that creates it at the time of creation.

Certain programming conventions support the intended model of use for the dynamic floating-point
environment:*'¥

— a function call does not alter its caller’s floating-point control modes, clear its caller’s floating-
point status flags, nor depend on the state of its caller’s floating-point status flags unless the
function is so documented;

— a function call is assumed to require default floating-point control modes, unless its documen-
tation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions, unless its
documentation promises otherwise.

The feature test macro ___STDC_FENV_VERSION__ expands to the token ymmL.,
The type

[|
\ fenv_t
L |

represents the entire dynamic floating-point environment.

The type

i femode_t i
L |

represents the collection of dynamic floating-point control modes supported by the implementation,
including the dynamic rounding direction mode.

The type

2 This header is designed to support the floating-point exception status flags and directed-rounding control modes required
by IEC 60559, and other similar floating-point state information. It is also designed to facilitate code portability among all
systems.

212 A floating-point status flag is not an object and can be set more than once within an expression.

213)With these conventions, a programmer can safely assume default floating-point control modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer or program that does so
explicitly.

154 Library §7.6

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

<stdlib.h> | atof, strfromd, —strfremf——strfroemlt—strtod, strtof,
strtold, tostrd, tostrf, tostrl

<wchar.h> wcstod, westof, westold

<stdio.h> printf and scanf families

<wchar.h> | wprintf and wscanf families

Each <math. h> function listed in the table above indicates the family of functions of all supported
types (for example, acosf and acosl as well as acos).

NOTE Constant rounding modes (other than FE_DYNAMIC) could be implemented using dynamic rounding modes as
illustrated in the following example:

{
#pragma STDC FENV_ROUND direction
// compiler inserts:
// #pragma STDC FENV_ACCESS ON
// int __savedrnd;
// __savedrnd = __swapround(direction);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations not affected by constant rounding mode ...
// compiler inserts:
// __savedrnd = __swapround(__savedrnd);
.. operations affected by constant rounding mode ...
// compiler inserts:
// __swapround(__savedrnd);

where __swapround is defined by:

static inline int __swapround(const int new) {
const int old = fegetround();
fesetround(new) ;
return old;

7.6.3 Floating-point exceptions

The following functions provide access to the floating-point status flags.?? The int input argument
for the functions represents a subset of floating-point exceptions, and can be zero or the bitwise
OR of one or more floating-point exception macros, for example FE_OVERFLOW | FE_INEXACT. For
other argument values, the behavior of these functions is undefined.

7.6.3.1 The feclearexcept function
Synopsis

#include <fenv.h>
int feclearexcept(int excepts);

Description

The feclearexcept function attempts to clear the supported floating-point exceptions represented
by its argument.

22)The functions fetestexcept, feraiseexcept, and feclearexcept support the basic abstraction of flags that are either
set or clear. An implementation can endow floating-point status flags with more information — for example, the address of
the code which first raised the floating-point exception; the functions fegetexceptflag and fesetexceptflag deal with
the full content of flags.

158 Library §7.6.3.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.12 Mathematics <math.h>

The header <math.h> declares two types and many mathematical functions and defines several
macros. Most synopses specify a family of functions consisting of a principal function with one
or more double parameters, a double return value, or both; and other functions with the same
name but with f and 1 suffixes, which are corresponding functions with float and long double
parameters, return values, or both.?*» Integer arithmetic functions and conversion functions are
discussed later.

29 Particularly on systems with wide expression evaluation, a <math. h> function might pass arguments and return values
in wider format than the synopsis prototype indicates.

§7.12 Library 177

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

The feature test macro __STDC_MATH_VERSION__ expands to the token ymmL.
The types

float_t
double_t

are floating types at least as wide as float and double, respectively, and such that double_t is
at least as wide as float_t. If FLT_EVAL_METHOD equals 0, float_t and double_t are float and
double, respectively; if FLT_EVAL_METHOD equals 1, they are both double; if FLT_EVAL_METHOD
equals 2, they are both long double; and for other values of FLT_EVAL_METHOD, they are otherwise
implementation-defined.?*

The macro

\ HUGE_VAL

25)The types float_t and double_t are intended to be the implementation’s most efficient types at least as wide as
float and double, respectively. For FLT_EVAL_METHOD equal 0, 1, or 2, the type float_t is the narrowest type used by the
implementation to evaluate floating expressions.

178 Library §7.12

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

expands to a positive double constant expression, not necessarily representable as a float. The
macros

HUGE_VALF
HUGE_VALL

are respectively float and long double analogs of HUGE_VAL.23%

The macro

\ INFINITY

expands to a constant expression of type float representing positive or unsigned infinity, if available;
else to a positive constant of type float that overflows at translation time.?%”)

The macro

\ NAN

is defined if and only if the implementation supports quiet NaNs for the float type. It expands to a
constant expression of type float representing a quiet NaN.

The signaling NaN macros

SNANF
SNAN
SNANL

each is defined if and only if the respective type contains signaling NaNs (5.2.4.2.2). They expand to
a constant expression of the respective type representing a signaling NaN. If a signaling NaN macro
is used for initializing an object of the same type that has static or thread-local storage duration, the
object is initialized with a signaling NaN value.

The number classification macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer constant
expressions with distinct values. Additional implementation-defined floating-point classifications,
with macro definitions beginning with FP_ and an uppercase letter, may also be specified by the
implementation.

The math rounding direction macros

FP_INT_UPWARD
FP_INT_DOWNWARD
FP_INT_TOWARDZERO
FP_INT_TONEARESTFROMZERO
FP_INT_TONEAREST

represent the rounding directions of the functions ceil, floor, trunc, round, and roundeven,
respectively, that convert to integral values in floating-point formats. They expand to integer
constant expressions with distinct values suitable for use as the second argument to the fromfp;-

ufromfp, fromfpx andufremfpx-toint, touint, tointx, and touintx functions.

236)JUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that supports infinities.
237)In this case, using INFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

§7.12 Library 179

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

| _____intmax t toint(double x, int round, unsigned int width);
_____intmax_t tointf(float x, int round, unsigned int width);
_____intmax_t_tointl(long double x, int round, unsigned int width);
_____uintmax_t fouint(double x, int round, unsigned int width);
_____uintmax_t touintf(float x, int round, unsigned int width);
_____uintmax_t touintl(long double x, int round, unsigned int width);
L

Description

The fromfpand-ufromfp-toint and touint functions round x, using the math rounding direction
indicated by round, to a signed or unsigned integer, respectively, of width bits, and return the result
value in the integer type designated by intmax_t or uintmax_t, respectively. If the value of the
round argument is not equal to the value of a math rounding direction macro, the direction of
rounding is unspecified. If the value of width exceeds the width of the function type, the rounding
is to the full width of the function type. The fromfp-and-ufremfp-toint and touint functions do
not raise the “inexact” floating-point exception. If x is infinite or NaN or rounds to an integral value
that is outside the range of any supported integer type?*® of the specified width, or if width is zero,
the functions return an unspecified value and a domain error occurs.

Returns
The fremfp-and-ufremfp-toint and touint functions return the rounded integer value.
EXAMPLE Upward rounding of doub'le x to type int, without raising the “inexact” floating-point exception, is achieved by

(i E) 0 p()(: —IN 7HFWARB—‘I‘NT—W'I—B:FH‘)’, p—
___(int)toint(x, FP_INT_UPWARD, INT_WIDTH

7.12.9.11 The tointx and touintx functions
Synopsis

——#define —STBEWANT—TEFCE—66559-—BFP—FEXF—
#include <stdint.h>
#include <math.h>

_____intmax t tointxf(float x, int round, unsigned int width);
_____uintmax_t_touintx(double x, int round, unsigned int width);
_____uintmax_t_touintxl(long double x, int round, unsigned int width);

Description

The fromfpx-and-ufremfpxtointx and touintx functions differ from the fromfp-and-ufromfp-

toint and touint functions, respectively, only in that the fremfpx-and-ufromfpx-—tointx and

touintx functions raise the “inexact” floating-point exception if a rounded result not exceeding the
specified width differs in value from the argument x.

Returns
The fromfpx-and-ufromfpx-tointx and touintx functions return the rounded integer value.

NOTE Conversions to integer types that are not required to raise the inexact exception can be done simply by rounding to
integral value in floating type and then converting to the target integer type. For example, the conversion of long double x
to uint64_t, using upward rounding, is done by

248)For signed types, 6.2.6.2 permits three representations, which differ in whether a value of —(2), where M is the number

of value bits, can be represented.

§7.12.9.11 Library 199

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

\ (uint64_t)ceill(x)

7.12.10 Remainder functions
7.12.10.1 The fmod functions
Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

Description
The fmod functions compute the floating-point remainder of x/y.

Returns

The fmod functions return the value x — ny, for some integer n such that, if y is nonzero, the result
has the same sign as x and magnitude less than the magnitude of y. If y is zero, whether a domain
error occurs or the fmod functions return zero is implementation-defined.

7.12.10.2 The remainder functions
Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

Description

The remainder functions compute the remainder x REM y required by IEC 60559.24%)

Returns

The remainder functions return x REM vy. If y is zero, whether a domain error occurs or the functions
return zero is implementation defined.

7.12.10.3 The remquo functions
Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int xquo);

long double remquol(long double x, long double y, int *quo);

Description

The remquo functions compute the same remainder as the remainder functions. In the object pointed
to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo
2" to the magnitude of the integral quotient of x /y, where n is an implementation-defined integer
greater than or equal to 3.

Returns

The remquo functions return x REM y. If y is zero, the value stored in the object pointed to by quo
is unspecified and whether a domain error occurs or the functions return zero is implementation
defined.

29)“When y # 0, the remainder » = x REM y is defined regardless of the rounding mode by the mathematical relation
r = x — ny, where n is the integer nearest the exact value of =/y; whenever [n — x/y| = 1/2, then n is even. If r = 0, its sign
shall be that of z.” This definition is applicable for all implementations.

200 Library §7.12.10.3

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.20 Integer types <stdint.h>

The header <stdint.h> declares sets of integer types having specified widths, and defines corre-
sponding sets of macros.?’? It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)
Corresponding macros specify limits of the declared types and construct suitable constants.

For each type described herein that the implementation provides,?”® <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as “required”,
but need not provide any of the others (described as “optional”).

The feature test macro__STDC_STDINT_VERSION__ expands to the token yyyymmL.

7.20.1 Integer types

When typedef names differing only in the absence or presence of the initial u are defined, they shall
denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types

The typedef name intN_t designates a signed integer type with width N, no padding bits, and a
two’s complement representation. Thus, int8_t denotes such a signed integer type with a width of
exactly 8 bits.

275)See “future library directions” (7.31.12).
276)Some of these types might denote implementation-defined extended integer types.

§7.20.1.1 Library 231

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.22 General utilities <stdlib.h>

The header <stdlib.h> declares five types and several functions of general utility, and defines
several macros.>"”)

strfremt-The feature test macro __STDC_STDLIB_VERSION__ expands to the token yyyymmL.
The types declared are size_t and wchar_t (both described in 7.19),

\ div_t

which is a structure type that is the type of the value returned by the div function,

\ ldiv_t

which is a structure type that is the type of the value returned by the ldiv function, and

| lldiv_t

which is a structure type that is the type of the value returned by the 11div function.
The macros defined are NULL (described in 7.19);

\ EXIT_FAILURE

| EXIT_SUCCESS

which expand to integer constant expressions that can be used as the argument to the exit function
to return unsuccessful or successful termination status, respectively, to the host environment;

\ RAND_MAX

which expands to an integer constant expression that is the maximum value returned by the rand
function; and

\ MB_CUR_MAX

which expands to a positive integer expression with type size_t that is the maximum number of
bytes in a multibyte character for the extended character set specified by the current locale (category
LC_CTYPE), which is never greater than MB_LEN_MAX.

7.22.1 Numeric conversion functions

The functions atof, atoi, atol, and atoll need not affect the value of the integer expression errno
on an error. If the value of the result cannot be represented, the behavior is undefined.

7.22.1.1 The atof function

Synopsis

#include <stdlib.h>
double atof(const char xnptr);

307)See “future library directions” (7.31.14).

268 Library §7.22.1.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Description

The atof function converts the initial portion of the string pointed to by nptr to double representa-
tion. Except for the behavior on error, it is equivalent to

\ strtod(nptr, (char *x)NULL)

Returns
The atof function returns the converted value.

Forward references: the strtod, strtof, and strtold functions (7.22.1.4).

7.22.1.2 The atoi, atol, and atoll functions
Synopsis

#include <stdlib.h>

int atoi(const char xnptr);

long int atol(const char *nptr);

long long int atoll(const char xnptr);

Description

The atoi, atol, and atoll functions convert the initial portion of the string pointed to by nptr to
int, long int, and long long int representation, respectively. Except for the behavior on error,
they are equivalent to

atoi: (int)strtol(nptr, (char =x)NULL, 10)
atol: strtol(nptr, (char *x)NULL, 10)
atoll: strtoll(nptr, (char *x)NULL, 10)

Returns
The atoi, atol, and atoll functions return the converted value.

Forward references: the strtol, strtoll, strtoul, and strtoull functions (7.22.1.5).

7.22.1.3 The tostrd, tostrf, and tostrl functions
Synopsis

#define ——STRCWANT—TIEC-60559—BFP—EXT—
#include <stdlib.h>

int tostrd(char xrestrict s, size_t n, const char xrestrict format, double fp);

int tostrf(char xrestrict s, size_t n, const char xrestrict format, float fp);

int tostrl(char *restrict s, size_t n, const char xrestrict format, long double fp);

Description

The strfremd—strfromfand-strfromt—tostrd, tostrf, and tostrl functions are equivalent
to snprintf(s, n, format, fp) (7.21.6.5), except that the format string shall only contain the
character %, an optional precision that does not contain an asterisk *, and one of the conversion
specifiers a, A, e, E, f, F, g, or G, which applies to the type (double, float, or Llong double) indicated
by the function suffix (rather than by a length modifier).

Returns

The strfromd,strfromfand-strfromt-tostrd, tostrf, and tostrl functions return the number
of characters that would have been written had n been sufficiently large, not counting the terminating
null character. Thus, the null-terminated output has been completely written if and only if the
returned value is less than n.

§7.22.1.3 Library 269

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.25 Type-generic math <tgmath.h>

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines several
type-generic macros.

feature test macro ___STDC_TGMATH_VERSION__ expands to the token yyyymmL.

Of the <math.h>and <complex. h>functions without an f (float) or 1 (long double) suffix, several
have one or more parameters whose corresponding real type is double. For each such function,
except the functions that round result to narrower type (7.12.14) (which are covered below) and
modf, there is a corresponding type-generic macro.3*®® The parameters whose corresponding real
type is double in the function synopsis are generic parameters. Use of the macro invokes a function
whose corresponding real type and type domain are determined by the arguments for the generic
parameters.3??)

Use of the macro invokes a function whose generic parameters have the corresponding real type
determined as follows:

— First, if any argument for generic parameters has type long double, the type determined is
long double.

— Otherwise, if any argument for generic parameters has type double or is of integer type, the
type determined is double.

— Otherwise, the type determined is float.

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a c prefix, the corresponding type-generic macro (for both functions) has the
same name as the function in <math.h>. The corresponding type-generic macro for fabs and cabs
is fabs.

<math.h> <complex.h> type-generic

function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes a complex
function; otherwise, use of the macro invokes a real function.

328)Like other function-like macros in standard libraries, each type-generic macro can be suppressed to make available the

corresponding ordinary function.
3291f the type of the argument is not compatible with the type of the parameter for the selected function, the behavior is
undefined.

§7.25 Library 293

10

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

For each unsuffixed function in <math . h> without a c-prefixed counterpart in <complex. h> (except
functions that round result to narrower type, modf, and canonicalize), the corresponding type-
generic macro has the same name as the function. These type-generic macros are:

atan2 fdim frexp 1lrint nearbyint round

cbrt floor fromfptoint 1lround nextafter roundeven

ceil fma fromfpxtointx logl0 nextdown scalbn

copysign fmax hypot loglp nexttoward scalbln

erf fmaxmag ilogb log2 nextup tgamma

erfc fmin ldexp logb remainder trunc

exp2 fminmag lgamma lrint remquo wfremfptouint
expml fmod 1logb lround rint wfremfpxtouintx

If all arguments for generic parameters are real, then use of the macro invokes a real function;
otherwise, use of the macro is undefined.

For each unsuffixed function in <complex.h> that is not a c-prefixed counterpart to a function
in <math.h>, the corresponding type-generic macro has the same name as the function. These
type-generic macros are:

carg cimag conj cproj creal

Use of the macro with any real or complex argument invokes a complex function.

The functions that round result to a narrower type have type-generic macros whose names are
obtained by omitting any 1 suffix**” from the function names. Thus, the macros are:

fadd fsub fmul fdiv ffma fsqrt
dadd dsub dmul ddiv dfma dsqrt

All arguments shall be real. If any argument has type long double, or if the macro prefix is d, the
function invoked has the name of the macro with an 1 suffix. Otherwise, the function invoked has
the name of the macro (with no suffix).

A type-generic macro corresponding to a function indicated in the table in 7.6.2 is affected by
constant rounding modes (7.6.3).

NOTE The type-generic macro definition in the example in 6.5.1.1 does not conform to this specification. A conforming
macro could be implemented as follows:

#define cbrt(X) _Generic((X), \
long double: chrtl(X), \
default: _Roundwise_cbrt(X), \
float: chrtf(X) \

)

where _Roundwise_cbrt() is equivalent to cbrt() invoked without macro-replacement suppression.

330)There are no functions with these macro names and the f suffix.

294 Library §7.25

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

7.31 Future library directions

The following names are grouped under individual headers for convenience. All external names
described below are reserved no matter what headers are included by the program.

7.31.1 Complex arithmetic <complex.h>
The function names

cerf cexpml clog2
cerfc cloglo clgamma
cexp2 cloglp ctgamma

and the same names suffixed with f or 1 may be added to the declarations in the <complex.h>
header.

7.31.2 Character handling <ctype.h>

Function names that begin with either is or to, and a lowercase letter may be added to the declara-
tions in the <ctype. h> header.

7.31.3 Errors <errno.h>

Macros that begin with E and a digit or E and an uppercase letter may be added to the macros
defined in the <errno. h> header.

7.31.4 Floating-point environment <fenv.h>

Macros that begin with FE_ and an uppercase letter may be added to the macros defined in the
<fenv.h> header.

7.31.5 Format conversion of integer types <inttypes.h>

Macros that begin with either PRI or SCN, and either a lowercase letter or X may be added to the
macros defined in the <inttypes.h> header.

Function names that begin with str, orwcs and a lowercase letter may be added to the declarations
in the <inttypes.h> header.

7.31.6 Localization <locale.h>

Macros that begin with LC_ and an uppercase letter may be added to the macros defined in the
<locale.h> header.

7.31.7 Mathematics <math.h>
Function names that begin with either is or to, and a lowercase letter may be added to the

declarations in the <math. h> header.

Macros that begin with DBL_ FLT_, FP_, or LDBL_ and an uppercase letter may be added to the

macros defined in the <math.h>header.

7.31.8 Signal handling <signal.h>

Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be
added to the macros defined in the <signal.h> header.

7.31.9 Atomics <stdatomic.h>

Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined
in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_
and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

The macro ATOMIC_VAR_INIT is an obsolescent feature.

354 Library §7.319

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

7.31.10 Boolean type and values <stdbool. h>

The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent
feature.

7.31.11 Integer types <stdint.h>

Typedef names beginning with int or uint and ending with _t may be added to the types defined
in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
—WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.12 Input/output <stdio.h>

Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and
fscanf. Other characters may be used in extensions.

The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.13 General utilities <stdlib.h>

Function names that begin with str or wcs and a lowercase letter may be added to the declarations
in the <stdlib.h> header.

Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.14 String handling <string.h>

Function names that begin with str, mem, or wcs and a lowercase letter may be added to the
declarations in the <string.h> header.

7.31.15 Date and time <time.h>

Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

7.31.16 Threads <threads.h>

Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,
or tss_, and a lowercase letter may be added to the declarations in the <threads . h> header.

7.31.17 Extended multibyte and wide character utilities <wchar.h>

Function names that begin with wcs and a lowercase letter may be added to the declarations in the
<wchar. h> header.

Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

7.31.18 Wide character classification and mapping utilities <wctype.h>

Function names that begin with is or to and a lowercase letter may be added to the declarations in
the <wctype.h> header.

§7.31.18 Library 355

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

rsize_t

errno_t memcpy_s(void *restrict sl, rsize_t slmax, const void *restrict s2, rsize_t n);
errno_t memmove_s(void *sl, rsize_t slmax, const void *s2, rsize_t n);
errno_t strcpy_s(char xrestrict sl, rsize_t slmax, const char xrestrict s2);
errno_t strncpy_s(

char *restrict sl, rsize_t slmax, const char xrestrict s2, rsize_t n);
errno_t strcat_s(char *restrict sl, rsize_t slmax, const char xrestrict s2);
errno_t strncat_s(

char *restrict sl, rsize_t slmax, const char xrestrict s2, rsize_t n);
char xstrtok_s(

char xrestrict sl, rsize_t xrestrict slmax,

const char xrestrict s2, char xxrestrict ptr);
errno_t memset_s(void *s, rsize_t smax, int c, rsize_t n)
errno_t strerror_s(char xs, rsize_t maxsize, errno_t errnum);
size_t strerrorlen_s(errno_t errnum);
size_t strnlen_s(const char *xs, size_t maxsize);

B.24 Type-generic math <tgmath.h>

382 Library summary

acos erf 1lround ufremfptouint
asin erfc logl0 ufremfpxtouintx
atan exp2 loglp carg
acosh expml log2 cimag
asinh fdim logb conj
atanh floor lrint cproj
cos fma lround creal
sin fmax nearbyint fadd
tan fmaxmag nextafter dadd
cosh fmin nextdown fsub
sinh fminmag nexttoward dsub
tanh fmod nextup fmul
exp frexp remainder dmul
log fromfptoint remquo fdiv
pow Ffromfpxtointx rint ddiv
sqrt hypot round ffma
fabs ilogb roundeven dfma
atan2 ldexp scalbn fsqrt
chrt lgamma scalbln dsqrt
ceil 1logb tgamma
copysign 1lrint trunc
_ STDC_WANT_IEC_60559_BFP_EXT__

totalorder

totalordermag
B.25 Threads <threads.h>
—STDC_NO_THREADS _ mtx_t thrd_timedout
thread_local tss_dtor_t thrd_success
ONCE_FLAG_INIT thrd_start_t thrd_busy
TSS_DTOR_ITERATIONS once_flag thrd_error
cnd_t mtx_plain thrd_nomem
thrd_t mtx_recursive
tss_t mtx_timed

§B.25

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

Annex F
(normative)

IEC 60559 floating-point arithmetic

F1 Introduction

This annex specifies C language support for the IEC 60559 floating-point standard. The IEC 60559
floating-point standard is specifically Floating-point arithmetic (ISO/IEC/IEEE 60559:2011), also desig-
nated as IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008). The IEC 60559 floating-point
standard supersedes the IEC 60559:1989 binary arithmetic standard, also designated as IEEE Standard
for Binary Floating-Point Arithmetic (IEEE 754-1985). IEC 60559 generally refers to the floating-point
standard, as in IEC 60559 operation, IEC 60559 format, etc.

The IEC 60559 floating-point standard specifies decimal, as well as binary, floating-point arithmetic.
It supersedes IEEE Standard for Radix-Independent Floating-Point Arithmetic (ANSI/IEEE 854-1987)
which generalized the binary arithmetic standard (IEEE 754-1985) to remove dependencies on radix
and word length.

An implementation that defines __STDC_IEC_60559_BFP_ to yyyymmL shall conform to the specifi-
cations in this annex and shall also define __STDC_IEC_559__ to 1.3”® Where a binding between
the C language and IEC 60559 is indicated, the IEC 60559-specified behavior is adopted by reference,
unless stated otherwise.

This annex amends some standard headers with declarations or definitions of identifiers contingent
on whether certain macros whose names begin with __STDC_WANT_IEC_60559_ and end with
_EXT__ are defined (by the user) at the point in the code where the header is first included. Within

a preprocessing translation unit, the same set of such macros shall be defined for the first inclusion
of all such headers.

E2 Types
The C floating types match the IEC 60559 formats as follows:

— The float type matches the IEC 60559 binary32 format.
— The double type matches the IEC 60559 binary64 format.

— The long double type matches the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format,¥”% else a non-IEC 60559 extended format, else the IEC 60559 binary64 format.

Any non-IEC 60559 extended format used for the Long double type shall have more precision than
IEC 60559 binary64 and at least the range of IEC 60559 binary64.5”> The value of FLT_ROUNDS
applies to all IEC 60559 types supported by the implementation, but need not apply to non-IEC
60559 types.

Recommended practice

The long double type should match the IEC 60559 binary128 format, else an IEC 60559 binary64-
extended format.

F2.1 Infinities and NaNs

Since negative and positive infinity are representable in IEC 60559 formats, all real numbers lie
within the range of representable values (5.2.4.2.2).

The NAN and INFINITY macros and the nan functions in <math. h> provide designations for IEC 60559
quiet NaNs and infinities. The SNANF, SNAN, and SNANL macros in <math . h> provide designations
for IEC 60559 signaling NaNs.

373 Implementations that do not define either of __STDC_IEC_60559_BFP__ and __STDC_IEC_559__ are not required to
conform to these specifications. New code should not use the obsolescent macro __STDC_IEC_559__ to test for conformance
to this annex.

S7TEC 60559 binary64-extended formats include the common 80-bit IEC 60559 format.

375 A non-TEC 60559 long double type is required to provide infinity and NaNss, as its values include all double values.

§F2.1 IEC 60559 floating-point arithmetic 391

ISO/IEC 9899:202x (E) working draft — March 30, 2019 C201903. NOWANT N2359

This annex does not require the full support for signaling NaNs specified in IEC 60559. This
annex uses the term NaN, unless explicitly qualified, to denote quiet NaNs. Where specification of
signaling NaNs is not provided, the behavior of signaling NaNs is implementation-defined (either
treated as an IEC 60559 quiet NaN or treated as an IEC 60559 signaling NaN).37®

Any operator or <math.h> function that raises an “invalid” floating-point exception, if delivering a
floating type result, shall return a quiet NaN.

In order to support signaling NaNs as specified in IEC 60559, an implementation should adhere to
the following recommended practice.

Recommended practice

Any floating-point operator or <math.h> function or macro with a signaling NaN input, unless
explicitly specified otherwise, raises an “invalid” floating-point exception.

NOTE Some functions do not propagate quiet NaN arguments. For example, hypot(x, y) returns infinity if x or y is
infinite and the other is a quiet NaN. The recommended practice in this subclause specifies that such functions (and others)

raise the “invalid” floating-point exception if an argument is a signaling NaN, which also implies they return a quiet NaN in
these cases.

The <fenv.h> header defines the macro FE_SNANS_ALWAYS_SIGNAL if and only if the implemen-
tation follows the recommended practice in this subclause. If defined, FE_SNANS_ALWAYS_SIGNAL
expands to the integer constant 1.

E3 Operations

C operators, functions, and function-like macros provide the operations required by IEC 60559 as
shown in the following table. Specifications for the C facilities are provided in the listed clauses.
The C specifications are intended to match IEC 60559, unless stated otherwise.

Operation binding
IEC 60559 operation C operation Clause
roundTolntegralTiesToEven roundeven 7.12.9.8, F10.6.8
roundTolntegralTiesAway round 7.12.9.6, F.10.6.6
roundTolntegralTowardZero trunc 7.12.9.9,E10.6.9
roundToIntegralTowardPositive ceil 7.129.1, F10.6.1
roundTolntegralTowardNegative floor 7.129.2,F10.6.2
roundToIntegralExact rint 7.1294,F10.6.4
nextUp nextup 7.12.11.5, F10.8.5
nextDown nextdown 7.12.11.6, F10.8.6
remainder remainder, remquo 7.12.10.2, E10.7.2,
7.12.10.3, F10.7.3
minNum fmin 7.12.12.3, F10.9.3
maxNum fmax 7.12.12.2,F10.9.2
minNumMag fminmag 7.12.12.5,F10.9.5
maxNumMag fmaxmag 7.12.12.4,F10.9.4
scaleB scalbn, scalbln 7.12.6.14,E10.3.14
logB logb, ilogb, 1logb 7.12.6.12, F.10.3.12,
712.6.5, F10.3.5,
7.12.6.7, F10.3.7
addition +, fadd, faddl, daddl 6.5.6, 7.12.14.1,
F10.11
subtraction -, fsub, fsubl, dsubl 6.5.6, 7.12.14.2,
F10.11
multiplication *, fmul, fmull, dmull 6.5.5, 7.12.14.3,
F10.11

376)Since NaNs created by IEC 60559 operations are always quiet, quiet NaNs (along with infinities) are sufficient for closure
of the arithmetic.

392

IEC 60559 floating-point arithmetic

§E3

N2359

working draft — March 30, 2019 ISO/IEC 9899:202x (E)

division /, fdiv, fdivl, ddivl 6.5.5, 7.12.14.4,
F10.11

squareRoot sqrt, fsqrt, fsqrtl, dsqrtl 7.12.7.5, E10.4.5,
7.12.14.6, F10.11

fusedMultiplyAdd fma, ffma, ffmal, dfmal 7.12.13.1, F10.10.1,
7.12.14.5,F10.11

convertFromInt cast and implicit conversion 6.3.14,6.54

convertTolntegerTiesToEven fromfp,ufromfp-toint, touint | ??,??

convertTolntegerTowardZero

convertToIntegerTowardPositive

convertToIntegerTowardNegative

convertToIntegerTiesToAway fromfpufromfp-toint, touint, | 22, 2?2, 7.1297,

lround, 1lround E10.6.7

convertToIntegerExactTiesToEven fromfpx—ufromfpx—tointx, | 2?,??

convertTolntegerExactTowardZero touintx

convertTolntegerExactTowardPositive

convertTolntegerExactTowardNegative

convertToIntegerExactTiesToAway

convertFormat - different formats cast and implicit conversions 6.3.1.5,6.5.4

convertFormat - same format

canonicalize

7.12.11.7, F10.8.7

convertFromDecimalCharacter

strtod, wcstod, scanf, wscanf,

72214, 729411,

decimal floating constants 7.21.64, 7.29.2.12,
F5

convertToDecimalCharacter printf, wprintf, strfremd— | 7.21.6.3, 7.29.2.11,

tostrd ??,E5
convertFromHexCharacter strtod, wcstod, scanf, wscanf, | 7.22.1.4, 7.294.1.1,

hexadecimal floating constants 7.21.6.4, 7.29.2.12,

E5

convertToHexCharacter printf, wprintf, strfremd— | 7.21.6.3, 7.29.2.11,

tostrd ??,E5
copy memcpy, memmove 7.242.1,7.24.2.2
negate - (x) 6.5.3.3
abs fabs 7.12.72,F10.4.2
copySign copysign 7.12.11.1, F10.8.1
compareQuietEqual == 6.5.9,F9.3
compareQuietNotEqual = 6.5.9,F9.3
compareSignalingEqual iseqsig 7.12.15.7, F10.14.1
compareSignalingGreater > 6.5.8, F9.3
compareSignalingGreaterEqual >= 6.5.8, F9.3
compareSignalingLess < 6.5.8, F9.3
compareSignalinglLessEqual <= 6.5.8, F9.3
compareSignalingNotEqual ! iseqsig(x) 7.12.15.7,F10.14.1
compareSignalingNotGreater I (x >y) 6.5.8, F9.3
compareSignalingLessUnordered ' (x >=y) 6.5.8, 9.3
compareSignalingNotLess ' (x <) 6.5.8, F.9.3
compareSignalingGreaterUnordered ' (x <= y) 6.5.8, F9.3
compareQuietGreater isgreater 7.12.15.1
compareQuietGreaterEqual isgreaterequal 7.12.15.2
compareQuietLess isless 7.12.15.3
compareQuietLessEqual islessequal 7.12.15.4
compareQuietUnordered isunordered 7.12.15.6
compareQuietNotGreater ! isgreater(x, y) 7.12.15.1
compareQuietLessUnordered ! isgreaterequal(x, y) 7.12.15.2
compareQuietNotLess I isless(x,) 712153

IEC 60559 floating-point arithmetic 393

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359
compareQuietGreaterUnordered I islessequal(x, Y) 7.12.15.4
compareQuietOrdered ! isunordered(x, y) 7.12.15.6
class fpclassify, signbit, 7123.1, 7.12.3.7,

issignaling 7.12.3.8
isSignMinus signbit 7.123.7
isNormal isnormal 7.12.3.6
isFinite isfinite 7.12.3.3
isZero iszero 7.12.3.10
isSubnormal issubnormal 7.12.3.9
isInfinite isinf 71234
isNalN isnan 7.12.3.5
isSignaling issignaling 7.12.3.8
isCanonical iscanonical 7.12.3.2
radix FLT_RADIX 52422
totalOrder totalorder F10.12.1
totalOrderMag totalordermag F10.12.2
lowerFlags feclearexcept 7.6.3.1
raiseFlags fesetexcept 7.6.3.4
testFlags fetestexcept 7.6.3.7
testSavedFlags fetestexceptflag 7.6.3.6
restoreFlags fesetexceptflag 7.6.3.5
saveAllFlags fegetexceptflag 7.6.3.2
getBinaryRoundingDirection fegetround 7.64.2
setBinaryRoundingDirection fesetround 7.6.4.4
saveModes fegetmode 7.6.4.1
restoreModes fesetmode 7.64.3
defaultModes fesetmode (FE_DFL_MODE) 7.643,7.6

The IEC 60559 requirement that certain of its operations be provided for operands of different
formats (of the same radix) is satisfied by C’s usual arithmetic conversions (6.3.1.8) and function-call
argument conversions (6.5.2.2). For example, the following operations take float f and double d
inputs and produce a long double result:

(long double)f * d
powl(f, d)

Whether C assignment (6.5.16) (and conversion as if by assignment) to the same format is an
IEC 60559 convertFormat or copy operation®””) is implementation-defined, even if <fenv . h> defines
the macro FE_SNANS_ALWAYS_SIGNAL (F2.1). If the return expression of a return statement is
evaluated to the floating-point format of the return type, it is implementation-defined whether a
convertFormat operation is applied to the result of the return expression.

The unary - operator raises no floating-point exceptions, even if the operand is a signaling NaN.

The C classification macros fpclassify, iscanonical, isfinite, isinf, isnan, isnormal,
issignaling, issubnormal, and iszero provide the IEC 60559 operations indicated in the ta-
ble above provided their arguments are in the format of their semantic type. Then these macros
raise no floating-point exceptions, even if an argument is a signaling NaN.

The C nearbyint functions (7.12.9.3, F10.6.3) provide the nearbyinteger function recommended in
the Appendix to (superseded) ANSI/IEEE 854.

The C nextafter (7.12.11.3, F10.8.3) and nexttoward (7.12.11.4, F.10.8.4) functions provide the

377)Where the source and destination formats are the same, convertFormat operations differ from copy operations in
that convertFormat operations raise the “invalid” floating-point exception on signaling NaN inputs and do not propagate
non-canonical encodings.

394 IEC 60559 floating-point arithmetic §E3

10

11

12

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

nextafter function recommended in the Appendix to (superseded) IEC 60559:1989 (but with a minor
change to better handle signed zeros).

The C getpayload, setpayload, and setpayloadsig (F.10.13) functions provide program access to
NaN payloads, defined in IEC 60559.

The macros (7.6) FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, and FE_UPWARD, which are used in
conjunction with the fegetround and fesetround functions and the FENV_ROUND pragma, represent
the IEC 60559 rounding-direction attributes round TowardNegative, roundTiesToEven, roundTo-
wardZero, and roundTowardPositive, respectively.

The C fegetenv (7.6.5.1), feholdexcept (7.6.5.2), fesetenv (7.6.5.3) and feupdateenv (7.6.5.4)
functions provide a facility to manage the dynamic floating-point environment, comprising the
IEC 60559 status flags and dynamic control modes.

IEC 60559 requires operations with specified operand and result formats. Therefore, math functions
that are bound to IEC 60559 operations (see table above) must remove any extra range and precision
from arguments or results.

IEC 60559 requires operations that round their result to formats the same as and wider than the
operands, in addition to the operations that round their result to narrower formats (see 7.12.14).
Operators @, - , *, and /) whose evaluation formats are wider than the semantic type (5.2.4.2.2)
might not support some of the IEEE 60559 operations, because getting a result in a given format
might require a cast that could introduce an extra rounding error. The functions that round result to
narrower type (7.12.14) provide the IEC 60559 operations that round result to same and wider (as
well as narrower) formats, in those cases where built-in operators and casts do not. For example,

ddivl(x, y) computes a correctly rounded double divide of float x by float y, regardless of
the evaluation method.

F4 Floating to integer conversion

If the integer type is_Bool, 6.3.1.2 applies and the conversion raises no floating-point exceptions if
the floating-point value is not a signaling NaN. Otherwise, if the floating value is infinite or NaN
or if the integral part of the floating value exceeds the range of the integer type, then the “invalid”
floating-point exception is raised and the resulting value is unspecified. Otherwise, the resulting
value is determined by 6.3.1.4. Conversion of an integral floating value that does not exceed the
range of the integer type raises no floating-point exceptions; whether conversion of a non-integral
floating value raises the “inexact” floating-point exception is unspecified.’’®)

E5 Conversions between binary floating types and decimal character se-
quences

Conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and

back is the identity function.’”?)

Conversions involving IEC 60559 formats follow all pertinent recommended practice. In particular,
conversion between any supported IEC 60559 format and decimal with DECIMAL_DIG or fewer
significant digits is correctly rounded (honoring the current rounding mode), which assures that
conversion from the widest supported IEC 60559 format to decimal with DECIMAL_DIG digits and
back is the identity function.

The <float.h> header defines the macro

\ CR_DECIMAL_DIG

if and only if __STDC_WANT_IEC_60559_BFP_EXT__ is defined as a macro at the point in the source

S8IEC 60559 recommends that implicit floating-to-integer conversions raise the “inexact” floating-point exception for

non-integer in-range values. In those cases where it matters, library functions can be used to effect such conversions with or
without raising the “inexact” floating- point exception. See fremfp-toint , ufremfp-touint , fremfpx-tointx , ufremfpx-
touintx, rint, lrint, 1lrint, and nearbyint in <math.h>.

3791f the minimum-width TEC 60559 binary64-extended format (64 bits of precision) is supported, DECIMAL_DIG is at least
21. If IEC 60559 binary64 (53 bits of precision) is the widest IEC 60559 format supported, then DECIMAL_DIG is at least 17. (By
contrast, LDBL_DIG and DBL_DIG are 18 and 15, respectively, for these formats.)

§E5 IEC 60559 floating-point arithmetic 395

ISO/IEC 9899:202x (E) working draft — March 30, 2019 N2359

file where <float.h> is first included. If defined, CR_DECIMAL_DIG expands to an integral constant
expression suitable for use in #if preprocessing directives whose value is a number such that
conversions between all supported types with IEC 60559 binary formats and character sequences
with at most CR_DECIMAL_DIG significant decimal digits are correctly rounded. The value of

CR_DECIMAL_DIG shall be at least DECIMAL_DIG + 3. If the implementation correctly rounds for
all numbers of significant decimal digits, then CR_DECIMAL_DIG shall have the value of the macro

UINTMAX_MAX.

Conversions of types with IEC 60559 binary formats to character sequences with more than
CR_DECIMAL_DIG significant decimal digits shall correctly round to CR_DECIMAL_DIG significant
digits and pad zeros on the right.

Conversions from character sequences with more than CR_DECIMAL_DIG significant decimal digits
to types with IEC 60559 binary formats shall correctly round to an intermediate character sequence
with CR_DECIMAL_DIG significant decimal digits, according to the applicable rounding direction,
and correctly round the intermediate result (having CR_DECIMAL_DIG significant decimal digits) to
the destination type. The “inexact” floating-point exception is raised (once) if either conversion
is inexact.®®?) (The second conversion may raise the “overflow” or “underflow” floating-point
exception.)

Functions such as strtod that convert character sequences to floating types honor the rounding
direction. Hence, if the rounding direction might be upward or downward, the implementation
cannot convert a minus-signed sequence by negating the converted unsigned sequence.

The fprintf family of functions in <stdio.h> and the fwprintf family of functions in <wchar.h>
should behave as if floating-point operands were passed through the canonicalize function of the
same type.*D

F.6 The return statement

If the return expression is evaluated in a floating-point format different from the return type, the
expression is converted as if by assignment®*? to the return type of the function and the resulting
value is returned to the caller.

E7 Contracted expressions

A contracted expression is correctly rounded (once) and treats infinities, NaNs, signed zeros, sub-
normals, and the rounding directions in a manner consistent with the basic arithmetic operations
covered by IEC 60559.

Recommended practice

A contracted expression should raise floating-point exceptions in a manner generally consistent
with the basic arithmetic operations.

F.8 Floating-point environment

The floating-point environment defined in <fenv. h> includes the IEC 60559 floating-point exception
status flags and directed-rounding control modes. It includes also IEC 60559 dynamic rounding
precision and trap enablement modes, if the implementation supports them 383

F8.1 Environment management

IEC 60559 requires that floating-point operations implicitly raise floating-point exception status
flags, and that rounding control modes can be set explicitly to affect result values of floating-point
operations. These changes to the floating-point state are treated as side effects which respect
sequence points.¥¥

380)The intermediate conversion is exact only if all input digits after the first CR_DECIMAL_DIG digits are 0.

31This is a recommendation instead of a requirement so that implementations may choose to print signaling NaNs
differently from quiet NaNs.

382) Assignment removes any extra range and precision.

383) This specification does not require dynamic rounding precision nor trap enablement modes.

389If the state for the FENV_ACCESS pragma is “off”, the implementation is free to assume the dynamic floating-point control
modes will be the default ones and the floating-point status flags will not be tested, which allows certain optimizations (see

396 IEC 60559 floating-point arithmetic §F8.1

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

— trunc(£0) returns +0.

— trunc(£o0) returns +oo.

The returned value is exact and is independent of the current rounding direction mode.

F10.6.10 The toint and touint functions

The fromfp-and-ufremfp-toint and touint functions raise the “invalid” floating-point exception
and return an unspecified value if the floating-point argument x is infinite or NaN or rounds to an
integral value that is outside the range of any supported integer type of the specified width.

These functions do not raise the “inexact” floating-point exception.

F10.6.11 The tointx and touintx functions

The fromfpxand-ufremfpx-tointx and touintx functions raise the “invalid” floating-point excep-
tion and return an unspecified value if the floating-point argument x is infinite or NaN or rounds to
an integral value that is outside the range of any supported integer type of the specified width.

These functions raise the “inexact” floating-point exception if a valid result differs in value from the
floating-point argument x.
F10.7 Remainder functions

E10.7.1 The fmod functions
— fmod(+£0, y) returns £0 for y not zero.

— fmod(z, y) returns a NaN and raises the “invalid” floating-point exception for z infinite or y
zero (and neither is a NaN).
(

— fmod(z, £00) returns z for x not infinite.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

The double version of fmod behaves as though implemented by

#include <math.h>

#include <fenv.h>

#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)

{
double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);
}

F10.7.2 The remainder functions
— remainder(=£0, y) returns £0 for y not zero.

— remainder(z,y) returns a NaN and raises the “invalid” floating-point exception for z infinite
or y zero (and neither is a NaN).

— remainder(xz, +oo) returns x for x not infinite.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

F10.7.3 The remquo functions

The remquo functions follow the specifications for the remainder functions. They have no further
specifications special to IEC 60559 implementations.

When subnormal results are supported, the returned value is exact and is independent of the current
rounding direction mode.

§F10.7.3 IEC 60559 floating-point arithmetic 409

N2359 C201903.NOWANT working draft — March 30, 2019 ISO/IEC 9899:202x (E)

J.5.11 Multiple external definitions

There may be more than one external definition for the identifier of an object, with or without the
explicit use of the keyword extern; if the definitions disagree, or more than one is initialized, the
behavior is undefined (6.9.2).

J.5.12 Predefined macro names

Macro names that do not begin with an underscore, describing the translation and execution
environments, are defined by the implementation before translation begins (6.10.8).

J.5.13 Floating-point status flags

If any floating-point status flags are set on normal termination after all calls to functions registered
by the atexit function have been made (see 7.22.4.4), the implementation writes some diagnostics
indicating the fact to the stderr stream, if it is still open,

J.5.14 Extra arguments for signal handlers

Handlers for specific signals are called with extra arguments in addition to the signal number
(7.14.1.1).

J.5.15 Additional stream types and file-opening modes
Additional mappings from files to streams are supported (7.21.2).

Additional file-opening modes may be specified by characters appended to the mode argument of
the fopen function (7.21.5.3).

J.5.16 Defined file position indicator

The file position indicator is decremented by each successful call to the ungetc or ungetwc function
for a text stream, except if its value was zero before a call (7.21.7.10, 7.29.3.10).

J.5.17 Math error reporting

Functions declared in <complex.h> and <math.h> raise SIGFPE to report errors instead of, or in
addition to, setting errno or raising floating-point exceptions (7.3, 7.12).

J.6 Reserved identifiers and keywords

Alot of identifier preprocessing tokens are used for specific purposes in regular clauses or appendices
from translation phase 3 onwards. Using any of these for a purpose different from their description
in this document, even if the use is in a context where they are normatively permitted, may have an
impact on the portability of code and should thus be avoided.

J.6.1 Rule based identifiers

The following 29-33_regular expressions characterize identifiers that are systematically reserved by
some clause this document.

atomic_[a-z][a-zA-Z0-9_1%*
ATOMIC_[A-Z][a-zA-Z0-9_1x
_la-zA-Z_1[a-zA-Z0-9_1%
cnd_[a-z][a-zA-Z0-9_]1%
DBL_[A-Z][a-zA-Z0-9_1]x
E[0-9A-Z]1[a-zA-Z0-9_1x
FE_[A-Z][a-zA-Z0-9_]x*
INT[a-zA-Z0-9_]x*_C
INT[a-zA-Z0-9_]*_MAX
INT[a-zA-Z0-9_]*_MIN
int[a-zA-70-9_]x_t
INT[a-zA-Z0-9_]*_WIDTH

§J.6.1

is[a-z][a-zA-Z0-9_]x
LC_[A-Z][a-zA-Z0-9_]x
mem[a-z][a-zA-Z0-9_]x*
mtx_[a-z][a-zA-Z0-9_]x*
LDBL_[A-Z][a-zA-Z0-9_]x
PRI[a-zX][a-zA-Z0-9_1]x
SCN[a-zX][a-zA-Z0-9_]x
SIG[A-Z][a-zA-Z0-9_]x
SIG_[A-Z][a-zA-Z0-9_]x
str[a-z][a-zA-Z0-9_]x*
thrd_[a-z][a-zA-Z0-9_]x
TIME_[A-Z][a-zA-Z0-9_]x*
to[a-z][a-zA-Z0-9_]x
tss_[a-z][a-zA-Z0-9_]x*

Portability issues 451

ISO/IEC 9899:202x (E)

UINT[a-zA-Z0-9_]*_C
UINT[a-zA-Z0-9_]x_MAX
uint[a-zA-Z0-9_]x_t

working draft — March 30, 2019

UINT[a-zA-Z0-9_1*_WIDTH
wcs[a-z][a-zA-Z0-9_]x*

C201903. NOWANT N2359

The following 462-554 identifiers or keywords match these patterns and have particular semantics

provided by this document.

_Alignas
—_alignas_is_defined
—Alignof
——alignof_is_defined
—Atomic

atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_charlé6_t
ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong

atomic_compare_exchange_strong_explicit

atomic_compare_exchange_weak

atomic_compare_exchange_weak_explicit

atomic_exchange
atomic_exchange_explicit
atomic_fetch_
atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag
atomic_flag_clear
atomic_flag_clear_explicit
ATOMIC_FLAG_INIT
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit
atomic_init

atomic_int
atomic_int_fastl6_t
atomic_int_fast32_t
atomic_int_fast64_t
atomic_int_fast8_t
atomic_int_leastl6_t
atomic_int_least32_t
atomic_int_least64_t
atomic_int_least8_t
ATOMIC_INT_LOCK_FREE
atomic_intmax_t
atomic_intptr_t

452

atomic_is_lock_free
atomic_1llong
ATOMIC_LLONG_LOCK_FREE
atomic_load
atomic_load_explicit
atomic_long
ATOMIC_LONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
atomic_ptrdiff_t
atomic_schar
atomic_short
ATOMIC_SHORT_LOCK_FREE
atomic_signal_fence
atomic_size_t
atomic_store
atomic_store_explicit
atomic_thread_fence
atomic_uchar
atomic_uint
atomic_uint_fastl6_t
atomic_uint_fast32_t
atomic_uint_fast64_t
atomic_uint_fast8_t
atomic_uint_leastl6_t
atomic_uint_least32_t
atomic_uint_least64_t
atomic_uint_least8_t
atomic_uintmax_t
atomic_uintptr_t
atomic_ullong
atomic_ulong
atomic_ushort
ATOMIC_VAR_INIT
atomic_wchar_t
ATOMIC_WCHAR_T_LOCK_FREE
—Bool
—_bool_true_false_are_defined
cnd_broadcast
cnd_destroy

cnd_init

cnd_signal

cnd_t

cnd_timedwait

cnd_wait
=Complex-DBL_DECIMAL DIG
=Complex=I DBL_DIG

—cplusplus DBL_EPSILON.
—DATE— DBL_HAS_SUBNORM

DBL_MANT_DIG_

Portability issues

§J.6.1

N2359 working draft — March 30, 2019

DBL_MAX
DBL_MAX_10_EXP_
DBL_MAX_EXP

DBL_MIN
DBL_MIN_10_EXP_
DBL_MIN_EXP
DBL_TRUE_MIN_

EDOM

EILSEQ

EOF

EOL

ERANGE

—Exit

EXIT_FAILURE
EXIT_SUCCESS

_EXT__

FE_ALL_EXCEPT
FE_DFL_ENV
FE_DFL_MODE
FE_DIVBYZERO
FE_DOWNWARD
FE_DYNAMIC
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_SNANS_ALWAYS_SIGNAL
FE_TONEAREST
FE_TOWARDZERO
FE_UNDERFLOW
FE_UPWARD
—FILE—FLT_DECIMAL DIG
—fune—FLT_DIG
—Generic FLT_EPSILON

~Imaginary FLT_EVAL METHOD

=Imaginary=I-FLT_HAS_SUBNORM

FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP_
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP_
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS
FLT_TRUE_MIN
FP_CONTRACT
FP_FAST_DADDL
FP_FAST_DDIVL
FP_FAST_DFMAL
FP_FAST_DMULL _
FP_FAST_DSQRTL_
FP_FAST_DSUBL _
FP_FAST_FADD _
FP_FAST_FADDL
FP_FAST_FDIV _
FP_FAST_FDIVL

§J.6.1

ISO/IEC 9899:202x (E)

FP_FAST_FFMA_
FP_FAST_FFMAL
FP_FAST_FNA
FP_FAST_FMAF _
FP_FAST_FMAL _
FP_FAST_FMUL _
FP_FAST_FMULL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_FSUB _
FP_FAST_FSUBL
FP_ILOGBO
FP_TLOGBNAN
FP_INFINITE
FP_INT_DOWNWARD
FP_INT_TONEAREST
FP_INT_TONEARESTFROMZERO
FP_INT_TOWARDZERQ
FP_INT_UPWARD
FP_LLOGBO
FP_LLOGBNAN
FP_NAN_
FP_NORMAL
FP_SUBNORMAL _
FP_ZERQ

INT16_C
INT16_MAX
INT16_MIN
intlé_t
INT32_C
INT32_MAX
INT32_MIN
int32_t
INT64_C
INT64_MAX
INT64_MIN
int64_t
INT8_C
INT8_MAX
INT8_MIN
int8_t
int_fastl6_t
int_fast32_t
int_fast64_t
int_fast8_t
int_leastlé6_t
int_least32_t
int_least64_t
int_least8_t
INT_MAX
INTMAX_C
INTMAX_MAX
INTMAX_MIN
intmax_t
INTMAX_WIDTH
INT_MIN

Portability issues 453

ISO/IEC 9899:202x (E)

INTPTR_MAX
INTPTR_MIN
intptr_t
INTPTR_WIDTH
INT_WIDTH
_IOFBF
_IOLBF
_IONBF
isalnum
isalpha
isblank
iscanonical
iscntrl
isdigit
iseqsig
isfinite
isgraph
isgreater
isgreaterequal
isinf
isless
islessequal
islessgreater
islower
isnan
isnormal
isprint
ispunct
issignaling
isspace
issubnormal
isunordered
isupper
iswalnum
iswalpha
iswblank
iswcntrl
iswctype
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
isxdigit
iszero
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

—LINE— LDBL_DECIMAL_DIG

LDBL_DIG

454

working draft — March 30, 2019 N2359

LDBL_EPSILON
LDBL_HAS_SUBNORM_
LDBL_MANT_DIG
LDBL_MAX
LDBL_MAX_10_EXP_
LDBL_MAX_EXP _
LDBL_MIN
LDBL_MIN_10_EXP_
LDBL_MIN_EXP _
LDBL_TRUE_MIN
memchr
memcmp
memcpy
memcpy_s
memmove
memmove_s
memory_order
memory_order_acqg_rel
memory_order_acquire
memory_order_consume
memory_order_relaxed
memory_order_release
memory_order_seq_cst
memset
memset_s
mtx_destroy
mtx_init
mtx_lock
mtx_plain
mtx_recursive
mtx_t
mtx_timed
mtx_timedlock
mtx_trylock
mtx_unlock
—Noreturn
—Pragma
PRId32
PRId64
PRIAFAST32
PRIAFAST64
PRIALEAST32
PRIALEAST64
PRIdMAX
PRIAPTR
PRIi32
PRIi64
PRIiFAST32
PRIiFAST64
PRIiLEAST32
PRIiLEAST64
PRIiMAX
PRIiPTR
PRIo32
PRIo64
PRIOFAST32

Portability issues §J.6.1

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)
PRIOFAST64 __STDC_NO_THREADS __
PRIOLEAST32 __STDC_NO_VLA__
PRIOLEAST64 __STDC_UTF_16__
PRIoMAX _ STDC_UTF_32__
PRIoPTR __STDC_VERSION_ _
PRIu32 —_STDC_WANT_IEC_60559_
PRIu64 __STDC_WANT_IEC_60559_BFP_EXT__
PRIuFAST32 —_STDC_WANT_LIB_EXT1 _
PRIuUFAST64 strcat
PRIuULEAST32 strcat_s
PRIULEAST64 strchr

PRIuMAX strcmp

PRIuPTR strcoll

PRIX32 strcpy

PRIX64 strcpy_s
PRIXFAST32 strcspn
PRIXFAST64 strerror
PRIXLEAST32 strerrorlen_s
PRIXLEAST64 strerror_s
PRIXMAX strfromd-
PRIXPTR strfromf-
SCNdMAX strfromt
SCNdPTR strftime

SCNiMAX strlen

SCNiPTR strncat

SCNoMAX strncat_s
SCNoPTR strncmp

SCNuMAX strncpy

SCNuPTR strncpy_s
SCNxMAX strnlen_s
SCNxPTR strpbrk

SIGABRT strrchr
SIG_ATOMIC_MAX strspn
SIG_ATOMIC_MIN strstr
SIG_ATOMIC_WIDTH strtod

SIG_DFL strtof

SIG_ERR strtoimax

SIGFPE strtok

SIG_IGN strtok_s

SIGILL strtol

SIGINT strtold

SIGSEGV strtoll

SIGTERM strtoul
_Static_assert strtoull
—STDC_ strtoumax
—_STDC_ANALYZABLE__ struct
—STDC_HOSTED__ strxfrm

— STDC_IEC_559__ thrd_busy
—STDC_IEC_559_COMPLEX _ thrd_create
—STDC_IEC_60559_BFP__ thrd_current
—STDC_IEC_60559_COMPLEX _ thrd_detach
—STDC_IS0_10646__ thrd_equal
—STDC_LIB_EXT1 _ thrd_error
—_STDC_MB_MIGHT_NEQ_WC__ thrd_exit
—STDC_NO_ATOMICS _ thrd_join
—STDC_NO_COMPLEX__ thrd_nomem

§J.6.1 Portability issues 455

ISO/IEC 9899:202x (E)

thrd_sleep
thrd_start_t
thrd_success
thrd_t
thrd_timedout
thrd_yield
—Thread_local
—TIME__
TIME_UTC
toint_
tointf
tointx.
tointxf
tointxl
tolower
tostrd
tostrf
tostrld
totalorder
totalorderf
totalorderl
totalordermag
totalordermagf
totalordermagl
touint
touintf
touintl
touintx
touintxf
touintxl
toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set

tss_t
UINT16_C
UINT16_MAX
uintl6_t
UINT32_C
UINT32_MAX
uint32_t
UINT64_C
UINT64_MAX
uint64_t
UINT8_C
UINT8_MAX
uint8_t
uint_fastl6_t
uint_fast32_t
uint_fast64_t

456

working draft — March 30, 2019

uint_fast8_t
uint_leastl6_t
uint_least32_t
uint_least64_t
uint_least8_t
UINT_MAX
UINTMAX_C
UINTMAX_MAX
uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t
UINTPTR_WIDTH
UINT_WIDTH
—VA_ARGS__
wcscat
wcscat_s
wcschr

wcscmp
wcscoll
wcscpy
WCSCpy—s
wcscspn
wcsftime
wcslen
wcsncat
wcsncat_s
wcsncmp
wcsncpy
wcsncpy-_s
wcsnlen_s
wcspbrk
wcsrchr
wcsrtombs
wcsrtombs_s
wcsspn

wcsstr

wcstod

wcstof
wcstoimax
wcstok
wcstok_s
wecstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm
=WIDTH_Alignas
~Alignof
Atomic
—Bool_
_Complex

Portability issues

N2359

§J.6.1

N2359 C201903.NOWANT

~Complex_I
<Exit
EXT—
~Generic

~Imaginary

~Imaginary I
IOFBF

IOLBF
~IONBF
Noreturn
~Pragma
~Static_assert
~Thread_local
WIDTH_

~bool_true_false_are_defined
~cplusplus

—DATE__

—FILE

~func__

—LINE__
~—STDC_ANALYZABLE__
—STDC_FENV_VERSION__
—STDC_HOSTED___

J.6.2 Particular identifiers or keywords

working draft — March 30, 2019

ISO/IEC 9899:202x (E)

_STDC_IEC 559_COMPLEX___
_STDC_IEC 559__
—STDC_IEC_ 60559 _BFP__
_STDC_IEC_60559_COMPLEX __
_STDC_IS0_10646__
_STDC_LIB EXTL_
—STDC_MATH_VERSION
_STDC_MB_MIGHT_NEQ_WC___
_STDC_NO_ATOMICS__
__STDC_NO_COMPLEX___
—_STDC_NO_THREADS___
_STDC_NO_VLA___
—STDC_STDINT_VERSION _
_STDC_STDLIB_VERSION _
—STDC_TGMATH_VERSION _
_STDC_UTF_16___
_STDC_UTF_32__~
_STDC_VERSION___
_STDC_WANT_TEC_60559.
—STDC_WANT_IEC_60559_BFP_EXT__
 STDC_WANT_LIB EXT1 _
_STDC__
TIME
_VA_ARGS.

The following 808721 identifiers or keywords are not covered by the above and have particular

semantics provided by this document.

abort atan2f cabsf
abort_handler_s atan2l cabsl

abs atanf cacos

acos atanh cacosf

acosf atanhf cacosh

acosh atanhl cacoshf
acoshf atanl cacoshl
acoshl atexit cacosl

acosl atof calloc
alignas atoi call_once
aligned_alloc atol canonicalize
alignof atoll canonicalizef
and at_quick_exit canonicalizel
and_eq auto carg

asctime bitand cargf
asctime_s bitor cargl

asin bool case

asinf break casin

asinh bsearch casinf

asinhf bsearch_s casinh

asinhl btowc casinhf

asinl BUFSIZ casinhl
assert clértomb casinl

atan c32rtomb catan

atan2 cabs catanf

§J.6.2 Portability issues 457

ISO/IEC 9899:202x (E)

catanh
catanhf
catanhl
catanl
cbrt
cbrtf
cbrtl
ccos
ccosf
ccosh
ccoshf
ccoshl
ccosl
ceil
ceilf
ceill
cerf
cerfc
cexp
cexp2
cexpf
cexpl
cexpml
char
charleé_t
char32_t
CHAR_BIT
CHAR_MAX
CHAR_MIN
CHAR_WIDTH
cimag
cimagf
cimagl
clearerr
clgamma
clock
CLOCKS_PER_SEC
clock_t
clog
cloglo
cloglp
clog2
clogf
clogl
CMPLX
CMPLXF
CMPLXL
compl
complex
conj
conjf
conjl
const
constraint_handler_t
continue
copysign

458

working draft — March 30, 2019

copysignf
copysignl
cos

cosf

cosh
coshf
coshl
cosl

cpow
cpowf
cpowl
cproj
cprojf
cprojl
CR_DECIMAL_DIG
creal
crealf
creall
csin
csinf
csinh
csinhf
csinhl
csinl
csqrt
csqrtf
csqrtl
ctan
ctanf
ctanh
ctanhf
ctanhl
ctanl
ctgamma
ctime
ctime_s
currency_symbol
CX_LIMITED_RANGE
dadd

PBL_TRUE-MIN-ddivl
ddiv

ddivl

DECIMAL_DIG
decimal_point

Portability issues

N2359

DEFAULT
define
defined
dfma
dfmal
difftime
div
div_t
dmul
dmull
do
double
double_t
dsqrt
dsqrtl
dsub
dsubl
elif
else
endif
enum
erf
erfc
erfcf
erfcl
erff
erfl
errno
errno_t
error
exit
exp
exp2
exp2f
exp2l
expf
expl
expml
expmlf
expmll
extern
fabs
fabsf
fabsl
fadd
faddl
false
fclose
fdim
fdimf
fdiml
fdiv
fdivl
feclearexcept
fegetenv
fegetexceptflag

§J.6.2

N2359 working draft — March 30, 2019 ISO/IEC 9899:202x (E)

fegetmode fmaxmagf fputc
fegetround fmaxmagl fputs
feholdexcept fmin fputwc
femode_t fminf fputws
FENV_ACCESS fminl FP—-ZERO-
FENV_ROUND fminmag frac_digits
fenv_t fminmagf fread

feof fminmagl free
feraiseexcept fmod freopen
ferror fmodf freopen_s
fesetenv fmod1l frexp
fesetexcept fmul frexpf
fesetexceptflag fmull frexpl
fesetmode fopen fromfp-
fesetround FOPEN_MAX fromfpf-
fetestexcept fopen_s fromfpt-
fetestexceptflag for fromfpx-
feupdateenv fpclassify fromfpxf-frexp
fexcept_t FP_CONTRACT- fromfpxt-fscanf_s
fflush FP-FAST-DADDL- fscanf
ffma FP=FAST-DDIVH- fscanf_s
ffmal FP-FAST-DFMAL- fseek
fgetc FP_FAST-DMULL- fsetpos
fgetpos FP_FAST-DSQRTL- fsqrt
fgets FP—FAST-DSUBL- fsqrtl
fgetwc FP_FAST-FADD- fsub
fgetws FP_FAST-FADDL- fsubl

FILE FP_FAST-FDIV- ftell
FILENAME_MAX FP_FAST-FDIVL- fwide
float FP_FAST_FFMA- fwprintf
float_t FP_FAST-FFMAL- fwprintf_s
floor FP_FAST-FMA- fwrite
floorf FP_FAST-_FMAF- fwscanf
floorl FP_FAST-_FMAL- fwscanf_s
FLT-DECIMAL-DIG- FP_FAST-_FMUL- getc
FLT-DIG- FP_FAST-_FMULL- getchar
FLT=EPSILON- FP-FAST-FSQRT- getenv
FLT-EVAL-_METHOD- FP_FAST-FSQRTL- getenv_s
FLTF-HAS-_SUBNORM- FP_FAST-FSUB- getpayload
FLET-MANT-DIG- FP_FAST-FSUBL- getpayloadf
FETMAX- FP_ILOGBO- getpayloadl
FLET=MAX=10-EXP- FP_TILOGBNAN- gets
FLET=MAX=EXP- FP_INFINITE- gets_s
FLET=MIN- FP_INT—DOWNWARD- getwc
FET-MIN-TO_EXP- FP_INT_TONEAREST- getwchar
FET-MIN-EXP- FP_INT_TONEARESTFROMZERO gmtime
FLT=RADIX- FP_INT-TOWARDZERO- gmtime_s
FLT-ROUNDS- FP_INT-UPWARD- goto
FLET=TRUE-MIN- FP—LLOGBO- grouping
fma-floor FP_LLOGBNAN HUGE_VAL
fmaf FP-NAN- HUGE_VALF
fmal FP_NORMAL- HUGE_VALL
fmax fpos_t hypot
fmaxf fprintf- hypotf
fmax1 fprintf_s hypotl
fmaxmag FP=SUBNORMAL-fprintf I

§J.6.2 Portability issues 459

ISO/IEC 9899:202x (E)

if

ifdef

ifndef
ignore_handler_s
ilogb

ilogbf

ilogbl

imaginary

imaxabs

imaxdiv

imaxdiv_t

include

INFINITY

inline
int_curr_symbol
int_frac_digits
int_n_cs_precedes
int_n_sep_by_space
int_n_sign_posn
int_p_cs_precedes
int_p_sep_by_space
int_p_sign_posn
jmp_buf
kill_dependency
labs

lconv

ldexpf
ldexpl
ldiv
ldiv_t
lgamma
lgammaf
lgammal
line
1labs
1ldiv
1ldiv_t
1logh
1logbf
1logbl
LLONG_MAX
LLONG_MIN
LLONG_WIDTH

460

working draft — March 30, 2019

1lrint
1lrintf
1lrintl
1lround
1lroundf
1lroundl
localeconv
localtime
localtime_s
log

logl0
loglof
loglol
loglp
loglpf
loglpl
log2

log2f
log21

logb

logbf
logbl

logf

logl

long
longjmp
LONG_MAX
LONG_MIN
LONG_WIDTH
lrint
lrintf
lrintl
lround
lroundf
lroundl
L_tmpnam
L_tmpnam_s
main
malloc
MATH_ERREXCEPT
math_errhandling
MATH_ERRNO
max_align_t
MB_CUR_MAX
mblen
MB_LEN_MAX
mbrlen
mbrtocl6
mbrtoc32
mbrtowc
mbsinit
mbsrtowcs
mbsrtowcs_s
mbstate_t
mbstowcs
mbstowcs_s

Portability issues

mbtowc

mktime

modf

modff

modfl
mon_decimal_point
mon_grouping
mon_thousands_sep
nan

nanf

nanl
n_cs_precedes
NDEBUG
nearbyint
nearbyintf
nearbyintl
negative_sign
nextafter
nextafterf
nextafterl
nextdown
nextdownf
nextdownl
nexttoward
nexttowardf
nexttowardl
nextup
nextupf
nextupl
noreturn

not

not_eq
n_sep_by_space
n_sign_posn
NULL

OFF

offsetof

ON

once_flag
ONCE_FLAG_INIT
or

or_eq
p—cs_precedes
perror
positive_sign
pow

powf

powl

pragma

printf
printf_s
p—sep_by_space
p—sign_posn
PTRDIFF_MAX
PTRDIFF_MIN
ptrdiff_t

N2359

§J.6.2

N2359

PTRDIFF_WIDTH
putc
putchar
puts

putwc
putwchar
gsort
gsort_s
quick_exit
raise

rand
RAND_MAX
realloc
register
remainder
remainderf
remainderl
remove
remquo
remquof
remquol
rename
restrict
return
rewind
rint

rintf
rintl
round
roundeven
roundevenf
roundevenl
roundf
roundl
RSIZE_MAX
rsize_t
scalbln
scalblnf
scalblnl
scalbn
scalbnf
scalbnl
scanf
scanf_s
SCHAR_MAX
SCHAR_MIN
SCHAR_WIDTH
SEEK_CUR
SEEK_END
SEEK_SET
setbuf
set_constraint_handler_s
setjmp
setlocale
setpayload
setpayloadf

§J.6.2

working draft — March 30, 2019

setpayloadl
setpayloadsig
setpayloadsigf
setpayloadsigl
setvbuf
short
SHRT_MAX
SHRT_MIN
SHRT_WIDTH
sig_atomic_t
signal
signbit
signed

sin

sinf

sinh

sinhf

sinhl

sinl
SIZE_MAX
sizeof
size_t
SIZE_WIDTH
SNAN

SNANF

SNANL
snprintf
snprintf_s
snwprintf_s
sprintf
sprintf_s
sqrt

sqrtf

sqrtl

srand
sscanf
sscanf_s
static
static_assert
STDC

stderr
stdin
stdout
switch
swprintf
swprintf_s
swscanf
swscanf_s
system

tan

tanf

tanh

tanhf

tanhl

tanl

tgamma

Portability issues

ISO/IEC 9899:202x (E)

tgammaf
tgammal
thousands_sep
thread_local
time
timespec
timespec_get
time_t

tm

tm_hour
tm_isdst
tm_mday
tm_min
tm_mon
tmpfile
tmpfile_s
TMP_MAX
TMP_MAX_S
tmpnam
tmpnam_s
tm_sec
tm_wday
tm_yday
tm_year

true

trunc

truncf
truncl
TSS_DTOR_ITERATIONS
tv_nsec
tv_sec
typedef
UCHAR_MAX
UCHAR_WIDTH

ULLONG_MAX
ULLONG_WIDTH
ULONG_MAX
ULONG_WIDTH
undef
ungetc
ungetwc
union
unsigned
USHRT_MAX
USHRT_WIDTH
va_arg
va_copy
va_end
va_list
va_start

461

ISO/IEC 9899:202x (E)

vfprintf
vfprintf_s
vfscanf
vfscanf_s
vfwprintf
vfwprintf_s
vfwscanf
vfwscanf_s
void
volatile
vprintf
vprintf_s
vscanf
vscanf_s
vsnprintf
vsnprintf_s
vsnwprintf_s
vsprintf
vsprintf_s
vsscanf
vsscanf_s

462

working draft — March 30, 2019

vswprintf
vswprintf_s
vswscanf
vswscanf_s
vwprintf
vwprintf_s
vwscanf
vwscanf_s
WCHAR_MAX
WCHAR_MIN
wchar_t
WCHAR_WIDTH
wcrtomb
wcrtomb_s
wctob
wctomb
wctomb_s
wctrans
wctrans_t
wctype
wctype_t

Portability issues

N2359

WEOF
while
WINT_MAX
WINT_MIN
wint_t
WINT_WIDTH
wmemchr
wmemcmp
wmemcpy
wmemcpy_s
wmemmove
wmemmove_s
wmemset
wprintf
wprintf_s
wscanf
wscanf_s
xor

xor_eq

§J.6.2

image4.emf
n3046.pdf

n3046.pdf
Proposal for C2X

WG14 N 3046

Title:

Author, affiliation:

Date:

Proposal category:

Target audience:
Abstract:

Prior art:

$ in Identifiers

Robert C. Seacord, Woven Planet
rcseacord@agmail.com

Steve Downey, Bloomberg, USA
<sdowney@gmail.com, sdowney2@bloomberg.net>

Peter Bindels, TomTom, Netherlands,
<dascandy@gmail.com>

2022-7-26
Defect
Implementers

Allow $ as an implementation extension in identifiers

C23

mailto:rcseacord@gmail.com

mailto:sdowney2@bloomberg.net

mailto:dascandy@gmail.com

$ in Identifiers

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3046

Reference Document: N2939, N2836, P1949R7 (http://wg21.link/p1949)

Date: 2022-3-02

This paper is to repair a potential defect introduced by voting N2836 Identifier Syntax using Unicode
Standard Annex 31 into C23.

Change Log
2022-7-26:

Initial version

1.0 PROBLEM DESCRIPTION

A question was raised at the July 2022 WG14 meeting concerning going back to the original identifier
rules. The following straw poll was taken:

Straw poll: Does WG14 want to bring back the original identifier rules (e.g., allow $ in identifiers as an
extension, but not required to allow it)?

The results had clear consensus:
Results: 10 yes 2 no 8 abstain

Further discussion showed that the actual direction was less clear with the following opinions being
noted:

e Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties,
with the addition of s.

The original text allowed any implementation-defined characters, not just $
| am strongly against what I'm suggesting but the “best” solution is to revert the “other
implementation-defined characters” that got removed

e | would be much strongly opposed to something that would mention $ or any other
specific character explicitly

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2939.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://wg21.link/p1949

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

e Allowing $ in identifiers would be a massive and unjustifiable land grab for both C and
C++
e Would the following change suffice?

6.4.2.1#1 add to identifier-nondigit:
other implementation-defined characters

e Probably adding that sentence to both identifier-start and
identifier-continue

As can be seen, opinions ranged from reverting to implementation-defined characters to keeping the
current wording.

A quick survey of existing practice shows that current versions of gcc, clang, and icc all allow the s
character anywhere in an identifier by default:

https://godbolt.org/z/frGzcTWoK
Only clang will diagnose the use of a $ in an identifier, but only in -pedantic mode.

In both GCC and Clang, this is controlled by the -f [no-]dollars-in-identifiers flag which
defaults to allow.

This paper proposes allowing $ anywhere in identifiers as an implementation extension.

2.0 PROPOSED WORDING

Wording Alternative #1

The $ does not currently appear in any production for identifiers. Using $ in an identifier is
consequently undefined behavior. Implementations are free to provide their own definition for this
otherwise undefined behavior, and allow $ in identifiers.

Add the text in green to the end of Subclause 5.2.1 Character sets, paragraph 3:

If any other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never
converted to a token), the behavior is undefined. The $ character is reserved for use in
identifiers as an implementation-defined extension.

https://godbolt.org/z/frGzcTWoK

Wording Alternative #2

Add the text in green to Subclause 6.4.2.1 paragraph 2 in the N2912 working draft:

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in ??. The nondigit characters may also include a dollar sign $. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

Wording Alternative #3
Add the text in green in the N2912 working draft:
Subclause 6.4.2.1 paragraph 1
nondigit: one of
_$abcdefghijklm
nopqgrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
Subclause 6.4.2.1 paragraph 2

An identifier is a sequence of nondigit characters (including the underscore _, the dollar sign $, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more
entities as described in ??. It is implementation-defined if a dollar sign $ may be used as a nondigit
character. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum
length of an identifier.

4.0 Acknowledgements

We would like to recognize the following people for their help with this work: Jens Maurer, Zach Laine,
Tom Honermann, Corentin Jabot, and Aaron Ballman.

5.0 References

[Altld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax
[Defld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Default_ldentifier _Syntax

[N3146] Clark Nelson. 2010. Recommendations for extended identifier characters for C and
C++.

https://wg21.link/n3146

[UAX15] Ken Whistler. Unicode Normalization Forms.
http://www.unicode.org/reports/tr15

[UAX31] Mark Davis. Unicode Identifier and Pattern Syntax.
http://www.unicode.org/reports/tr31

[UAX36] Mark Davis and Michel Suignard. Unicode Security Considerations.
http://www.unicode.org/reports/tr36

[UAX44] Ken Whistler and Laurentiu lancu. Unicode Character Database.
http://www.unicode.org/reports/tr44

[UTS51] Mark Davis and Peter Edberg. Unicode Emoji.

http://www.unicode.org/reports/tr51

http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax

http://www.unicode.org/reports/tr31/tr31-11.html#Default_Identifier_Syntax

https://wg21.link/n3146

http://www.unicode.org/reports/tr15

http://www.unicode.org/reports/tr31

http://www.unicode.org/reports/tr36

http://www.unicode.org/reports/tr44

http://www.unicode.org/reports/tr51

image5.emf
n3046.pdf

n3046.pdf
Proposal for C2X

WG14 N 3046

Title:

Author, affiliation:

Date:

Proposal category:

Target audience:
Abstract:

Prior art:

$ in Identifiers

Robert C. Seacord, Woven Planet
rcseacord@agmail.com

Steve Downey, Bloomberg, USA
<sdowney@gmail.com, sdowney2@bloomberg.net>

Peter Bindels, TomTom, Netherlands,
<dascandy@gmail.com>

2022-7-26
Defect
Implementers

Allow $ as an implementation extension in identifiers

C23

mailto:rcseacord@gmail.com

mailto:sdowney2@bloomberg.net

mailto:dascandy@gmail.com

$ in Identifiers

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3046

Reference Document: N2939, N2836, P1949R7 (http://wg21.link/p1949)

Date: 2022-3-02

This paper is to repair a potential defect introduced by voting N2836 Identifier Syntax using Unicode
Standard Annex 31 into C23.

Change Log
2022-7-26:

Initial version

1.0 PROBLEM DESCRIPTION

A question was raised at the July 2022 WG14 meeting concerning going back to the original identifier
rules. The following straw poll was taken:

Straw poll: Does WG14 want to bring back the original identifier rules (e.g., allow $ in identifiers as an
extension, but not required to allow it)?

The results had clear consensus:
Results: 10 yes 2 no 8 abstain

Further discussion showed that the actual direction was less clear with the following opinions being
noted:

e Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties,
with the addition of s.

The original text allowed any implementation-defined characters, not just $
| am strongly against what I'm suggesting but the “best” solution is to revert the “other
implementation-defined characters” that got removed

e | would be much strongly opposed to something that would mention $ or any other
specific character explicitly

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2939.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://wg21.link/p1949

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

e Allowing $ in identifiers would be a massive and unjustifiable land grab for both C and
C++
e Would the following change suffice?

6.4.2.1#1 add to identifier-nondigit:
other implementation-defined characters

e Probably adding that sentence to both identifier-start and
identifier-continue

As can be seen, opinions ranged from reverting to implementation-defined characters to keeping the
current wording.

A quick survey of existing practice shows that current versions of gcc, clang, and icc all allow the s
character anywhere in an identifier by default:

https://godbolt.org/z/frGzcTWoK
Only clang will diagnose the use of a $ in an identifier, but only in -pedantic mode.

In both GCC and Clang, this is controlled by the -f [no-]dollars-in-identifiers flag which
defaults to allow.

This paper proposes allowing $ anywhere in identifiers as an implementation extension.

2.0 PROPOSED WORDING

Wording Alternative #1

The $ does not currently appear in any production for identifiers. Using $ in an identifier is
consequently undefined behavior. Implementations are free to provide their own definition for this
otherwise undefined behavior, and allow $ in identifiers.

Add the text in green to the end of Subclause 5.2.1 Character sets, paragraph 3:

If any other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never
converted to a token), the behavior is undefined. The $ character is reserved for use in
identifiers as an implementation-defined extension.

https://godbolt.org/z/frGzcTWoK

Wording Alternative #2

Add the text in green to Subclause 6.4.2.1 paragraph 2 in the N2912 working draft:

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in ??. The nondigit characters may also include a dollar sign $. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

Wording Alternative #3
Add the text in green in the N2912 working draft:
Subclause 6.4.2.1 paragraph 1
nondigit: one of
_$abcdefghijklm
nopqgrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
Subclause 6.4.2.1 paragraph 2

An identifier is a sequence of nondigit characters (including the underscore _, the dollar sign $, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more
entities as described in ??. It is implementation-defined if a dollar sign $ may be used as a nondigit
character. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum
length of an identifier.

4.0 Acknowledgements

We would like to recognize the following people for their help with this work: Jens Maurer, Zach Laine,
Tom Honermann, Corentin Jabot, and Aaron Ballman.

5.0 References

[Altld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax
[Defld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Default_ldentifier _Syntax

[N3146] Clark Nelson. 2010. Recommendations for extended identifier characters for C and
C++.

https://wg21.link/n3146

[UAX15] Ken Whistler. Unicode Normalization Forms.
http://www.unicode.org/reports/tr15

[UAX31] Mark Davis. Unicode Identifier and Pattern Syntax.
http://www.unicode.org/reports/tr31

[UAX36] Mark Davis and Michel Suignard. Unicode Security Considerations.
http://www.unicode.org/reports/tr36

[UAX44] Ken Whistler and Laurentiu lancu. Unicode Character Database.
http://www.unicode.org/reports/tr44

[UTS51] Mark Davis and Peter Edberg. Unicode Emoji.

http://www.unicode.org/reports/tr51

http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax

http://www.unicode.org/reports/tr31/tr31-11.html#Default_Identifier_Syntax

https://wg21.link/n3146

http://www.unicode.org/reports/tr15

http://www.unicode.org/reports/tr31

http://www.unicode.org/reports/tr36

http://www.unicode.org/reports/tr44

http://www.unicode.org/reports/tr51

image6.emf
n3046.pdf

n3046.pdf
Proposal for C2X

WG14 N 3046

Title:

Author, affiliation:

Date:

Proposal category:

Target audience:
Abstract:

Prior art:

$ in Identifiers

Robert C. Seacord, Woven Planet
rcseacord@agmail.com

Steve Downey, Bloomberg, USA
<sdowney@gmail.com, sdowney2@bloomberg.net>

Peter Bindels, TomTom, Netherlands,
<dascandy@gmail.com>

2022-7-26
Defect
Implementers

Allow $ as an implementation extension in identifiers

C23

mailto:rcseacord@gmail.com

mailto:sdowney2@bloomberg.net

mailto:dascandy@gmail.com

$ in Identifiers

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3046

Reference Document: N2939, N2836, P1949R7 (http://wg21.link/p1949)

Date: 2022-3-02

This paper is to repair a potential defect introduced by voting N2836 Identifier Syntax using Unicode
Standard Annex 31 into C23.

Change Log
2022-7-26:

Initial version

1.0 PROBLEM DESCRIPTION

A question was raised at the July 2022 WG14 meeting concerning going back to the original identifier
rules. The following straw poll was taken:

Straw poll: Does WG14 want to bring back the original identifier rules (e.g., allow $ in identifiers as an
extension, but not required to allow it)?

The results had clear consensus:
Results: 10 yes 2 no 8 abstain

Further discussion showed that the actual direction was less clear with the following opinions being
noted:

e Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties,
with the addition of s.

The original text allowed any implementation-defined characters, not just $
| am strongly against what I'm suggesting but the “best” solution is to revert the “other
implementation-defined characters” that got removed

e | would be much strongly opposed to something that would mention $ or any other
specific character explicitly

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2939.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://wg21.link/p1949

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

e Allowing $ in identifiers would be a massive and unjustifiable land grab for both C and
C++
e Would the following change suffice?

6.4.2.1#1 add to identifier-nondigit:
other implementation-defined characters

e Probably adding that sentence to both identifier-start and
identifier-continue

As can be seen, opinions ranged from reverting to implementation-defined characters to keeping the
current wording.

A quick survey of existing practice shows that current versions of gcc, clang, and icc all allow the s
character anywhere in an identifier by default:

https://godbolt.org/z/frGzcTWoK
Only clang will diagnose the use of a $ in an identifier, but only in -pedantic mode.

In both GCC and Clang, this is controlled by the -f [no-]dollars-in-identifiers flag which
defaults to allow.

This paper proposes allowing $ anywhere in identifiers as an implementation extension.

2.0 PROPOSED WORDING

Wording Alternative #1

The $ does not currently appear in any production for identifiers. Using $ in an identifier is
consequently undefined behavior. Implementations are free to provide their own definition for this
otherwise undefined behavior, and allow $ in identifiers.

Add the text in green to the end of Subclause 5.2.1 Character sets, paragraph 3:

If any other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never
converted to a token), the behavior is undefined. The $ character is reserved for use in
identifiers as an implementation-defined extension.

https://godbolt.org/z/frGzcTWoK

Wording Alternative #2

Add the text in green to Subclause 6.4.2.1 paragraph 2 in the N2912 working draft:

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in ??. The nondigit characters may also include a dollar sign $. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

Wording Alternative #3
Add the text in green in the N2912 working draft:
Subclause 6.4.2.1 paragraph 1
nondigit: one of
_$abcdefghijklm
nopqgrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
Subclause 6.4.2.1 paragraph 2

An identifier is a sequence of nondigit characters (including the underscore _, the dollar sign $, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more
entities as described in ??. It is implementation-defined if a dollar sign $ may be used as a nondigit
character. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum
length of an identifier.

4.0 Acknowledgements

We would like to recognize the following people for their help with this work: Jens Maurer, Zach Laine,
Tom Honermann, Corentin Jabot, and Aaron Ballman.

5.0 References

[Altld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax
[Defld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Default_ldentifier _Syntax

[N3146] Clark Nelson. 2010. Recommendations for extended identifier characters for C and
C++.

https://wg21.link/n3146

[UAX15] Ken Whistler. Unicode Normalization Forms.
http://www.unicode.org/reports/tr15

[UAX31] Mark Davis. Unicode Identifier and Pattern Syntax.
http://www.unicode.org/reports/tr31

[UAX36] Mark Davis and Michel Suignard. Unicode Security Considerations.
http://www.unicode.org/reports/tr36

[UAX44] Ken Whistler and Laurentiu lancu. Unicode Character Database.
http://www.unicode.org/reports/tr44

[UTS51] Mark Davis and Peter Edberg. Unicode Emoji.

http://www.unicode.org/reports/tr51

http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax

http://www.unicode.org/reports/tr31/tr31-11.html#Default_Identifier_Syntax

https://wg21.link/n3146

http://www.unicode.org/reports/tr15

http://www.unicode.org/reports/tr31

http://www.unicode.org/reports/tr36

http://www.unicode.org/reports/tr44

http://www.unicode.org/reports/tr51

image7.emf
ISO-IECJTC1-SC22-W G14_N3018_The constexpr specifier for object definitions v7.htm

ISO-IECJTC1-SC22-WG14_N3018_The constexpr specifier for object definitions v7.htm

The constexpr specifier for object definitions

Alex Gilding (Perforce UK)

Jens Gustedt (INRIA France)

2022-07-06

		Abstract

		Summary of Changes

		Introduction

		Rationale

		Proposal

		Types

		Aggregate or union types

		Linkage

		Storage duration

		Diagnostics

		Alternatives

		Impact

		Implementation Experience

		Wording

		Keywords (6.4.1)

		Declarations (6.7)

		Storage-class specifiers (6.7.1)

		Constant Expressions (6.6)

		Linkage (6.2.2)

		Optional member access

		Alternative 1 (structure member access)

		Alternative 2 (restricted union member access)

		Alternative 3 (type punning via union member)

		Complementary proposals

		Names of static const-qualified objects as constant expressions

		Null pointer constants

		Note to the editors

		Questions for WG14

		Acknowledgements

		org:

		ISO/IEC JCT1/SC22/WG14

		document:

		N3018

		

		… WG21 C and C++ liaison

		

		P2576

		target:

		IS 9899:2023

		version:

		7

		

		

		

		

		date:

		2022-07-06

		license:

		CC BY

Abstract

C++ has supported translation-time definition of first-class named constants for over ten years, while C, for all types besides int, is still limited to using second-class language features, in particular macros, during translation. This puts C at a significant disadvantage in terms of being able to share the same features between runtime and translation, and in being able to assert truths about the program during translation rather than waiting to assert in a runtime debug build.

Summary of Changes

		N3018

		speak of change in value instead of conversion

		treat initializers of constexpr the same as for static or thread storage duration (imposes constant expressions)

		for the options, refined the wording for named constants that are the result of . member operations

		correct a typo in an example

		N3008bis

		Tighten the rule to exclude VM types.

		Explicitly include excess precision and quantum exponent to the requirements of an initializer value.

		Add a note to give the rationale of the constraints.

		options for structure and union member access

		N3008 wrong version, please don’t use

		N2977

		emphasize on the problem with integer constant expressions

		add a rationale and enforce diagnostics

		Add a complementary option for const qualified static variables

		Add complementary options for null pointer constants

		N2954

		Base on N3006

		Restrict the feature to object definitions

		Split the compound literal feature off to N2955

		N2917

		recursion limits; no UB in C++; no new ODR; no call before definition; linkage; initializer order

		wording for function definitions, avoid VLA side effects

		wording for compound literals

		split wording for different kinds of constant expression and propagate kind; add wording to null pointer constant

		community comments, implementability

		N2851

		original proposal

Introduction

C requires that objects with static storage duration are only initialized with constant expressions. The rules for which kinds of expression may appear as constant expressions are quite restrictive and mostly limit users to using macro names for abstraction of values or operations. Users are also limited to testing their assertions about value behavior at runtime because static_assert is similarly limited in the kinds of expressions it can evaluate during translation. We propose to add a new (old) specifier to C, constexpr, as introduced to C++ in C++11. We propose to add this specifier to objects, and to intentionally keep the functionality minimal to avoid undue burden on lightweight implementations.

A previous revision also had this feature for functions, but WG14 was not in favor of this for inclusion to C23.

Rationale

Because C limits initialization of objects with static storage duration to constant expressions, it can be difficult to create clean abstractions for complicated value generation. Users are forced to use macros, which do not allow for the creation of temporary values and require a different coding style. Such macros - especially if they would use temporaries, but have to use repetition instead because of the constraints of constant expressions - may also be unsuitable for use at runtime because they cannot guarantee clear evaluation of side effects. Macros for use in initializers cannot have their address taken or be used by linkage and are truly second-class language citizens.

The same restriction applies to static_assert: a user cannot prove properties about any expression involving a function call at compile-time, instead having to defer to runtime assertions.

C does provide enumerations which are marginally more useful than macros for defining constant values, but their uses are limited and they do not abstract very much; in practice they are only superior in the sense that they have a concrete type and survive preprocessing. Enumerations are not really intended to be used in this way.

In C++, both objects and functions may be declared as constexpr, allowing them to be used in all constant-expression contexts. This makes function calls available for static initialization and for static assertion-based testing.

The subset of headers which are able to be common between C and C++ is also increased by adding this feature and strictly subsetting it from the C++ feature. Large objects can be initialized and their values and generators asserted against during translation by both languages rather than forcing a user to switch to C++ solely in order to get such assertions.

Proposal

We propose adding the new keyword constexpr to the language and making it available as a storage-class specifier for objects.

A scalar object declared with the constexpr storage-class specifier is a constant. It must be fully and explicitly initialized according to the static initialization rules. It still has linkage appropriate to its declaration and it exist at runtime to have its address taken; it simply cannot be modified at runtime in any way, i.e. the compiler can use its knowledge of the object’s fixed value in any other constant expression.

Additionally, the constant expression that is used for the initializer of such a constant is checked at compile time. Consider a C17 static const object:

static size_t const bignum = 0x100000000;

Here, the initializer may or may not fit into size_t. Currently, a translator is not forced to issue a diagnostic for that situation. In contrast to that with our proposal

constexpr size_t bignum = 0x100000000;

would violate a constraint on implementations where size_t has a width of 32 or less.

Types

There are some restrictions on the type of an object that can be declared with constexpr storage duration. There is a limited number of constructs that are not allowed:

		pointer types:

		allowing these to use non-trivial addresses would delay the deduction of the concrete value from translation to link-time. For most of the use cases, such a feature can already be coded by using a static and const qualified pointer object, we don’t need constexpr for that. Therefore we only allow pointer types if the initializer value is null.

		variably modified types:

		these can only occur if the declaration of an array size is not a constant expression. Since we want the feature to be completely determined at translation-time, constexpr VLA and derived types are non-sensible, here.

		atomic types:

		because objects that are declared with this may temporarily need access (or maybe even modify) an lvalue and impose sequentially consistent synchronization where only a translation-time value should be used and no lvalue should be accessed.

		volatile:

		It would not be clear what the semantics of a volatile constexpr object would be, for example if it could possibly change by means that are not under the control of the programmer.

		restrict:

		Similarly for restrict. The only pointer types that are allowed are null pointers and for them, restrict is useless.

Generally, it does not make sense to use any of the currently provided standard qualifiers on a constexpr object. For convenience we only allow const qualification, but which is redundant.

Other qualifiers may be introduced at a later time that might hold more meaning for these objects.

Aggregate or union types

In a previous version of this paper we also proposed relaxing the constant-expression rules to allow access to aggregate members when the object being accessed is declared as a constexpr object and (in the case of arrays) the element index is an integer constant expression. WG14 was not in favor of the proposed text. The primary objections were to the complexity of the definition for arrays and for unions rather than for structures, but the discussion was not separated out.

Structure or union types

Nevertheless we observe that the member access operator . is not explicitly excluded from the admissible syntax of constant expressions (see 6.6 for a constraining list of exceptions). Removing it from there might impact implementations that already allow structure or union types for constant expressions as an extension, for example when allowing const-qualified objects of static storage duration.

Thus we propose to maintain the status quo and to allow the . operator within constant expressions of all kinds. By the defaults that are already in place, a member of a constexpr structure or union inherits all properties from the structure or union. With the definitions that we propose the name of the member would still be an “identifier declared with constexpr” and thus be a named constant.

Union types here merit special consideration, because we don’t want to add new undefined behavior with this construct. A translator will always be able to deduce if the bit-pattern that is imposed for any union member (by the initializer of any member) provides a valid value of the other members and if such a member can be used as a named constant.

Since this is a translation-time feature, the constraint in 6.6 p4

Each constant expression shall evaluate to a constant that is in the range of representable values for its type.

always kicks in, and forces a diagnostic if and when the implementation is not able to produce a consistent value for any member.

Note that allowing structure types agrees with C++’s policy, whereas also allowing it for union types is less constraining than for them. Here, C++ only allows to access the “active” member of a union in a constant expression. Since C does not have this concept of an active member of a union, and since type-punning through union is a distinguished feature in C, it is not easy to map this restriction to C.

Three separate wording alternatives are proposed to give the committee the option to be more explicit in whether member access is permitted or disallowed.

Array types

The use of a constexpr array object in a context that requires a constant expression is not possible without special considerations, of which WG14 was not in favor for C23. Nevertheless we maintain the possibility to define such named constants because they still have other advantages over const-qualified arrays of static storage duration:

		The initializer must be composed of constant expressions. So even if the array elements are not constant expression by themselves, many optimizations will still be applicable to them under the as-if rule.

		The base type of the array is enforced to be const qualified and not restrict, volatile or _Atomic qualified.

		Each assignment expression in the initializer still has to provide a valid value for the type, with the corresponding translation time properties (null pointer constant, integer constant expression, arithmetic constant expression).

		A diagnostic can be expected if the initialization of an element at an excess position is attempted.

		The property for character arrays (even wide) being strings is easily maintained by the translator and diagnostics can be issued in circumstances that require strings, for example as arguments to formated IO functions. More generally, diagnostics that are based on the content of such character arrays can be issued.

Linkage

We do not propose changing the meaning of the const keyword in any way (this differs between C and C++) - an object declared at file scope with const and without static continues to have external linkage; an object declared with static storage duration and const but not constexpr is not considered any kind of constant-expression, barring any implementations that are already taking advantage of the permission given in 6.6 paragraph 10 to add more kinds of supported constant expressions.

The important difference here to make is that in C17 “constant expressions of integer type” are not necessarily “integer constant expressions”, the latter being a much more restricted property. If static const variables would gain the status of “integer constant expression”, the semantics of other constructs using such a variable would change: VLA would become ordinary arrays, integers of value zero would become null pointer constants, or ternary operators could change their type from void* to another pointer type.

The same caution is also in order for the property of being an “arithmetic constant expression”. By using a cast to integer type, these could become “integer constant expression” with the similar effects on changing semantics if for example a C17 macro now would be re-implemented as a static const variable.

The difference between the behavior of const in C and in C++ is unfortunate but is now cemented in existing practice and well-understood. Since changing the status of existing const qualified variables would implicitly change the status of derived array declarations, we would oppose changing that now.

The constexpr feature itself does not have this problem, because it can only be used through an explicit code change. Nevertheless, constexpr objects will typically be defined in header files, so we have to ensure that they don’t create multiply-defined-symbol conflicts. Therefore, in accordance with C++, file-scope constexpr obtain internal linkage and block-scope no linkage at all.

Storage duration

For the storage duration of the created objects we go with C++ for compatibility, that is per default we have automatic in block scope and static in file scope. The default for block scope can be overwritten by static or refined by register. It would perhaps be more natural for named constants

		to be addressless (similar to a register declaration or an enumeration),

		to have static storage duration (imply static even in block scope), or

		to have no linkage (similar to typedef or block local static)

but we decided to go with C++’s choices for compatibility.

Also we don’t allow thread local named constants

		thread_local:

		Because we only allow constant expressions as initializers for named constants, a split into one distinct object per thread does not make much sense.

Diagnostics

One advantage of constexpr objects and static const objects compared to macro definitions are mandatory diagnostics. Consider the following lines, where A and B expand to some integer literals.

#define dconst (A/B)

static size_t const aconst = A/B;

constexpr size_t cconst = A/B;

Both, aconst and cconst, need a constant expression as an initializer and the constraints in 6.6 impose that this initializer must give rise to a value in the range of the target type, size_t. So if B would be 0, a diagnostic is mandatory.

For dconst the situation much depends on the context in which the macro is used. If it is only used for expressions that aren’t constant expressions. If B is 0, no diagnostic is required and the behavior is undefined.

The advantage of the new feature compared to the existing one is that cconst is forced to be an integer constant expression, and that this property propagates to the places where cconst is used.

The advantage of a forced diagnostic also occurs if the target type is an unsigned integer type (including bool), as for the bignum example above. For the initialization of a static const variable, the initializer expression wraps (or forces a true value) and no diagnostic is required. For a constexpr object, the initializer value must fit the target type directly.

Similarly, if the target type is a floating point type and the initializer expression has more precision than the target type can hold or if a complex number is used to initialize a real type, a constraint is violated

constexpr float point5 = 0.5; // ok, fits to target type

constexpr float point3 = 0.3; // constraint violation if float has less precision than double

constexpr complex double zero = 0.0 + I; // constraint violation, loss of non-zero imaginary part

Alternatives

C currently has only one class of in-language entity that can be defined with a value and then used in a constant context, which is an enumeration. This is limited to providing a C-level name for a single int value, but is extremely limited and is a second-class feature closer to macro constants than to C objects. These cannot be addressed and also cannot be used to help much in the composition of arbitrarily-typed constant expressions during translation.

Impact

As above, the existing incompatibility of const between C and C++ is preserved because the proposal does not intend to break or change any existing C code. Code that intends to express identical constant semantics for values in both C and C++ should start using constexpr objects instead.

This change improves C’s header compatibility with C++ by allowing the same headers to make use of better compile-time initialization features. This increases the subset of C++ headers which can be used from C and does not impose any new runtime cost on any C program.

Nevertheless, we also propose, as a mostly orthogonal change, to allow names of const (but not volatile) qualified objects of static storage duration in constant expressions. Even though this has sufficient existing practice, unfortunately this does not improve compatibility with C++ much. Such identifiers (unless also constexpr) cannot be null pointer constants, integer constant expressions or arithmetic constant expressions, because otherwise semantics of existing code could change without notice.

During the discussion on the reflector about this proposal we also noticed that the rarely used feature that makes any integer constant expression a null pointer constant is the one that mostly stands in the way of having a decent definition of translation time constants. We don’t think that we should directly remove that feature from C (it would invalidate existing code) but that in future versions only integer literals should be used to form null pointer constants. Therefore we also propose a recommended practice and an obsolescence for future language directions.

Implementation Experience

There is widespread implementation experience of constexpr as a C++ feature. Internally to the QAC team, we have experience fitting C++11 ruleset constexpr to the C constant evaluator. Our C frontend does not share this component with the C++ compiler, so we were able to compare and contrast which work was reasonable to import and which was not (i.e. we have implemented constexpr fully before). We felt that full C++20 ruleset constexpr was completely unreasonable (probably not controversial!), but that the C++11 rules, including constexpr functions, designed to buildup from a minimalist perspective, were not difficult for a single-person team to add to a C evaluator.

Implementing just the constexpr object part (without functions) as proposed here in this paper even has an implementation complexity that is much lower. From an implementation perspective this does not represent a large change to an evaluator which can already perform scoped name lookup (as needed for enumerators and sizeof).

Wording

The wording changes proposed here are based on N3006 that sets the basis for some of the syntactical specifications.

Keywords (6.4.1)

Add constexpr to the list of keywords in 6.4.1.

Declarations (6.7)

According to the outcome for N3007 use alternatives 1 or 3 from N3006 to make constexpr declarations underspecified.

		Alternatives

		

A declaration such that the declaration specifiers contain no type specifier or that is declared with constexpr is said to be underspecified.

		

A declaration with constexpr is said to be underspecified.

Storage-class specifiers (6.7.1)

Add constexpr to the list of storage-class specifiers in 6.7.1 p1.

Constraints (6.7.1 and 6.7.9)

Named constants might possibly have static or automatic storage duration, but no other restrictions to their storage duration should apply.

		According to the outcome for N3007 change paragraph 2

		2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except that thread_local may appear with static or extern and constexpr may appear with auto, register or static.127)

		2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except that thread_local may appear with static or extern and constexpr may appear with __auto_type, auto, register or static.127)

As stated above the possible types for named constants should be constrained. Add a new paragraph with some footnotes to the end of the Constraints section.

An object declared with storage-class specifier constexpr or any of its members, even recursively, shall not have an atomic type, a variably modified type or a type that is volatile or restrict qualified. The declaration shall be a definition and shall have an initializer.FNT1) The value of any constant expression or of any character in a string literal of the initializer shall be exactly representable in the corresponding target type; no change of value shall be applied.FNT2) If an object or subobject declared with storage-class specifier constexpr has pointer, integer or arithmetic type, the implicit or explicit initializer value for it shall be a null pointer constantFNT3), an integer constant expression, or an arithmetic constant expression, respectively.

FNT1) All assignment expressions of such an initializer, if any, are constant expressions or string literals, see 6.7.9.

FNT2) In the context of arithmetic conversions, 6.3.1 describes the details of changes of value that occur if values of arithmetic expressions are stored in objects that for example have a different signedness, excess precision or quantum exponent. Whenever such a change of value is necessary, the constraint is violated.

FNT3) The named constant corresponding to an object declared with storage-class specifier constexpr and pointer type is a constant expression with value null, and thus a null pointer and an address constant. Even if it has type void* it is not a null pointer constant.

Impose that all initializer expressions are constant expressions by adding to 6.7.9 p5

5 All the expressions in an initializer for an object that has static or thread storage duration or is declared with the constexpr storage specifier shall be constant expressions or string literals.

Semantics

Adapt the changed p6 as of N3006

6 Storage-class specifiers specify various properties of identifiers and declared features; storage duration (static in block scope, thread_local, auto, register), linkage (extern, static and constexpr in file scope, typedef), value (constexpr) and type (typedef). The meanings of the various linkages and storage durations were discussed in 6.2.2 and 6.2.4, typedef is discussed in 6.7.8.

Then add a new paragraph and notes to the end of the Semantics section

An object declared with a storage-class specifier constexpr has its value permanently fixed at translation-time; if not yet present, a const-qualification is implicitly added to the object’s type. The declared identifier is considered a constant expression of the respective kind, see 6.6.

NOTE 1 An object declared in block scope with a storage-class specifier constexpr and without static has automatic storage duration, the identifier has no linkage, and each instance of the object has a unique address obtainable with & (if it is not declared with the register specifier), if any. Such an object in file scope has static storage duration, the corresponding identifier has internal linkage, and each translation unit that sees the same textual definition implements a separate object with a distinct address.

NOTE 2 The constraints for constexpr objects are intended to enforce checks for portability at translation time.

constexpr unsigned int minusOne = -1; // constraint violation

constexpr unsigned int uint_max = -1U; // ok

constexpr char string[] = { "\xFF", }; // ok

constexpr unsigned char unstring[] = { "\xFF", }; // possible constraint violation

constexpr char8_t u8string[] = { u8"\xFF", }; // ok

constexpr double onethird = 1.0/3.0; // possible constraint violation

constexpr double onethirdtrunc = (double)(1.0/3.0); // ok

constexpr _Decimal32 small = DEC64_TRUE_MIN * 0;// constraint violation

Using an octal or hexadecimal escape character sequence with a value greater than the largest representable value of the target character type (such as for unstring) possibly violates a constraint. Equally, an implementation that uses excess precision for floating point constants violates the constraint for onethird; a diagnostic is required if a truncation of the mantissa occurs. In contrast to that, the explicit conversion in the initializer for onethirdtrunc ensures that the definition is valid. Similarly, the initializer of small has a quantum exponent that is larger than the largest possible quantum exponent for _Decimal32.

Add examples to the end of the Semantics section of 6.7.1:

EXAMPLE 1 An identifier declared with the constexpr specifier may have its value used in constant expressions:

constexpr int K = 47;

enum {

 A = K, // valid, constant initialization

};

constexpr int L = K; // valid, constexpr initialization

static int b = K + 1; // valid, static initialization

int array[K]; // not a VLA

EXAMPLE 2 An object declared with the constexpr specifier stores the exact value of its initializer, no implicit value change is applied:

#include <float.h>

constexpr int A = 42LL; // valid, 42 always fits in an int

constexpr signed short B = ULLONG_MAX; // constraint violation, value never fits

constexpr float C = 47u; // valid, exactly representable in single precision

#if FLT_MANT_DIG > 24

constexpr float D = 432000000; // constraint violation if float is 32-bit single-precision IEC 60559

#endif

#if (FLT_MANT_DIG == DBL_MANT_DIG) && (0 <= FLT_EVAL_METHOD) && (FLT_EVAL_METHOD <= 1)

constexpr float E = 1.0 / 3.0; // only valid if double expressions and float objects have the same precision

#endif

#if FLT_EVAL_METHOD == 0

constexpr float F = 1.0f / 3.0f; // valid, same type and precision

#else

constexpr float F = (float)(1.0f / 3.0f); // needs cast to truncate the excess precision

#endif

EXAMPLE 3 This recursively applies to initializers for all elements of an aggregate object declared with the constexpr specifier:

constexpr static unsigned short array[] = {

 3000, // valid, fits in unsigned short range

 300000, // constraint violation if short is 16-bit

 -1 // constraint violation, target type is unsigned

};

struct S {

 int x, y;

};

constexpr struct S s = {

 .x = INT_MAX, // valid

 .y = UINT_MAX, // constraint violation

};

Constant Expressions (6.6)

To introduce terminology, we stipulate that being a constant expression is a property of the declared identifier, and not of the underlying object. Add a new paragraph 5.1 after paragraph 5

5.1 An identifier that is an enumeration constant, that is a predefined constant or that is declared with storage-class specifier constexpr and has an object type is a named constant. For enumeration and predefined constants, their value and type are defined in the respective clauses; for constexpr objects, such a named constant is a constant expression with the type and value of the declared object.

These new kinds of constants then have to be added in the appropriate places. Change the following four paragraphs.

6 An integer constant expression124) shall have integer type and shall only have operands that are integer constants, enumeration constantsnamed constants of integer type, character constants, predefined constants, sizeof expressions whose results are integer constants, alignof expressions, and floating constants or named constants of arithmetic type that are the immediate operands of casts. Cast operators in an integer constant expression shall only convert arithmetic types to integer types, except as part of an operand to the sizeof or alignof operator.

7 More latitude is permitted for constant expressions in initializers. Such a constant expression shall be, or evaluate to, one of the following:

		

a named constant,

		an arithmetic constant expression,

		a null pointer constant,

		an address constant, or

		an address constant for a complete object type plus or minus an integer constant expression.

8 An arithmetic constant expression shall have arithmetic type and shall only have operands that are integer constants, floating constants, enumeration constantsnamed constants of arithmetic type, character constants, predefined constants, sizeof expressions whose results are integer constants, and alignof expressions. Cast operators in an arithmetic constant expression shall only convert arithmetic types to arithmetic types, except as part of an operand to a sizeof or alignof operator.

9 An address constant is a null pointer,FNT4) a pointer to an lvalue designating an object of static storage duration, or a pointer to a function designator; it shall be created explicitly using the unary & operator or an integer constant cast to pointer type, or implicitly by the use of an expression of array or function type.

10 The array-subscript [] and member-access . and -> operators, the address & and indirection * unary operators, and pointer casts may be used in the creation of an address constant, but the value of an object shall not be accessed by use of these operators.FNT5)

FNT4) A named constant of integer type and value zero is a null pointer constant. A named constant with pointer type and value null is a null pointer but not a null pointer constant; it may only be used to initialize a pointer object if its type implicitly converts to the target type.

FNT5) Named constants with arithmetic type, including names of constexpr objects, are valid in offset computations such as array-subscripts or in pointer casts, as long as the expressions in which they occur form integer constant expressions. In contrast to that, names of other objects, even if const-qualified and with static storage duration, are not valid.

Linkage (6.2.2)

Named constants (constexpr objects) will typically be defined in header files, so we have to ensure that they don’t create multiply-defined-symbol conflicts. Change the following paragraph

3 If the declaration of a file scope identifier for an object contains any of the storage-class specifiers static or constexpr or for a function contains the storage-class specifier static, the identifier has internal linkage.31)

Optional member access

Member access is included into the syntax of named constants and paragraph 10 is separated out of paragraph 9 to make clear that the restriction against element access applies to all kinds of constant expression, not just to address constants. As-is, the text above prohibits the use of . in integer constant expressions and initializers.

Alternative 1 (structure member access)

Change the new paragraph 5.1 as follows

5.1 An identifier that is an enumeration constant, that is a predefined constant or that is declared with storage-class specifier constexpr and has an object type is a named constant, as is a postfix expression that applies the . member access operator to a named constant of structure type, even recursively. For enumeration and predefined constants, their value and type are defined in the respective clauses; for constexpr objects, such a named constant is a constant expression with the type and value of the declared object.

Modify separated paragraph 10 of 6.6 to omit the restriction against the use of the member access operator .:

10 The array-subscript [] and member-access . and -> operators, the address & and indirection * unary operators, and pointer casts may be used in the creation of an address constant, but the value of an object shall not be accessed by use of these operators.FNT5)

Add a new paragraph after paragraph 8 (disrupts numbering):

8.1 A structure constant is a named constant with structure type.

Add a following paragraph:

11 Starting from a structure constant, the member-access . operator may be used to form a named constant as described above.

Alternative 2 (restricted union member access)

As for Alternative 1, but:

Substitute “structure or union” in paragraphs 5.1 and 11 for “structure” as in Alternative 1.

Change the new paragraph 8.1 to

8.1 A structure or union constant is a named constant with structure or union type, respectively.

Add a new paragraph 12:

12 If the member-access operator . accesses a member of a union constant, the accessed member shall be the same as the member that is initialized by the initializer.

Alternative 3 (type punning via union member)

As for Alternative 2, but use a different new paragraph 12:

12 If a member-access operator . accesses a member of a union constant that is different from the member that is initialized by the initializer, the induced representation of the accessed member shall be a valid object representation for the type of that member.

Complementary proposals

Names of static const-qualified objects as constant expressions

Add the following item and footnote to 6.6 p7, constant expressions:

– an identifier for which an external or block-scope definition as an object of static storage duration is visible that has a non-atomic type that is const but not volatile or restrict qualified,FNT6)

FNT6) Such an identifier is only a named constant if it is declared with constexpr. So even if such an identifier has pointer, integer or arithmetic type, and its initializer has the required properties it does not necessarily evaluate to a null pointer constant, an integer constant expression or an arithmetic constant expression. Also, this excludes identifiers for which only a declaration (that is not a definition) or a tentative definition is visible.

Null pointer constants

Recommendation

Add a new paragraphs to the end of 6.3.2.3 (Pointers), before the forward references:

Recommended practice

9 A diagnostic is recommended if an integer constant expression that is not an integer literal is used to form a null pointer constant.

Obsolescence

Add a new clause to 6.11 (Future language directions)

6.11.x Null pointer constants

The possibility for integer constant expressions that are not integer literals to form a null pointer constant is an obsolescent feature.

Note to the editors

If N3010 (or follow up) is accepted in some form, “named constant” should be added to the list of properties that are promoted through primary expressions.

Questions for WG14

		Do we want to integrate the changes of N3018 section 7 (constexpr) plus the changes of N3006 (underspecified definitions) into C23?

		Do we want to integrate the changes of N3018 section 8.1 (constexpr struct members) into C23?

		Do we want to integrate the changes of N3018 section 8.2 (constexpr struct and union members) into C23?

		Do we want to integrate the changes of N3018 section 8.3 (constexpr struct and union members with type punning) into C23?

		Do we want to integrate the changes of N3018 section 9.1 (static const objects) into C23?

		Do we want to integrate the changes of N3018 section 9.2.1 (recommendation for null pointer constants) into C23?

		Do we want to integrate the changes of N3018 section 9.2.2 (obsolescence of integer constant expressions in null pointer constants) into C23?

Acknowledgements

Additional thanks to Martin Uecker and Joseph Myers for detailed wording improvement suggestions.

image8.emf
n3022.html

n3022.html
↑ Jump to Table of Contents← Collapse Sidebar

 N3022
Modern Bit Utilities

 Published Proposal, 2022-07-06

 		Previous Revisions:

		n3001 (r3), n2965 (r2), n2903 (r1), n2827 (r0)

		Author:

		JeanHeyd Meneide

		Latest:

		https://thephd.dev/_vendor/future_cxx/papers/C - Modern Bit Utilities.html

		Paper Source:

		github.com/ThePhD/future_cxx

		Issue Tracking:

		GitHub

		Proposal Category:

		Feature Request

		Target:

		C23

		Project:

		ISO/IEC JTC1/SC22/WG14 9899: Programming Language — C

 Abstract

 Endian preprocessor macros, byte swapping, big endian / little endian load and store, functions, and several bit utilities that have become commonplace amongst compilers, bytecodes, and implementations.

 Table of Contents

 		
 1 Changelog

 		1.1 Revision 4 - July 6th, 2022

		1.2 Revision 3 - June 17th, 2022

		1.3 Revision 2 - April 12th, 2022

		1.4 Revision 1 - January 1st, 2022

		1.5 Revision 0 - October 15th, 2021

		
 2 Polls

 		
 2.1 WG14 Virtual Meeting - February 2022

 		2.1.1 Does WG14 want the memreverse8 and endian load/store functions to only be required if CHAR_BIT == 8 similar to N2903?

		2.1.2 Does WG14 want new signed-count rotate functions in addition to what is in N2903?

		2.1.3 Does WG14 want to put something along the lines of N2903 into C23?

		
 3 Introduction & Motivation

 		3.1 Bits: How Much Faster?

		
 4 Design

 		4.1 Preliminary: Why the stdc_ prefix?

		4.2 Charter: unsigned char const ptr[static sizeof(uintN_t)] and More?

		
 4.3 Signed vs. Unsigned

 		4.3.1 In Defense of Signed Integers

		4.3.2 In Defense of Unsigned

		4.3.3 Which Does This Paper Choose?

		
 4.4 The __STDC_ENDIAN_* Macros

 		4.4.1 A (Brief) Discussion of Endianness

		4.4.2 Hey! Some Architectures Can Change Their Endianness at Run-time!

		4.4.3 Floating Point has a Byte Order, Too.

		
 4.5 Generic 8-bit Memory Reverse and Exact-width 8-bit Memory Reverse

 		4.5.1 But Memory Reverse Is Dangerous?

		4.5.2 Vetting the Implementation / Algorithm for memreverse

		
 4.6 stdc_load8_*/stdc_store8_* Endian-Aware Functions

 		4.6.1 Vetting the Implementation / Algorithm for 8-bit loads and stores

		
 4.7 Modern Bit Utilities

 		4.7.1 "Why not only generic interfaces or (u)intmax_t interfaces?"

		4.7.2 Type-Generic Macros and Counts for Types

		4.7.3 Argument Types

		4.7.4 Return Types

		4.7.5 stdc_count_ones/stdc_count_zeros

		4.7.6 stdc_rotate_left/stdc_rotate_right

		4.7.7 stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_ones

		4.7.8 stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_one

		4.7.9 stdc_has_single_bit

		4.7.10 stdc_bit_width/stdc_bit_ceil/stdc_bit_floor

		
 5 Wording

 		
 5.1 Decisions for the C Standards Committee

 		5.1.1 Question 0

		5.1.2 Question 1

		5.1.3 Question 2

		5.2 Add <stdbit.h> to freestanding headers in §4, paragraph 6

		
 5.3 Add a new §7.✨ sub-clause for "Bit and Byte Utilities" in §7

 		5.3.1 Add a new §7.✨.1 sub-sub-clause for "Endian" in §7.✨

		5.3.2 Add a new §7.✨.3 sub-sub-clause for "8-bit Memory Reversal" in §7.✨

		5.3.3 Add a new §7.✨.5 sub-sub-clause for "Endian-Aware" functions in §7.✨

		5.3.4 Add a new §7.✨.7 sub-sub-clause for Low-Level Bit Utilities in §7.✨

		5.3.5 Add a new §7.✨.19 sub-sub-clause for Fundamental Bit Utilities in §7.✨

		5.4 Add one new entry for Implementation-Defined Behavior in Annex J.3

		5.5 Modify an existing entry for Unspecified behavior in Annex J.1

		
 6 Appendix

 		6.1 Decisions to Committee Questions

		6.2 Example Implementations in Publicly-Available Libraries

		6.3 Implementation of Generic stdc_count_ones

		6.4 Implementation of Generic stdc_bit_ceil

		
 6.5 Endian Enumeration

 		6.5.1 Rationale

		7 Acknowledgements

		
 References

 		 Informative References

 1. Changelog

 1.1. Revision 4 - July 6th, 2022

 		
 Wording improvements:

 		
 Revised generic_count_type to simply be of the required signed-ness (it may be a narrower type, or a larger type: it does not matter).

		
 Provide concrete definitions for most significant index and least significant index in the wording.

		
 Rework all of the preamble and requirements into a "General" paragraph for the <stdbit.h> header, to leave no hanging paragraphs. (Hanging paragraphs are contrary to ISO wording policy).

		
 Add additional verification of the 8-bit memreverse function and use that implementation exactly in § 4.5.2 Vetting the Implementation / Algorithm for memreverse.

		
 Add additional verification of the 8-bit endian-aware load and store functions in § 4.6.1 Vetting the Implementation / Algorithm for 8-bit loads and stores, and try to transcribe that implementation directly to avoid errors in the wording.

 1.2. Revision 3 - June 17th, 2022

 		
 Removed a bullet point about adding a reservation for stdc_ in the future: that is taken care of by a different paper.

		
 Fixed the wording for Question 0 and Question 1 with respect to mentioning generic_count_type properly.

		
 Adjust the position of the <stdbit.h> header in the Freestanding list (the list is in alphabetical order).

		
 Formulated the return descriptions of the Endian-Aware Load and Store functions much more clearly and use pure mathematics notation, as suggested by Joseph Myers.

 1.3. Revision 2 - April 12th, 2022

 		
 Deeply discussed the rotate_left/rotate_right class of functionality, and it’s effect on the rest of the API, in § 4.3 Signed vs. Unsigned.

		
 Committed to taking a poll with the new information given about the functionality.

		
 Use bool instead of _Bool now that it has been accepted.

		
 Ensure the wording for stdc_first_(leading/trailing)_(one/zero) and friends is present in the paper.

		
 Discuss potentially having bit functions which take a width parameter in the future in polling section about CHAR_BIT and width definitions.

		
 Adjust wording for Endian-Aware Load/Store functions.

 		
 Typo fixes for the names of mask and index values.

		
 For right shifts, introduce a new unsigned_value to be used to avoid implementation-defined behavior in the specification for the store functions.

		
 Provide alternative wording solutions for various committee decisions in § 5.1 Decisions for the C Standards Committee.

 1.4. Revision 1 - January 1st, 2022

 		
 Drastically rework design section and motivations after several rounds of feedback from at least 4 vendors, 6 business partners, 3 Open Source maintainers, and more.

		
 Add additional bit utilities and design them from existing practice in C, C++, Go, Rust, Zig, and implementation-specific constraints in Visual C++, CLang, GCC, SDCC, TCC and more.

 		
 stdc_first_(leading/trailing)_(one/zero)

		
 stdc_count_(leading/trailing)_(ones/zeros)

		
 Return types for bit functions counting bits is int, and for type-generic functions computing an input-related value is "type suitably large enough to hold the result".

		
 Arguments types should be int by default or the target input type, unless otherwise specified.

		
 Provide backing implementation for all functionality in this paper at an official repository.

		
 Provide benchmarks showing performance comparisons using the intrinsics vs. not in § 3.1 Bits: How Much Faster?.

		
 Use zeros consistently in the function name spelling instead of zeroes.

 1.5. Revision 0 - October 15th, 2021

 		
 Initial release. ✨

 2. Polls

 These polls help guide the design of this paper in accordance with WG14 consensus. Where consensus was not sufficient or close (or there were many abstentions in conjunction with not having much consensus), the author chose in a particular direction and provided rationale.

 2.1. WG14 Virtual Meeting - February 2022

 WG14 reviewed an earlier version of this paper in N2903, discussing many of its design choices and aspects. WG14 was asked about which functions from the given set below to keep in the paper or remove: all sets of functions were approved when asking the 5 questions about which functionality should be kept (answered questions were moved to the Appendix in § 6.1 Decisions to Committee Questions). This was interpreted as unanimous consent to proceed with all of the functionality in this paper. If there is anyone who is interested in bisecting or taking pieces apart from this proposal, please let the authors know as soon as is humanly possible.

 2.1.1. Does WG14 want the memreverse8 and endian load/store functions to only be required if CHAR_BIT == 8 similar to N2903?

 		Yes
 		No
 		Abstain

 		6
 		5
 		8

 This was interpreted as not strong enough consensus, but it was left to the author to decide. As we do not want to leave freestanding implementations which have CHAR_BIT == 16 or CHAR_BIT == 32 out in the cold, we decided to leave the CHAR_BIT % 8 == 0 mandate in, rather than switch to CHAR_BIT == 8 as a stringent constraint. This complicates the specification but makes the functionality more widely available.

 One of the suggestions that came from doing this would also be to require the generic bit functions to take a parameter indicating the desired final width of the integer result, that the user would then cast. This is seen currently in the standard in functions such as fromfp, ufromfp, and similar found in the C Standard in §7.12.9.10 and §7.12.9.11. Unfortunately, this is less justifiable because existing practice does not follow this pattern for any bit intrinsics. Bit intrinsics are deeply tied to the width of the object being computed and the assumption of that width is what produces the most optimal code since it maps 1:1 with instruction sets and hardware sets. Better code generation can be achieved by providing a width parameter that is a constant (e.g., (unsigned int)stdc_leading_zeros(value, UINT_WIDTH) or similar). The only problem with this is when either (a) weaker compilers that do not do any constant propagation or expression computation beyond the very minimal set required by the C compiler, or (b) the width parameter is not a constant value by necessity or accident.

 For example, MISRA C and CERT discourage #define constants without strong justification. This is due to unbounded scoping issues endemic to the preprocessor (for macro constants). Similarly, using "magic numbers" (unnamed constants) is non-compliant. Trying to use const int width = UINT_WIDTH; is also discouraged as it - and other constant expressions stored in const or even const static variables - may or may not optimize to a constant (it is strictly not a constant expression, as determined by C’s abstract machine rules; see: CERT C DCL06). Using enumerations may solve this problem partially for MISRA C/Safety Standard Compliance, but this is an awful lot of effort for what should be straightforward code generation on even low-quality, non-optimizing implementations. (Recognizing a standard function and providing a builtin for it is existing practice, even on compilers who barely afford to do optimizations such as "tinycc". Propagating constant expressions into function calls, standard or not, is less so existing practice from available implementations whose source code can be inspected.)

 We also do not have existing practice for bit functions that are specified in this way. These functions are usually meant to map to a tight set of hardware instructions, and are meant to be cheaply translatable to said hardware instructions. So, we focus on providing things that map directly to standard and extended unsigned integer types as well as bit-precise integers that match exact-width integer types. This proposal does not spend further time explore providing width as a parameter. We think that this may be a good idea in the future, but this is something we should allow for implementations to provide for.

 2.1.2. Does WG14 want new signed-count rotate functions in addition to what is in N2903?

 		Yes
 		No
 		Abstain

 		8
 		6
 		6

 This was interpreted as very close consensus, and also left to the author to decide. However, it was made clear in post-discussion that the current design for rotate left/right is fine, because it is a symmetrical operation, and is completely free to implement on 2’s complement implementations. Another important factor in making this decision was noting that most compilers already generate optimal code with a signed count value, including x86_64, x32_64, i686, AARCH64 (Arm 64-bit), and Arm 32-bit targets. Finally, there are architectures were both rotate left and rotate right instructions are available, but they do not have the same performance characteristics: the end-user should be able to use either rotate_left or rotate_right to bias the implementation towards a given instruction where possible.

 2.1.3. Does WG14 want to put something along the lines of N2903 into C23?

 		Yes
 		No
 		Abstain

 		19
 		2
 		2

 This is very clear direction to put it into C23, provided that the wording and other design details are hammered into place. We are working on these details.

 3. Introduction & Motivation

 There is a lot of proposals and work that goes into figuring out the "byte order" of integer values that occupy more than 1 octet (8 bits). This is nominally important when dealing with data that comes over network interfaces and is read from files, where the data can be laid out in various orders of octets for 2-, 3-, 4-, 6-, or 8-tuples of octets. The most well-known endian structures on existing architectures include "Big Endian", where the least significant bit comes "last" and is featured prominently in network protocols and file protocols; and, "Little Endian", where the least significant bit comes "first" and is typically the orientation of data for processor and user architectures most prevalent today.

 In more legacy architectures (Honeywell, PDP), there also exists other orientations called "mixed" or "middle" endian. The uses of such endianness are of dubious benefit and are vanishingly rare amongst commodity and readily available hardware today, but nevertheless still represent an applicable ordering of octets.

 In other related programming interfaces, the C functions/macros ntoh ("network to host") and hton ("host to network") (usually suffixed with l or ul or others to specify which native data type it was being performed on such as long) were used to change the byte order of a value ([ntohl]). This became such a common operation that many compilers - among them Clang and GCC - optimized the code down to use an intrinsic __builtin_bytewap(...)/__builtin_bswap(...) (for MSVC, for Clang, and for GCC). These intrinsics often compiled into binary code representing cheap, simple, and fast byte swapping instructions available on many CPUs for 16, 32, 64, and sometimes 128 bit numbers. The bswap/byteswap intrinsics were used as the fundamental underpinning for the ntoh and hton functions, where a check for the translation-time endianness of the program determined if the byte order would be flipped or not.

 This proposal puts forth the fundamentals that make a homegrown implementation of htonl, ntoh, and other endianness-based functions possible in Standard C code. It also addresses many of the compiler-based intrinsics found to generate efficient machine code, with a few simpler utilities layered on top of it.

 3.1. Bits: How Much Faster?

 Just how much faster can using intrinsics and bit operations as proposed in this paper be? Below is a quantification of the performance differences from naïve algorithms that worked over one "bit" (or bool) at a time by attempting to implement a few algorithms using it. The explanations of these graphs can be found at one of the publicly available implementation of this code in its documentation - https://ztdidk.readthedocs.io/en/latest/benchmarks/bit.html.

 If you don’t read the previous link, then at the very least it should be shown that the code describes in this proposal provides the means to implement the improvements shown in the ztdc_packed group of benchmark bars.

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_vector_bool

naive_packed

cpp_std_array_bool

cpp_std_bitset

bit - count

12.8

25.6

38.4

512 64.0 76.8
measured in microseconds - lower is better

89.6

102.4

15.2

 [image:]1st is real time,

2nd is cpu time

cpp_std_array_bool

2tdc_packed

cpp_std_vector_bool

naive_packed

cpp_std_bitset

bit - find

8.0

16.0

24.0

320 40.0 48.0
measured in microseconds - lower is better

56.0

64.0

72.0

80.0

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_array_bool

naive_packed

cpp_std_bitset

cpp_std_vector_bool

bit - is_sorted

25.6

512

76.8

102.4 128.0 153.6
measured in microseconds - lower is better

179.2

204.8

2304

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_array_bool

naive_packed

cpp_std_bitset

cpp_std_vector_bool

bit - is_sorted_until

295

59.0

88.5

118.0 1475 177.0
measured in microseconds - lower is better

206.5

236.0

265.5

 4. Design

 This is a library addition. It is meant to expose both macros and functions that can be used for translation time-suitable checks. It provides a way to check endianness within the preprocessor, and gives definitive names that allow for knowing whether the endianness is big, little, or neither. We state big, little, or neither, because there is no settled-upon name for the legacy endianness of "middle" or "mixed", nor any agreed upon ordering for such a "middle" or "mixed" endianness between architectures. This is not the case for big endian or little endian, where one is simply the reverse of the other, always, in every case, across architectures, file protocols, and network specifications.

 The next part of the design is functions for working with groupings of 8 bits. They are meant to communicate with network or file protocols and formats that have become ubiquitous in computing for the last 30 years.

 This design also provides a small but essential suite of bit utilities, all within the #include <stdbit.h> header.

 4.1. Preliminary: Why the stdc_ prefix?

 We use the stdc_ prefix for these functions so that we do not have to struggle with taking common words away from the end user. Because we now have 31 bytes of linker name significance, we can afford to have some sort of prefix rather than spend all of our time carving out reserved words or header-specific extensions. This will let us have good names that very clearly map to industry practice, without replacing industry code or being forced to be compatible with existing code that already has taken the name with sometimes-conflicting argument conventions.

 4.2. Charter: unsigned char const ptr[static sizeof(uintN_t)] and More?

 There are 2 choices on how to represent sized pointer arguments. The first is a void* ptr convention for functions arguments in this proposal. The second is an unsigned char ptr[static n]/unsigned char ptr[sizeof(uintN_t)] convention.

 To start, we still put any size + ptr arguments in the proper "size first, pointer second" configuration so that implementation extensions which allow void [static n] can exist no matter what choice is made here. That part does not change. The void* argument convention mean that pointers to structures, or similar, can be passed to these functions without needing a cast. This represents the totality of the ease of use argument. The unsigned char ptr[static n] argument convention can produce both better compile-time safety and articulate requirements using purely the function declaration, without needing to look up prose from the C Standard or implementation documentation. The cost is that any use of the function will require a cast in strictly conforming code.

 One of the tipping arguments in favor of our choice of unsigned char ptr[static n] is that void* can be dangerous, especially since we still do not have a nullptr constant in the language and 0 can be used for both the size and the pointer argument. (Which is, very sadly, an actual bug that happens in existing code. Especially when users mix memset and memcpy calls and use the wrong 0 argument because of writing one and meaning the other, and copying values over a large part of their 0-pointer in their low-level driver code.) Using an unsigned char* (or its statically-sized array function argument form) means that usage of the functions below would require explicit casting on the part of the user. This is, in fact, the way it is presented in [portable-endianness]: as far as existing practice is concerned, users of the code would rather cast and preserve safety rather than easily use something like stdc_memreverse8 with the guts of their structure.

 4.3. Signed vs. Unsigned

 This paper has gone back and forth between signed vs. unsigned count offsets for the rotl/rotr instruction-based functions, and similarly the return types for many of the types which return purely a "count"-style value. Some important properties and facts follow:

 		
 All of the values returned from the functions here return conceptually unsigned/natural numbers (0 to potentially infinity, but not negative).

		
 Some existing practice — e.g., C++ — has in recent years struggled against unsigned integers and tried to move towards signed. "Anything that is a count should just be an int", and similar guidance, grows from these functions and their types.

		
 Conversely, some of C’s most fierce proponents use unsigned numbers almost exclusively until they have a proper justification for a signed number. For them, unsigned/size_t is the default.

		
 Whatever decision we make for one (e.g., for the arugment type of rotate_left or rotate_right), we must make the identical decision for the return values of other functions (e.g., count_ones/popcount, or similar).

 This brings up a lot of questions about whether or not the functions here should be signed or unsigned. We will analyze this primarily from the standpoint of rotate_left and rotate_right, as that has the greatest impacts for the portability and semantics of the code presented here.

 4.3.1. In Defense of Signed Integers

 Let us consider a universe where stdc_rotate_left and friends take a signed count. This allows negative numbers to be passed to the count value for the rotate left. So, when stdc_rotate_leftuc(1, -1) is called, it will call itself again with stdc_rotate_rightuc(value, -count); if (e.g.) stdc_rotate_rightuc(1, -1) is called, it will call itself again with stdc_rotate_leftuc(value, -count). This is because, specification-wise, these functions are symmetric and cyclical in what they are meant to do. This matches the behavior from C++ and avoids undefined behavior for negative numbers, while also avoiding too-large shift errors from signed-to-unsigned conversions.

 SDCC and several other compilers optimize for left and right shifts ([sdcc]). Texas Instruments and a handful of other specialist architectures also have "variable shift" instructions (SSHVL), which uses the sign of the argument to shift in one direction or the other ([ti-tms320c64x]). Having a rotate_left where the a negative number produces the opposite rotate_right cyclic operation (and vice-versa) means that both of these architectures can optimize efficiently in the case of hardcoded constants, and still produce well-defined behavior otherwise (SSHVL instructions just deploy a "negated by default" for the count value or not, depending on whether the left or right variant is called, other architectures propagate the information to shift left or right). This also follows existing practice with analogous functions from the C++ standard library.

 To test code generation for using a signed integer and 2’s complement arithmetic, we used both C++ and C code samples. It’s a fairly accurate predictor of how notable compilers handle this kind of specification. The generated assembly for the compilers turns out to be optimal, so long as an implementation does not do a literal copy-paste of the specification’s text

 Using non-constant offset, with generated x86_64 assembly:

#include <bit>

extern unsigned int x;
extern int offset;

int main () {
 int l = std::rotl(x, offset);
 int r = std::rotr(x, offset);
 return l + r;
}

main: # @main
	mov eax, dword ptr [rip + x]
	mov cl, byte ptr [rip + offset]
	mov edx, eax
	rol edx, cl
	ror eax, cl
	add eax, edx
	ret

 — And, using constant offset, with generated x86_64 assembly.

#include <bit>

extern unsigned int x;

int main () {
 int l = std::rotl(x, -13);
 int r = std::rotr(x, -13);
 return l + r;
}

main: # @main
	mov eax, dword ptr [rip + x]
	mov ecx, eax
	rol ecx, 19
	rol eax, 13
	add eax, ecx
	ret

 The generated code shows that the compiler understands the symmetric nature of the operations (from the constant code) and also shows that it will appropriately handle it even when it cannot see through constant values. The same can be shown when writing C code using a variety of styles, as shown here:

#if UNSIGNED_COUNT == 1

static unsigned int rotate_right(unsigned int value, unsigned int count);

inline static unsigned int rotate_left(unsigned int value, unsigned int count) {
	unsigned int c = count % 32;
	return value >> c
		| value << (32 - c);
}

inline static unsigned int rotate_right(unsigned int value, unsigned int count) {
	unsigned int c = count % 32;
	return value << c
		| value >> (32 - c);
}

#elif TWOS_COMPLEMENT_CAST == 1

static unsigned int rotate_right(unsigned int value, int count);

inline static unsigned int rotate_left(unsigned int value, int count) {
	unsigned int c = (unsigned int)count;
	c = c % 32;
	return value >> c
		| value << (32 - c);
}

inline static unsigned int rotate_right(unsigned int value, int count) {
	unsigned int c = (unsigned int)count;
	c = c % 32;
	return value << c
		| value >> (32 - c);
}

#else

static unsigned int rotate_right(unsigned int value, int count);

inline static unsigned int rotate_left(unsigned int value, int count) {
	int c = count % 32;
	if (c < 0) {
		return rotate_right(value, -c);
	}
	return value >> c
		| value << (32 - c);
}

	inline static unsigned int rotate_right(unsigned int value, int count) {
	int c = count % 32;
	if (c < 0) {
		return rotate_left(value, -c);
	}
	return value << c
		| value >> (32 - c);
}

#endif

#if UNSIGNED_COUNT == 1
unsigned int f (unsigned int x, unsigned int offset) {
#else
unsigned int f (unsigned int x, int offset) {
#endif
	unsigned int l = rotate_left(x, offset);
	unsigned int r = rotate_right(x, offset);
	return l + r;
}

 When using the various definitions, we find that the generated assembly for f is identically good using either the internal unsigned "two’s complement" cast, or by just using an unsigned number. Because of how poorly basic mathematics with unsigned numbers happens, we want to avoid a situation where negation or subtraction with unsigned qualities may yield undesirable results or promotions. Therefore, we used signed integers for both the offset count and the return values of these functions. Note that even in purely standard C, converting from a signed integer to an unsigned integer is perfectly well-defined behavior and does not raise any signals:

 2   Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting one more than the maximum value that can be represented in the new type until the value is in the range of the new type.

 — §6.3.1.3, ¶2, ISO/IEC 9899:202x "C2x" Standard

 Finally, the vast majority of existing practice takes the offset value in as a signed integer, and all the return types are also still some form of signed integer (unless the intrinsic is returning the exact same unsigned value put in that was manipulated). It also allows "plain math" being done on the type to naturally manifest negative numbers without accidentaly having roundtripping or signed/unsigned conversion issues.

 4.3.2. In Defense of Unsigned

 Unsigned, on the other hand, has existing practice in hardware. While the intrinsics defined by glibc, C++'s standard libraries, and many more use signed integers, they are conceptually unsigned in their implementations. For example, for a 32-bit rotate, most standard libraries taking an int offset parameter perform:

count = count & 31;

 This is critical for optimization here. Note that, if we were to provide a specification using a signed offset, our specification has to very deliberately specify that we are going to negate the value and then pass it to the rotate of the opposite direction. This is, effectively, the same as obliterating the sign value and then calling the (symmetrical, cyclical) rotate: a 32-bit rotate therefore can get identical codegen as a signed variant by using the a bit AND (NOT a normal % 32, as that preserves the sign as we do NOT want that). For an unsigned variant, no such trickery is necessary. Simply truncating the value using:

count = count % 32;

 produces optimal code generation for most compilers, as they understand that bit AND for hexadecimal 0x1F (decimal 31) is identical to modulus of decimal 32. This means that, by default, unsigned values are the same here. Abusing 2’s complement, one can save this by simply doing unsigned u_count = (unsigned)count; and then perform modulus to get the same behavior as performing bit AND with 31. The "obvious" code is the efficient code here, as shown by the example of the assembly above.

 Rust is one of the few languages that provides optimal versions of this code using unsigned. Their code is optimal under both optimizations and a lack thereof, compared to C and C++ code which struggles with function call elision and similar. This may be aided in the future by having this paper put into the C standard, which would allow compilers to treat standard-specific rotate calls as intrinsics to be replaced with the instructions directly.

 All in all, unsigned naturally optimizes better and matches the size type of C. It has no undefined behavior on overflow and produces better assembly in-general when it comes to bit intrinsics. Shifting behavior is also well-defined for unsigned types and not signed types, further compounding unsigned types as far better than their signed counterparts.

 4.3.3. Which Does This Paper Choose?

 Ultimately, this paper chooses signed integer types. This is primarily to satisfy architectures which have signed-based variably style shifts. These platforms would have to convert to signed values to perform their variable shifts either way, so it benefits them. We also know that, for 2’s complement architectures, signed can be treated best by simply deploying count & 31 as a way to produce a truncated absolute value.

 Furthermore, existing practice in C uses signed integer types for the count for rotate_left (and it’s analogous builtins and similar). Nominally, breaking with existing practice is actually not difficult in this case because the behavior for the rotate is, once again, done as-if it’s an unsigned value that can rotate in any direction. However, it is important to remember that the use of positive or negative values can influence the direction of the rotate, as well as the choice of which function.

 I expect this decision will not be extremelty popular. Ultimately, I expect to poll this at the next meeting. Whichever direction gets higher consensus, will be the direction I pursue for this functionality.

 4.4. The __STDC_ENDIAN_* Macros

 The enumeration is specified as follows:

#include <stdbit.h>

#define __STDC_ENDIAN_LITTLE__ /* some unique value */
#define __STDC_ENDIAN_BIG__ /* some other unique value */
#define __STDC_ENDIAN_NATIVE__ /* see below! */

 The goal of these macros is that if the system identifies as a "little endian" system, then __STDC_ENDIAN_LITTLE__ == __STDC_ENDIAN_NATIVE__, and that is how an end-user knows that the implementation is little endian. Similarly, a user can check __STDC_ENDIAN_BIG__ == __STDC_ENDIAN_NATIVE__, and they can know the implementation is big endian. Finally, if the system is neither big nor little endian, than __STDC_ENDIAN_NATIVE__ is a unique value that does not compare equal to either value:

#include <stdbit.h>
#include <stdio.h>

int main () {
	if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_LITTLE__) {
		printf("little endian! uwu\n");
	}
	else if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_BIG__) {
		printf("big endian OwO!\n");
	}
	else {
		printf("what is this?!\n");
	}
	return 0;
}

 If a user has a Honeywell architecture or a PDP architecture, it is up to them to figure out which flavor of "middle endian"/"mixed endian"/"bi endian" they are utilizing. We do not give these a name in the set of macros because neither the Honeywell or PDP communities ever figured out which flavor of the 32-bit byte order of 2341/3412/2143/etc. was strongly assigned to which name ("mixed" endian? "mixed-big" endian? "bi-little" endian?), and since this is not a settled matter in existing practice we do not provide a name for it in the C Standard. It is also of dubious determination what the byte order for a 3-byte, 5-byte, 6-byte, or 7-byte integer is in these mixed-endian types, whereas both big and little have dependable orderings.

 4.4.1. A (Brief) Discussion of Endianness

 There is a LOT of design space and deployed existing practice in the endianness space of both architectures and their instruction sets. A non-exhaustive list of behaviors is as follows:

 		
 Instruction set, OS, and register conventions are in-sync (Windows, Apple, and most *Nix Distributions).

		
 Instruction set has variability that can be toggled (ARM with the SETEND instruction).

		
 Instruction set has no variability, but data can be stored in unconventional endianness (RISC-V, mainframe architectures, and similar).

		
 Instruction set has no variability, but it changes endianness between types/sizes (FORTRAN-implemented floating point units used Big Endian, PDP-11 compatibility with those machines required 32-bit big-endian instructions on a little-endian machine (hilarity/shenanigans ensued)).

		
 Instruction set has no variability, but historical weight forces certain choices (PDP-11 had 16-bit little-endian integers. Some folk interpreted two of them next to each other as a single 32-bit integer, resulting in the 2143 byte order).

 Suffice to say, there exists a lot of deployed practice. Note that this list effectively has these concerns in priority order. The first is the most conventional software; as the list goes down, each occurrence becomes more rare and less interesting. Therefore, we try not to spend too much time focusing on what are effectively the edge cases of software and hardware. Some of the past choices in endianness and similar were simply due "going with the flow" (PDP’s "2143" order) or severe historical baggage (early FORTRAN dealing in big endian floating point numbers, and those algorithms and serialization methods being given to PDP machines without thinking about the ordering). With much of the industry moving away from such modes in both newer mainframes and architectures and towards newer implementations and architectures, it does not seem prudent to try to standardize the multitude of their behaviors.

 This proposal constraints its definition of endianness to integer types without padding, strictly because trying to capture the vast berth of existing architectures and their practices can quickly devolve down a slope that deeply convolutes this proposal’s core mission: endian and bit utilities.

 4.4.2. Hey! Some Architectures Can Change Their Endianness at Run-time!

 This is beyond the scope of this proposal. This is meant to capture the translation-time endianness. There also does not appear to be any operating system written today that can tolerate an endianness change of the whole program happening arbitrarily at runtime, after a program has launched. This means that the property is effectively a translation-time property, and therefore can be exposed as a compile-time constant. A future proposal to determine the run-time byte order is more than welcome from someone who has suitable experience dealing with such architectures and programs, and this proposal does not preclude their ability to provide such a run-time function e.g. stdc_endian get_execution_endian(void);.

 Certain instruction sets have ways to set the endianness of registers, to change how data is accessed ([arm-setend]). This functionality is covered by byte swapping, and byte swaps can be implemented using the SETEND instruction plus an access. (The compiler would have to remember to unwind the endian state back to its original value, however, or risk contaminating the entire program and breaking things.)

 4.4.3. Floating Point has a Byte Order, Too.

 For the design of this paper, we strictly consider the design space for (unsigned) integers, only. Floating point numbers already have an implementation-defined byte order, and none of these functions are meant to interact with the floating point types. While the stdc_memreverse8 function can work on any memory region, which includes any structure, scalar, or similar type with or without padding bits, the function just swaps bytes. Nothing needs to be said about padding bits in this case, since the operation is well-defined in all cases.

 It shall be noted that for C++, since C++20, its endian enumeration applies to all scalar types:

 This subclause describes the endianness of the scalar types of the execution environment.

 — C++ Standard Working Draft, bit.endian/p1

 It does not specify what this means for padding bits or similar; nor, I think, does it have to. Byte order means very little for padding bits until serialization comes into play. C++ does not define any functions which do byte-order aware serialization. So, it does not have to write any specification governing what may or may not happen and the left is rest undefined / unspecified.

 For this proposal, we focus purely on integer types and, more specifically, on integer types which do not have padding or where we can work with a padding bits-agnostic representation. While it is acknowledged that floating point types and pointers have byte orders too, we do not want to interact directly with these types when it comes to endianness load and store functions. Byte swaps, (bit) population counts, and other bit operations can be performed on floating point types after they have been copied or type-punned (with implementation checking/blessing) into equivalent (unsigned) integer objects to do the necessary work.

 4.5. Generic 8-bit Memory Reverse and Exact-width 8-bit Memory Reverse

 In order to accommodate both a wide variety of architectures but also support minimum-width integer optimized intrinsics, this proposal takes from the industry 2 forms of byteswap:

 		
 one generic mem_ version which takes a pointer and the number of bytes to perform a reverse operation; and,

		
 a sequence of exact-width byte swapping instructions which (typically) map directly to intrinsics available in compilers and instructions in hardware.

 These end up inhabiting the stdbit.h header and have the following interface:

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if (CHAR_BIT % 8 == 0)
void stdc_memreverse8(size_t n, unsigned char ptr[static n]);
uintN_t stdc_memreverse8uN(uintN_t value);
#endif

 where N is one of the minimum-width integer types such as 8, 24, 16, 32, 64, 128, and others. On most architectures, this matches the builtins (MSVC, Clang, GCC) and the result of compiler optimizations that produce instructions for many existing architectures as shown in the README of this portable endianness function implementation. We use the exact-width values for the uN-suffixed functions because we expect that C compilers would want to lower the stdc_memreverse8uN call to existing practice of byteswapN instructions and compiler intrinsics. Using uint_leastN_t reduces the ability to match these existing optimizations in the case where uintN_t functions are not defined.

 One property of note is that memreverse8 swaps 8 bits at a time rather than CHAR_BIT bits at a time (this is why it has the suffix "8" in the name). This matches existing practice: all known byteswap operations work on 8 bits. This caveat is here because we need to retain cross-platform behavior. If we swapped to using CHAR_BIT, then the behavior of a program that uses no implementation-defined properties would suddenly become dependent on implementation/architecture properties:

// NOT guaranteed, if it works on CHAR_BIT
// instead of working on 8 bits at a time.
assert(stdc_memreverse8u32(0xAABBCCDD) == 0xDDCCBBAA);

 One of the problems with this approach is that it opens us up to potentially having padding bits if CHAR_BIT is not a multiple of 8. There are a number of approaches to this, but the ultimate reality is that it is simply not portable using any other definition. If the goal is standard functions and the purpose of these types is to create a way to talk to other processors (or different kinds of cores all along the same bus), files in specific formats, or networks, then we have to stick to using an 8-bit byte and not letting unspecified amounts of padding filtering into the representation. This also allows the code, when present, to map reasonably to available intrinsics: note that even the GCC builtins work explicitly on 8-bit-bytes, no matter the platform. We are simply following existing practice, here.

 There is also the concern of bit orderings on top of byte orderings. Unfortunately, there is no practical way to deal with sub-8 bit orderings that may be different or change from machine to machine in a way that is practical when put in conjunction with larger-than-8-bit-bytes.

 4.5.1. But Memory Reverse Is Dangerous?

 Byte swapping, by itself, is absolutely dangerous in terms of code portability. Users often program strictly for their own architecture when doing serialization, and do not take into consideration that their endianness can change. This means that, while stdc_memreverse functions can compile down to intrinsics, those intrinsics get employed to change "little endian" to "big endian" without performing the necessary "am I already in the right endianness" check. Values that are already in the proper byte order for their target serialization get swapped, resulting in an incorrect byte order for the target network protocol, file format, or other binary serialization target.

 The inclusion of the <stdbit.h> header reduces this problem by giving access to the __STDC_NATIVE_ENDIAN__ macro definition, but does not fully eliminate it. This is why many Linux and BSDs include functions which directly transcribe from one endianness to another. This is why the Byte Order Fallacy has spread so far in Systems Programming communities, and why many create their own versions of this both in official widespread vendor code ([linux-endian]) and in more personal code used for specific distributions ([portable-endianness]). Thusly, this proposal includes some endianness functions, specified just below.

 4.5.2. Vetting the Implementation / Algorithm for memreverse

 In previous iterations of the paper, there were various off-by-one errors in transcribing the algorithm used to get the job done. Therefore, we more directly lifted the code for the algorithm from the example implementation here. To further prove that it works on "bytes" that may be larger than 8 bits, we also took the following steps.

 		
 Implemented it as a macro (as shown from the link above).

		
 Use that macro implementation in the normal unsigned char-based [implementation]();

		
 Use that macro implementation all unsigned integer types that are larger than unsigned char to test if it deals with sub-8-bit-groups correctly;

		
 Apply -fno-strict-alias or equivalent flag to the compiler and test across platforms.

 All of the tests pass across the three major compilers (MSVC, GCC, and Clang) and across platforms (Windows, Linux, Mac OS). We find this to be compelling enough to ensure that the implementation and the algorithm in the wording is suitably correct. Nevertheless, any wording failures present here represent the authors' collective inability to properly serialize wording, not that an implementation is not possible or too inventive.

 4.6. stdc_load8_*/stdc_store8_* Endian-Aware Functions

 Functions meant to transport bytes to a specific endianness need 3 pieces of information:

 		
 the sign of the input/output;

		
 the byte order of the input; and,

		
 the desired byte order of the output.

 To represent any operation that goes from/to the byte order that things like long longs are kept in, the Linux/BSD/etc. APIs use the term "host", represented by h. Every other operation is represented by explicitly naming it, particularly as be or le for "big endian" or "little endian". Again, because of the severe confusion that comes from what the exact byte order a "mixed endian" multi byte scalar is meant to be in, there seems not to exist any widely available practice regarding what to call a PDP/Honeywell endian configuration. Therefore, mixed/bi/middle-endian is not included in this proposal. It can be added at a later date if the community ever settles on a well-defined naming convention that can be shared between codebases, standards, and industries.

 The specification for the endianness functions borrows from many different sources listed above, and is as follows:

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if ((N % CHAR_BIT) == 0 && (CHAR_BIT % 8 == 0))
void stdc_store8_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_leuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_beuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_leuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_beuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);

void stdc_store8_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_lesN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_besN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_lesN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_besN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Thanks to some feedback from implementers and librarians, this first implementation would also need an added signed variant to the load and store functions as well as aligned and unaligned loads and stores. While C23 will mandate a two’s complement representation for integers, because we are using the uint_leastN_t functions (which may be larger than the intended N == 24 or N == 32 specification), it is important for the sign bit to be properly serialized an transported. Therefore, during stdc_load8_(le/be)sN/stdc_load8_(le/be)uN operations, the sign bit will be directly serialized into resulting signed value or byte array where necessary.

 This specification is marginally more complicated than the stdc_memreverseuN functions because they operate on uint_leastN_t, where N is the minimum-width bit value. These functions, on most normal implementations, will just fill in the exact number of 8, 16, 32, 64, etc. bits. But for Digital Signal Processors (DSPs), select embedded architectures, and many freestanding implementations, it is impossible to offer a CHAR_BIT == 8 guarantee. For example, some Digital Signal Processors have CHAR_BIT == 32, and all of uint_least8_t, uint_least16_t, uint_least24_t, and uint_least32_t are all aliased to the same fundamental type.

 We are fine with not making these precisely uintN_t/intN_t because the upcoming C23 Standard includes a specific allowance that if uintN_t/intN_t exist, then uint_leastN_t/int_leastN_t must match their exact-width counterparts exactly, which has been existing practice on almost all implementations for quite some time now.

 Similarly to stdc_memreverse8, we want a dependable set of functionality that can work across platforms. Therefore, the functions only exist if both N and CHAR_BIT is evenly divisible by 8. We use the (u)int_leastN_t types still because we want these functions to be generally available when the requirements are met, because we can guarantee a proper value as long as a user is working with (u)int_leastN_t as anticipated. A lack of padding bits is not required to work with the memory correctly, unlike stdc_memreverse8 and its exact-width counterpart.

 Note that this means a CHAR_BIT == 16 implementation can still implement a stdc_load8_les24 function, as it satisfies both ((CHAR_BIT % 8) == 0) and ((N % 8) == 0) and uses the int_least24_t parameter, which is guaranteed to be available in that implementation’s <stdint.h> header.

 4.6.1. Vetting the Implementation / Algorithm for 8-bit loads and stores

 In previous iterations of the paper, getting the algorithm written down properly in a way that does not rely on any kind of implementation-defined behavior for signed and unsigned endian-aware loads and stores was tough and resulted in many errors in the wording. Still, we know that the implementation is solid because we have tested it (both theoretically and factually) by writing implementations which base "unit" for writing into has a width greater than CHAR_BIT. It is similar to the design

 		
 Implemented the core bodies of the functions as macros whose base unit is not necessarily unsigned char (as shown here).

		
 Use that macro implementation in the normal unsigned char-based implementation;

		
 Use that macro implementation all unsigned integer types that are larger than unsigned char to test if it deals with sub-8-bit-groups correctly;

		
 Apply -fno-strict-alias or equivalent flag to the compiler and test across platforms.

 All of the tests pass across the three major compilers (MSVC, GCC, and Clang) and across platforms (Windows, Linux, Mac OS). We find this to be compelling enough to ensure that the implementation is suitably correct, even if the wording may not be proper or ideal. Therefore, we hope this can serve as a good basis in establishing that, at the very least, this is both implementable and usable. This also corroborates additional materials outside of compilers who always target CHAR_BIT == 8, such as the F2838x/F28069 series, and C28x series, of chips from Texas Instruments. For example, the TMS320C28x reference guide gives a listing for how to properly and effectively swap 8-bit bytes of a 32-bit integer, despite being a 16-bit architecture (Page 292). It is, at least in some cases, important enough to include in reference material and programming guides for these chips, even if the authors could not personally find implementations of publicly-discussable compilers which provided a C-style intrinsic for a CHAR_BIT == 16/32/64 platform.

 4.7. Modern Bit Utilities

 Additionally to this, upon first pre_review of the paper there was a strong supporting groundswell for bit operations that have long been present in both hardware and as compiler intrinsics. This idea progressed naturally from the bswap and __builtin_bswap discussion. As indicated in [p0553] (merged into C++20 already), here’s a basic rundown of some common architectures and their support for various bit functionality:

 		operation
 		Intel/AMD
 		ARM
 		PowerPC

 		rotl
 		ROL
 		-
 		rldicl

 		rotr
 		ROR
 		ROR, EXTR
 		-

 		popcount
 		POPCNT
 		-
 		popcntb

 		leading_zero
 		BSR, LZCNT
 		CLZ
 		cntlzd

 		leading_one
 		-
 		CLS
 		-

 		trailing_zero
 		BSF, TZCNT
 		-
 		-

 		trailing_one
 		-
 		-
 		-

 Many of the below bit functions are defined below to ease portability to these architectures. For places where specific compiler idioms and automatic detection are not possible, similar assembly tricks or optimized implementations can be provided by C. Further bit functions were also merged into C++, resulting in the current state of the C++ bit header.

 There is further a bit of an "infamous" page amongst computer scientists for Bit Twiddling Hacks. These may not all map directly to instructions but they provide a broad set of useful functionality commonly found in not only CPU-based programming libraries, but GPU-based programming libraries and other high performance computing resources as well.

 We try to take the most useful subset of these functions that most closely represent functionality on both old and new CPU architectures as well as common, necessary operations that have been around in the last 25 years for various industries. We have left out operations such as sign extension, parity computation, bit merging, clear/setting bits, fast negation, bit swaps, lexicographic next bit permutation, and bit interleaving. The rest are more common and appear across a wide range of industries from cryptography to graphics to simulation to efficient property lookup and kernel scheduling.

 4.7.1. "Why not only generic interfaces or (u)intmax_t interfaces?"

 For many of the bit-based utilities, you will see it introduces functions with several suffixes for the various types. Often, it is asked: why? Even the GCC builtins for things like popcount only take long and long long. The answer is in the blank spaces in the table above: for architectures that do not have perfect instruction mappings for a given built-in type (e.g., ARM for popcount), the amount of bits one is utilizing for the given function is actually incredibly important. There is a difference between counting for 8 bits in a loop and counting 64 bits (or larger for extended integer types), so the various forms are provided to allow implementations to produce the most efficient code on their platforms when the user requests a specific size.

 The generic interfaces can be used by individuals who want automatic selection of the best. And, as shown in the § 6 Appendix, platforms can use any builtins or techniques at their disposal to select an appropriate built-in, instruction, or function call to fit the use case.

 4.7.2. Type-Generic Macros and Counts for Types

 All of the functions below have type generic macros associated with them. This can bring up an interesting question: if the return value depends on the type of the argument going into the function (i.e. for trailing_zeros, trailing_ones, leading_zeros, leading_ones, rotate_left, and rotate_right), is it bad for literal arguments? The answer to this question, however, is the same as its always been when dealing with literal values in C: use the suffix for the appropriate type, or cast, or put it in a const variable so that it can be used with the expected semantics. We cannot sink macro-based generic code use cases in the off-chance that someone calls stdc_trailing_zeros(0) and thinks it returns a dependable answers. Integers (and their literals) are the least portable part of Standard C code: use the exact-width types if you are expecting exact-width semantics. Or, call the fundamental-type suffixed versions to get answers dependable for that given type (e.g., stdc_trailing_zerosui(0)).

 4.7.3. Argument Types

 Many of the functions below are defined over the fundamental unsigned integer types, rather than their minimum width or exact width counterparts. This is done to provide maximum portability: users can combine information from the recently-introduced (S/U)CHAR/(U)SHRT/(U)INT/(U)LONG/(U)LLONG_WIDTH macros to determine the width of the sizes at translation time as well as enjoy a disjoint and distinct set of fundamental types over which generic selection will always work.

 The (u)int_leastN_t types also have WIDTH macros, but those macros are not exactly guaranteed to cover a wide range of actual bit sizes either (if the uintN_t types do not exist, then a conforming implementation can simply just name all of the types as typedefs for (unsigned) long long and call it a day). While an implementation could also define each of the distinct fundamental types from (unsigned) char to (unsigned) long long to all be the same width as well, we are at the very least guaranteed that they are, in fact, distinct types. This makes selection over types in _Generic predictable and usable (i.e. _Generic(x, uint_least32_t: 0, uint_least64_t: 1) is not guaranteed to compile since those types are not required to form a mutually exclusive or disjoint set).

 The exact-width types suffer from non-availability on specific platforms, which makes little sense for functions which do not depend on a no-padding bits requirement. As long as the values read from the array only involve N bits (including the sign bit), and the rest are zero-initialized, we can have predictable semantics.

 Extended integer types, least-width integer types, and exact-width integer types, can all be used with the type-generic macros since the type-generic macros are required to work over all standard (unsigned) integer types and extended (unsigned) integer types, while excluding bool and bit-precise (_BitInt(N)) integer types that do not match pre-existing type widths. This provides a complete set of functionality that is maximally portable while also allowing for precise semantic control with exact or least-width types.

 This paper does not concern itself with the implications of passing a uint_leastN_t to bit-counting type-generic functions like stdc_leading_zeros directly: a user must account for such use and be prepared to have types larger than N bits in width. This is, very literally, what users are signing up for when they use such types and it is their responsibility to query the UINT_LEASTN_WIDTH macros. We expect users to use the N of their exact-width integer types with the type-generic macros as well.

 Finally, in general bool objects are disallowed from the above functions. There is just not a meaningful body of functionality that can be provided, and there is a fundamental difference between something that is expected to be a boolean value and something that is expected to be a 1-bit number (even if they can both serve similar purposes). It is also questionable to compute things such as rotation for bool objects. If we can grow a consistent set of answers for these operations across the industry, than we can weaken the requirements and add the behavior in. (Note that if we put it in now and choose a behavior, we cut off any improvements made in the future, so it is best to be conservative here.)

 4.7.4. Return Types

 There is the question of what is meant to happen for types which return bit counts, such as stdc_(leading/trailing)_(ones/zeros), stdc_first_(leading/trailing)_(one/zero), and stdc_count_(ones/zeros). Ostensibly, part of the motivation to capture here should be that the types used to do things such as rotations should be identical to the return type used to do things like count zeros, e.g. stdc_rotate_left(value, stdc_count_zeros(value));. This is mostly non-problematic until someone uses _BitInt: Clang already supports several megabyte-large _BitInt. On platforms where int is actually 16 bits, this is far too small to accommodate even a 1 MB _BitInt.

 At the moment, the functions do not accept all bit-precise integer types (just ones that are bit-width equivalent to the existing standard and extended integer types), so this is technically a non-issue. But, if and when bit-precise integer types are given better handling in _Generic macros or similar features that make them more suitable for type-generic macro implementations, this could become a problem. At the moment, we use wording to defer the issue by saying that type generic macros return a type suitably large for the range of the computed value. This allows us forward compatibility while fixing non-type-generic macro return types to int. The type-generic macros will have the flexibility from the specification to return larger signed integer types to aid in a smooth transition once bit-precise integer types sees more standard support.

 4.7.5. stdc_count_ones/stdc_count_zeros

 stdc_count_ones (also known as popcount/Population Count) is an older computer science term taken from the statistics / biology nomenclature to indicate how many bits are set within a grouping. It’s a very useful instruction with applications in everything from game development to scientific computing. It is also directly provided by many instruction sets. Its antithesis is stdc_count_zeros, which counts the number of zeros in the type. There exist efficient computation, intrinsics, and instructions for both zeros and ones computation, albeit it is more prevalent as popcount. We chose the name stdc_count_zeros and stdc_count_ones due to not having a good way to describe the zeros-analogous version of popcount in industry-settled terminology. But, the count_zeros/count_ones split has been used to good success in C libraries, C++ libraries, Julia, Rust, and other (standard) libraries.

 The API for it is as such:

#include <stdbit.h>

int stdc_count_onesuc(unsigned char value);
int stdc_count_onesus(unsigned short value);
int stdc_count_onesui(unsigned int value);
int stdc_count_onesul(unsigned long value);
int stdc_count_onesull(unsigned long long value);

int stdc_count_zerosuc(unsigned char value);
int stdc_count_zerosus(unsigned short value);
int stdc_count_zerosui(unsigned int value);
int stdc_count_zerosul(unsigned long value);
int stdc_count_zerosull(unsigned long long value);

// type-generic macros
generic_return_type stdc_count_ones(
	generic_value_type value);
generic_return_type stdc_count_zeros(
	generic_value_type value);

 It covers all of the built-in unsigned integer types. The type-generic macro supports all of the built-in types as well as any of the implementation-defined extended integer types. See the appendix for an implementation.

 4.7.6. stdc_rotate_left/stdc_rotate_right

 stdc_rotate_left/stdc_rotate_right are common CPU instructions and the forms of the commonly-used circular shifts. They are common operations with applications in cyclic codes. They are commonly expressed (for 32-bit numbers) as value <​< count | value >​> (32 - count) (rotate left) or value >> count | value << (32 - count) (rotate right).

#include <stdbit.h>

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

unsigned char stdc_rotate_rightuc(unsigned char value, int count);
unsigned short stdc_rotate_rightus(unsigned short value, int count);
unsigned int stdc_rotate_rightui(unsigned int value, int count);
unsigned long stdc_rotate_rightul(unsigned long value, int count);
unsigned long long stdc_rotate_rightull(unsigned long long value, int count);

// type-generic macro
generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);
generic_value_type stdc_rotate_right(
	generic_value_type value, generic_count_type count);

 They cover all of the built-in unsigned integer types. A discussion of signed vs. unsigned integer types for the count type and the return type can be found in a previous section, here § 4.3 Signed vs. Unsigned.

 As for choosing a single function like stdc_rotate(unsigned-integer-type value, int count); that chooses left / right based on the value, it unfortunately imposes the worst code generation properties of all the options. When using entirely runtime values, unless you have a deliberately have a variable-rotate/shift instruction, you are requireed to emit a branch in order to handle the two cases, as rotate left / right - despite being symmetric - need some help. Here is the assembly for a tehcnically optimal left/right rotate:

f:	# @f
	mov r8d, edi
	mov ecx, esi
	rol r8d, cl
	mov edx, edi
	ror edx, cl
	mov ecx, esi
	neg ecx
	mov eax, edi
	rol eax, cl
	ror edi, cl
	test esi, esi
	cmovs edx, r8d
	cmovle eax, edi
	add eax, edx
	ret

 This is more than double the size of the rotates found using left/right directly in § 4.3 Signed vs. Unsigned. Due to this, we decided that it was not advantageous to have a signed count with an unknown left/right: it is important to be capable of biasing the optimizer to whether a given rotate is left/right oriented.

 4.7.7. stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_ones

 stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_zeros are semi-common CPU instruction for counting the number of zeros/ones from the most significant bit ("leading") and the least significant bit ("trailing"). C++ adopted this one using the names of the form count(l|r)_(zero|one). The l/r stand for "left" and "right". C++ uses left to match the concept of the left hand side of integers in lexical parsing and left shift operators in C an C++. We choose "leading" and "trailing" here as that’s the more common instruction name, and tie in a little bit better with "most/least significant bit" than "left" or "right" do. The name most_significant_zeros (and its variations for the other 3 operations) can also work, albeit it would be one of the biggest names in the C standard library if we do choose it. (This could potentially be shortened to most_signif_zeros or even most_sig_zeros). It may also run afoul of the 31 minimum linker bytes of significance we have, so we chose these names instead.

#include <stdbit.h>

int stdc_leading_zerosuc(unsigned char value);
int stdc_leading_zerosus(unsigned short value);
int stdc_leading_zerosui(unsigned int value);
int stdc_leading_zerosul(unsigned long value);
int stdc_leading_zerosull(unsigned long long value);

int stdc_leading_onesuc(unsigned char value);
int stdc_leading_onesus(unsigned short value);
int stdc_leading_onesui(unsigned int value);
int stdc_leading_onesul(unsigned long value);
int stdc_leading_onesull(unsigned long long value);

int stdc_trailing_zerosuc(unsigned char value);
int stdc_trailing_zerosus(unsigned short value);
int stdc_trailing_zerosui(unsigned int value);
int stdc_trailing_zerosul(unsigned long value);
int stdc_trailing_zerosull(unsigned long long value);

int stdc_trailing_onesuc(unsigned char value);
int stdc_trailing_onesus(unsigned short value);
int stdc_trailing_onesui(unsigned int value);
int stdc_trailing_onesul(unsigned long value);
int stdc_trailing_onesull(unsigned long long value);

// type-generic macros
generic_return_type stdc_leading_zeros(
	generic_value_type value);
generic_return_type stdc_leading_ones(
	generic_value_type value);
generic_return_type stdc_trailing_zeros(
	generic_value_type value);
generic_return_type stdc_trailing_ones(
	generic_value_type value);

 4.7.8. stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_one

 stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_zero are semi-common CPU instruction (bsf/bsr for Intel, bfffo for Motorola, ffs for VAX, and so on) for counting the number of zeros/ones from the most significant bit ("leading") and the least significant bit ("trailing"). The caveat here is that it produces the bit index plus one. There are a few compiler-based implementations of this. The first is MSVC’s _BitScanForward and _BitScanReverse (with 64 prefix for 64-bit versions). They are meant to mimic Intel’s instruction behavior where a flag is set if "0" is passed, which is returned to the user who called the _BitScan* function. The actual output is populated in an output pointer variable of type int*. Notably, MSVC does not offer any ISA protection: it will emit an illegal CPU instruction if the target architecture doesn’t support the functionality. The other implementations are from Clang, GCC and NVIDIA CUDA, which have a compiler intrinsic which is then mapped to instructions where possible. They returns 0 when the input value is zero.

 We specify things to use the interpretation that 0 produces the return value 0 and otherwise returns 1 + index. This interpretation is favorable because it allows an end-user to easily check the return value in a way consistent with typical C boolean checking, which is with if (result) { ... }. If result is zero, than the user knows it’s zero and knows no bit was found. Otherwise, they can proceed and subtract 1 to get the index suitable for shifts. If a user has advanced knowledge, they can simply not branch and immediately subtract.

 ffs and its similar names covers the behavior behind stdc_first_leading_one. The others are permutations on this behavior: we provide them for completeness, and for the fact that other architectures cover some or part of these other named operations. Whatever happens, stdc_first_leading_one is incredibly important, if only for the fact that it is responsible for significant speedups in algorithms that scan over bits to find certain behaviors. The others can be built out of different the other existing intrinsics or with specially-crafted code, but not taxing the compiler’s optimize and simply providing the operations directly may be of great benefit.

 It is of note that users can implement the find_first_set functionality by using the stdc_(trailing/leading)_zeros functions.

#include <stdbit.h>

int stdc_first_leading_zerouc(unsigned char value);
int stdc_first_leading_zerous(unsigned short value);
int stdc_first_leading_zeroui(unsigned int value);
int stdc_first_leading_zeroul(unsigned long value);
int stdc_first_leading_zeroull(unsigned long long value);

int stdc_first_leading_oneuc(unsigned char value);
int stdc_first_leading_oneus(unsigned short value);
int stdc_first_leading_oneui(unsigned int value);
int stdc_first_leading_oneul(unsigned long value);
int stdc_first_leading_oneull(unsigned long long value);

int stdc_first_trailing_zerouc(unsigned char value);
int stdc_first_trailing_zerous(unsigned short value);
int stdc_first_trailing_zeroui(unsigned int value);
int stdc_first_trailing_zeroul(unsigned long value);
int stdc_first_trailing_zeroull(unsigned long long value);

int stdc_first_trailing_oneuc(unsigned char value);
int stdc_first_trailing_oneus(unsigned short value);
int stdc_first_trailing_oneui(unsigned int value);
int stdc_first_trailing_oneul(unsigned long value);
int stdc_first_trailing_oneull(unsigned long long value);

// type-generic macros
generic_return_type stdc_first_leading_zero(
	generic_value_type value);
generic_return_type stdc_first_leading_one(
	generic_value_type value);
generic_return_type stdc_first_trailing_zero(
	generic_value_type value);
generic_return_type stdc_first_trailing_one(
	generic_value_type value);

 4.7.9. stdc_has_single_bit

 This is a function that determines if an unsigned integer is a power of 2. It can be written either using a normal expression such as value != 0 && ((value & (value - 1)) == 0), or by using stdc_count_ones(value) == 1. Checking that something is a power of 2 (or that it has a single bit set) is an operation used for checking if something can be turned into a mask value efficiently (useful in specific kinds of containers which specific bit limits like hash tables) and many other applications. This one does not map directly to a hardware instruction.

#include <stdbit.h>

bool stdc_has_single_bituc(unsigned char value);
bool stdc_has_single_bitus(unsigned short value);
bool stdc_has_single_bitui(unsigned int value);
bool stdc_has_single_bitul(unsigned long value);
bool stdc_has_single_bitull(unsigned long long value);

// type-generic macro
bool stdc_has_single_bit(generic_value_type value);

 4.7.10. stdc_bit_width/stdc_bit_ceil/stdc_bit_floor

 These set of functions provide a way to determine the number of bits it takes to represent a given value (bit_width), the next largest power of 2 from the value (bit_ceil), the previous largest power of 2 from the value (bit_floor), and the number of bits required to store the given value. All of these operations are extremely useful, especially in the context of GPUs. bit_width can be used to drastically simplify the implementation of both bit_ceil and bit_floor.

 bit_width can be calculated with VALUE_WIDTH - stdc_leading_zeros(value), where VALUE_WIDTH is one of the <limits.h> macros for the given unsigned integer type. bit_ceil's computation is subtle and involves a bit of preparation to avoid problems with integer promotions and bit shifts in specific cases (typically unsigned char, char, and unsigned short on most implementations). This aids in making the case for a would make for a good candidate for standardization (since it can be hard to get right). One can detect integer promotion by checking if +x and x yield the same type. If not, then an integer promotion happens, and the implementation needs to account for that. See the appendix for an implementation. stdc_bit_floor is simpler, and is comprised of a simple computation of x == 0 ? 0 : (1 << (stdc_bit_width(x) - 1)) (with appropriately typed / casted constants so the right type is returned without promotions or casts).

 The declarations look as follows:

#include <stdbit.h>

unsigned char stdc_bit_flooruc(unsigned char value);
unsigned short stdc_bit_floorus(unsigned short value);
unsigned int stdc_bit_floorui(unsigned int value);
unsigned long stdc_bit_floorul(unsigned long value);
unsigned long long stdc_bit_floorull(unsigned long long value);

unsigned char stdc_bit_ceiluc(unsigned char value);
unsigned short stdc_bit_ceilus(unsigned short value);
unsigned int stdc_bit_ceilui(unsigned int value);
unsigned long stdc_bit_ceilul(unsigned long value);
unsigned long long stdc_bit_ceilull(unsigned long long value);

int stdc_bit_widthuc(unsigned char value);
int stdc_bit_widthus(unsigned short value);
int stdc_bit_widthui(unsigned int value);
int stdc_bit_widthul(unsigned long value);
int stdc_bit_widthull(unsigned long long value);

// type-generic macro
generic_return_type stdc_bit_floor(generic_value_type value);
generic_return_type stdc_bit_ceil(generic_value_type value);
generic_return_type stdc_bit_width(generic_value_type value);

 Notably, stdc_bit_width requires that the number is big enough to fit the representation. For the generic functions, we need to provide the built-in versions. Conceivably, it might be beneficial to synchronize these return types and just return int. But, in the case of something like an implementation for _BitInt(N), N can be so catastrophically enormous that we could not count it in a (presumably 16 or 32-bit) int or unsigned int type. C++ always returns the type T that was put in, but following a WG21 Library Working Group (LWG #3656) Issue accepted for C++23, the return type is being changed. However, in anticipation of a potentially enormous N in _BitWidth(N) — and not wanting to return an e.g. 4 GB _BitInt to represent a _BitWidth that has an N of 4 billion — we allow the return type for the generic functions to be a "suitably large (unsigned/signed) integer type".

 5. Wording

 The following wording is relative to N2912. For the rotate functions, wording is attached for all permutations of the polls taken, which are listed just below.

 5.1. Decisions for the C Standards Committee

 These are decisions the Committee might want to make to alter the wording below. Alternative wording is provided to guide the discussion and to make voting with the actual alternative specification in front of people’s eyes easier.

 5.1.1. Question 0

 — Given the new information present in the paper, do we want a single UnsignedType stdc_rotate(UnsignedType value, int count); function or two different stdc_rotate_left(UnsignedType value, int count); and stdc_rotate_right(UnsignedType value, int count); functions?

 NOTE: #3 from § 5.1.2 Question 1 does not apply if this question is accepted, because then the rotate must have a sign to communicate left/right.

 If the answer to this question is "Yes", then the below sections on "§7.✨.15 Rotate Left" and "§7.✨.16 Rotate Right" will be swapped out for the following wording:

 7.✨.15 Rotate

 Synopsis

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate functions perform a bitwise rotate left or right. This operation is typically known as a left or right circular shift.

 Returns

 Let N be the width corresponding to the type of the input value. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value <​< r) | (value >> (N - r));

		
 — otherwise, if r is negative, returns (value >> -r) | (value << (N - -r)).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 5.1.2. Question 1

 — Do we want unsigned (unsigned int, and similar) rotate counts + return values? (Both the function parameters for counts and the count-like return value types will be changed to be consistent with this decision).

 If the answer to this question is "Yes", then the following mechanical changes are made to the wording:

 		
 The return types for the following functions is changed:

 		

 stdc_count_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_count_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_leading_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_leading_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_trailing_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_trailing_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_leading_one (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_leading_zero (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_trailing_one (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_trailing_zero (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_bit_width (and all derivatives) from
 int
 to
 unsigned int

		
 Replace all instances of the following text:

 		

 —
 "The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be a suitably large signed integer type capable of representing the computed result."

		
 … with …

		

 —
 "The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be a suitably large unsigned integer type capable of representing the computed result."

		
 Make the following modifications to the stdc_rotate_left and stdc_rotate_right functions:

 		

 Replace the parameter type for all the rotate functions from
 int count
 to
 unsigned int count
 for the second parameter.

		

 Remove the bullet point for when a negative count/"r" is encountered:
 — otherwise, if r is negative, returns …
 .

		
 Change the last sentence for both functions concerning the types of the generic count and returns from:

 		
 The generic_return_type type shall be a suitably large signed integer type capable of representing the width of the computed. The generic_count_type type shall be a signed integer type.

		
 … to …

		
 The generic_return_type type shall be a suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type type shall be an unsigned integer type.

 NOTE: #3 does not apply if § 5.1.1 Question 0 is accepted, because then the rotate must have a sign. This is captured in the wording shown above.

 5.1.3. Question 2

 There is also 1 more question that has been consistently asked of me as I’ve moved this proposal forward: changing how the suffixes for the types is done. Rather than doing uc, us, ui, ul, and ull, users have asked for _uc, _us, _ui, _ul, and _ull. This question is strictly for renaming the suffixes to have that additional underscore, for example going from stdc_leading_zerosull to stdc_leading_zeros_ull.

 — Do we want to change the suffixes of all of the type-specific functions to use an underscore before the suffix?

 5.2. Add <stdbit.h> to freestanding headers in §4, paragraph 6

 A conforming freestanding implementation shall accept any strictly conforming program in which the use of the features specified in the library clause (Clause 7) is confined to the contents of the standard headers <float.h>, <iso646.h>, <limits.h>, <stdalign.h>, <stdarg.h>,
 <stdbit.h>,
 <stdbool.h>, <stddef.h>, <stdint.h>, and <stdnoreturn.h>

 5.3. Add a new §7.✨ sub-clause for "Bit and Byte Utilities" in §7

 7.✨ Bit and Byte Utilities <stdbit.h>

 7.✨.1 General <stdbit.h>

 The header <stdbit.h> defines the following macros, types, and functions, to work with the byte and bit representation of many types, typically integer types. This header makes available the size_t type name (7.19) and any uintN_t,intN_t, uint_leastN_t, or int_leastN_t type names defined by the implementation (7.20).

 For declarations and definitions in 7.✨, an identifier with a suffix containing le typically represents little-endian. An identifier with a suffix containing be typically represents big-endian. This clause describes the endianness of the execution environment with respect to bit-precise integer types, standard integer types, and extended integer types which do not have padding bits.

 The most significant index is the 0-based index counting from the most significant bit, 0, to the least significant bit, w−1, where w is the width of the type that is having its most significant index computed.

 The least significant index is the 0-based index counting from the least significant bit, 0, to the most significant bit, w−1, where w is the width of the type that is having its least significant index computed.

 It is unspecified whether any generic function declared in <stdbit.h> is a macro or an identifier declared with external linkage. If a macro definition is suppressed in order to access an actual function, or a program defines an external identifier with the name of a generic function, the behavior is unspecified.

 5.3.1. Add a new §7.✨.1 sub-sub-clause for "Endian" in §7.✨

 7.✨.2 Endian

 Two common methods of byte ordering in multi-byte scalar types are little-endian and big-endian. Little-endian is a format for storage of binary data in which the least significant byte is placed first, with the rest in ascending order. Or, that the least significant byte is stored at the smallest memory address. Big-endian is a format for storage or transmission of binary data in which the most significant byte is placed first, with the rest in descending order. Or, that the most significant byte is stored at the smallest memory address. Other byte orderings are also possible.

 The macros are:

__STDC_ENDIAN_LITTLE__

 which represents a method of byte order storage least significant byte is placed first and the rest are in ascending order, and is an integer constant expression;

__STDC_ENDIAN_BIG__

 which represents a method of byte order storage most significant byte is placed first and the rest are in descending order, and is an integer constant expression;

__STDC_ENDIAN_NATIVE__ /* see below */

 which represents the method of byte order storage for the execution environment and is an integer constant expression.

 __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression whose value is equivalent to the value of __STDC_ENDIAN_LITTLE__ if the execution environment is little-endian. Otherwise, __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression whose value is equivalent to the value of __STDC_ENDIAN_BIG__ if the execution environment is big-endian. If __STDC_ENDIAN_NATIVE__ is not equivalent to either, then the byte order for the execution environment is implementation-defined.

 5.3.2. Add a new §7.✨.3 sub-sub-clause for "8-bit Memory Reversal" in §7.✨

 7.✨.3 8-bit Memory Reversal

 Synopsis

#include <stdbit.h>
#include <limit.h>

#if (CHAR_BIT % 8) == 0
void stdc_memreverse8(size_t n, unsigned char ptr[static n]);
#endif

 Description

 The stdc_memreverse8 function provides an interface to reverse the order of a given sequence of bytes by treating them as sequences of 8 bits at a time. The function is only present if CHAR_BIT is a multiple of 8. It is equivalent to the following algorithm:

for (size_t index = 0, limit = ((n * CHAR_BIT) / 2); index < limit;) {
	const size_t ptr_index = index / CHAR_BIT;
	const size_t rev_ptr_index = n - 1 - ptr_index;
	unsigned char* p = ptr + ptr_index;
	unsigned char* rev_p = ptr + rev_ptr_index;
	const unsigned char b_temp = *p;
	const unsigned char rev_b_temp = *rev_p;
	*p = 0;
	*rev_p = 0;
	const size_t bit_limit = CHAR_BIT;
	for (size_t bit_index = 0; bit_index < bit_limit; bit_index += 8) {
		const size_t rev_bit_index = CHAR_BIT - 8 - bit_index;
		const unsigned char bit_mask = ((unsigned char)0xFF) << bit_index;
		const unsigned char rev_bit_mask = ((unsigned char)0xFF) << rev_bit_index;
		*p |= (((rev_b_temp & rev_bit_mask) >> rev_bit_index) << bit_index);
		*rev_p |= (((b_temp & bit_mask) >> bit_index) << rev_bit_index);
		index += 8;
	}
}

 7.✨.4 Exact-width 8-bit Memory Reversal

 Synopsis

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if ((N % 8) == 0) && ((CHAR_BIT % 8) == 0)
uintN_t stdc_memreverse8uN(uintN_t value);
#endif

 Description

 The stdc_memreverse8uN functions provide an interface to swap the bytes of a corresponding uintN_t object, where N matches one of the exact-width integer types (7.20.1.1). If an implementation provides the corresponding uintN_t typedef, it shall define the corresponding exact-width memory reversal function for that value of N.

 Returns

 The stdc_memreverse8uN functions returns the 8-bit memory reversed uintN_t value, as if by invoking stdc_memreverse8(sizeof(value), (unsigned char*)&value).

 5.3.3. Add a new §7.✨.5 sub-sub-clause for "Endian-Aware" functions in §7.✨

 7.✨.5 Endian-Aware 8-bit Load

 Synopsis

#include <stdbit.h>

#if ((N % 8) == 0) && ((CHAR_BIT % 8) == 0)
uint_leastN_t stdc_load8_leuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_beuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_leuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_beuN(const unsigned char ptr[static (N / CHAR_BIT)]);

int_leastN_t stdc_load8_lesN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_besN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_lesN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_besN(const unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Description

 The 8-bit load family of functions functions read an int_leastN_t or uint_leastN_t object from the provided ptr in an endian-aware (7.✨.2) manner, where N matches an existing minimum-width integer type (7.20.1.2). If this function is present, N shall be a multiple of 8 and CHAR_BIT shall be a multiple of 8. The functions containing _aligned in the name shall assume that ptr is suitably aligned to access a signed or unsigned integer of width N for a signed or unsigned variant of the function, respectively. If the function name contains the sN suffix in the name, it is a signed variant. Otherwise, the function is an unsigned variant. If the function name contains the lesN or leuN suffix, it is a little-endian variant. Otherwise, if the function name contains the besN or beuN suffix, it is a big-endian variant.

 Returns

 Let the computed value result be:

 ∑index=0(N÷CHAR_BIT)−1bindex×28×index

 where bindex is:

 		
 — (ptr[index / (CHAR_BIT / 8)] >> ((index % (CHAR_BIT / 8)) * 8)) & 0xFF, if the function is the little-endian variant;

		
 — otherwise, (ptr[(((N / CHAR_BIT) - 1) - index) / (CHAR_BIT / 8)] >> (((((N / CHAR_BIT) - 1) - index) % (CHAR_BIT / 8)) * 8))) & 0xFF, if the function is the the big-endian variant.

 If the function is an unsigned variant, return result. Otherwise, if the function is a signed variant, return:

 		

 		
 result, if result is less than 2N−1;

		

 		
 otherwise, result−2N.

 7.✨.6 Endian-Aware 8-bit Store

 Synopsis

#include <stdbit.h>

#if ((N % CHAR_BIT) == 0) && ((CHAR_BIT % 8 == 0)
void stdc_store8_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);

void stdc_store8_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Description

 The 8-bit store family of functions functions write a int_leastN_t or uint_leastN_t object into the provided ptr in an endian-aware (7.✨.2) manner, where N matches an existing minimum-width integer type (7.20.1.2). If this function is present, N shall be a multiple of 8 and CHAR_BIT shall be a multiple of 8. The functions containing _aligned in the name shall assume that ptr is suitably aligned to access a signed or unsigned integer of width N. If the function name contains the sN suffix in the name, it is a signed variant. Otherwise, the function is an unsigned variant. If the function name contains the lesN or leuN suffix, it is a little-endian variant. Otherwise, if the function name contains the besN or beuN suffix, it is a big-endian variant.

 Let value_unsigned be value if the function is a unsigned variant. Otherwise, let value_unsigned be the conversion of value to its corresponding unsigned type, if the function is a signed variant.

 Let index be an integer in a sequence that

 		
 — starts from 0 and increments by 8 in the range of [0, N), if the function is a little-endian variant;

		
 — starts from N - 8 and decrements by 8 in the range of [0, N), if the function is a big-endian variant.

 Let ptr_bit_index be an integer that starts from 0. Let byte_index8 be index % CHAR_BIT. For each index in the order of the above-specified sequence:

 		

 		
 Let byte_mask8 be an object of value (0xFF << byte_index8) of a suitably large unsigned type.

		

 		
 Sets the 8 bits in ptr[ptr_bit_index / CHAR_BIT] at offset byte_index8 to (value_unsigned >> index) & byte_mask8.

		

 		
 Increments ptr_bit_index by 8.

 5.3.4. Add a new §7.✨.7 sub-sub-clause for Low-Level Bit Utilities in §7.✨

 7.✨.7 Count Leading Zeros

 Synopsis

int stdc_leading_zerosuc(unsigned char value);
int stdc_leading_zerosus(unsigned short value);
int stdc_leading_zerosui(unsigned int value);
int stdc_leading_zerosul(unsigned long value);
int stdc_leading_zerosull(unsigned long long value);

generic_return_type stdc_leading_zeros(generic_value_type value);

 Returns

 Returns the number of consecutive 0 bits in value, starting from the most significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.8 Count Leading Ones

 Synopsis

int stdc_leading_onesuc(unsigned char value);
int stdc_leading_onesus(unsigned short value);
int stdc_leading_onesui(unsigned int value);
int stdc_leading_onesul(unsigned long value);
int stdc_leading_onesull(unsigned long long value);

generic_return_type stdc_leading_ones(generic_value_type value);

 Returns

 Returns the number of consecutive 1 bits in value, starting from the most significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.9 Count Trailing Zeros

 Synopsis

int stdc_trailing_zerosuc(unsigned char value);
int stdc_trailing_zerosus(unsigned short value);
int stdc_trailing_zerosui(unsigned int value);
int stdc_trailing_zerosul(unsigned long value);
int stdc_trailing_zerosull(unsigned long long value);

generic_return_type stdc_trailing_zeros(generic_value_type value);

 Returns

 Returns the number of consecutive 0 bits in value, starting from the least significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.10 Count Trailing Ones

 Synopsis

int stdc_trailing_onesuc(unsigned char value);
int stdc_trailing_onesus(unsigned short value);
int stdc_trailing_onesui(unsigned int value);
int stdc_trailing_onesul(unsigned long value);
int stdc_trailing_onesull(unsigned long long value);

generic_return_type stdc_trailing_ones(generic_value_type value);

 Returns

 Returns the number of consecutive 1 bits in value, starting from the least significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.11 First Leading Zero

 Synopsis

int stdc_first_leading_zerouc(unsigned char value);
int stdc_first_leading_zerous(unsigned short value);
int stdc_first_leading_zeroui(unsigned int value);
int stdc_first_leading_zeroul(unsigned long value);
int stdc_first_leading_zeroull(unsigned long long value);

generic_return_type
 stdc_first_leading_zero(generic_value_type value);

 Returns

 Returns the most significant index of the first 0 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.12 First Leading One

 Synopsis

int stdc_first_leading_oneuc(unsigned char value);
int stdc_first_leading_oneus(unsigned short value);
int stdc_first_leading_oneui(unsigned int value);
int stdc_first_leading_oneul(unsigned long value);
int stdc_first_leading_oneull(unsigned long long value);

generic_return_type
	stdc_first_leading_one(generic_value_type value);

 Returns

 Returns the most significant index of the first 1 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an:

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.13 First Trailing Zero

 Synopsis

int stdc_first_trailing_zerouc(unsigned char value);
int stdc_first_trailing_zerous(unsigned short value);
int stdc_first_trailing_zeroui(unsigned int value);
int stdc_first_trailing_zeroul(unsigned long value);
int stdc_first_trailing_zeroull(unsigned long long value);

generic_return_type
	stdc_first_trailing_zero(generic_value_type value);

 Returns

 Returns the least significant index of the first 0 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.14 First Trailing One

 Synopsis

int stdc_first_trailing_oneuc(unsigned char value);
int stdc_first_trailing_oneus(unsigned short value);
int stdc_first_trailing_oneui(unsigned int value);
int stdc_first_trailing_oneul(unsigned long value);
int stdc_first_trailing_oneull(unsigned long long value);

generic_return_type
	stdc_first_trailing_one(generic_value_type value);

 Returns

 Returns the least significant index of the first 1 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.15 Rotate Left

 Synopsis

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate_left functions perform a bitwise rotate left. This operation is typically known as a left circular shift.

 Returns

 Let N be the width corresponding to the type of the input value. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value <​< r) | (value >> (N - r));

		
 — otherwise, if r is negative, returns stdc_rotate_right(value, -r).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 7.✨.16 Rotate Right

 Synopsis

unsigned char stdc_rotate_rightuc(unsigned char value, int count);
unsigned short stdc_rotate_rightus(unsigned short value, int count);
unsigned int stdc_rotate_rightui(unsigned int value, int count);
unsigned long stdc_rotate_rightul(unsigned long value, int count);
unsigned long long stdc_rotate_rightull(unsigned long long value, int count);

generic_value_type stdc_rotate_right(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate_right functions perform a bitwise rotate right. This operation is typically known as a right circular shift.

 Returns

 Let N be the width corresponding to the type of the input value.. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value >> r) | (value << (N - r));

		
 — otherwise, if r is negative, returns stdc_rotate_left(value, -r).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is

 		
 — a standard unsigned integer type, excluding bool;

		
 — an extended unsigned integer type;

		
 — or, a bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 7.✨.17 Count Ones

 Synopsis

int stdc_count_onesuc(unsigned char value);
int stdc_count_onesus(unsigned short value);
int stdc_count_onesui(unsigned int value);
int stdc_count_onesul(unsigned long value);
int stdc_count_onesull(unsigned long long value);

generic_return_type stdc_count_ones(generic_value_type value);

 Returns

 The stdc_count_ones functions returns the total number of 1 bits within the given value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.18 Count Zeros

 Synopsis

int stdc_count_zerosuc(unsigned char value);
int stdc_count_zerosus(unsigned short value);
int stdc_count_zerosui(unsigned int value);
int stdc_count_zerosul(unsigned long value);
int stdc_count_zerosull(unsigned long long value);

generic_return_type stdc_count_zeros(generic_value_type value);

 Returns

 The stdc_count_zeros functions returns the total number of 0 bits within the given value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be suitably large unsigned integer type capable of representing the computed result.

 5.3.5. Add a new §7.✨.19 sub-sub-clause for Fundamental Bit Utilities in §7.✨

 7.✨.19 Single-bit Check

 Synopsis

bool stdc_has_single_bituc(unsigned char value);
bool stdc_has_single_bitus(unsigned short value);
bool stdc_has_single_bitui(unsigned int value);
bool stdc_has_single_bitul(unsigned long value);
bool stdc_has_single_bitull(unsigned long long value);

bool stdc_has_single_bit(generic_value_type value);

 Returns

 The stdc_has_single_bit functions returns true if and only if there is a single 1 bit in value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 7.✨.20 Bit Width

 Synopsis

int stdc_bit_widthuc(unsigned char value);
int stdc_bit_widthus(unsigned short value);
int stdc_bit_widthui(unsigned int value);
int stdc_bit_widthul(unsigned long value);
int stdc_bit_widthull(unsigned long long value);

generic_return_type stdc_bit_width(generic_value_type value);

 Description

 The stdc_bit_width functions compute the smallest number of bits needed to store value.

 Returns

 The stdc_bit_width functions return 0 if value is 0. Otherwise, they return 1 + ⌊log2(value)⌋.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be suitably large signed integer type capable of representing the computed result.

 7.✨.21 Bit Floor

 Synopsis

unsigned char stdc_bit_flooruc(unsigned char value);
unsigned short stdc_bit_floorus(unsigned short value);
unsigned int stdc_bit_floorui(unsigned int value);
unsigned long stdc_bit_floorul(unsigned long value);
unsigned long long stdc_bit_floorull(unsigned long long value);

generic_value_type stdc_bit_floor(generic_value_type value);

 Description

 The stdc_bit_floor functions compute the largest integral power of 2 that is not greater than value.

 Returns

 The stdc_bit_floor functions return 0 if value is 0. Otherwise, they return the largest integral power of 2 that is not greater than value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 7.✨.22 Bit Ceiling

 Synopsis

unsigned char stdc_bit_ceiluc(unsigned char value);
unsigned short stdc_bit_ceilus(unsigned short value);
unsigned int stdc_bit_ceilui(unsigned int value);
unsigned long stdc_bit_ceilul(unsigned long value);
unsigned long long stdc_bit_ceilull(unsigned long long value);

generic_value_type stdc_bit_ceil(generic_value_type value);

 Description

 The stdc_bit_ceil functions compute the smallest integral power of 2 that is not less than value. If the computation does not fit in the given return type, the behavior is undefined.

 Returns

 The stdc_bit_ceil functions return the smallest integral power of 2 that is not less than value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 5.4. Add one new entry for Implementation-Defined Behavior in Annex J.3

 — The value of __STDC_ENDIAN_NATIVE__ if the execution environment is not big-endian or little-endian (7.✨.2).

 — The value of __STDC_ENDIAN_BIG__, and __STDC_ENDIAN_LITTLE__ if the execution environment is not big-endian or little-endian (7.✨.2).

 5.5. Modify an existing entry for Unspecified behavior in Annex J.1

 — The macro definition of a generic function is suppressed in order to access an actual function
(7.17.1)
 , (7.✨).

 6. Appendix

 A collection of miscellaneous and helpful bits of information and implementation.

 6.1. Decisions to Committee Questions

 Originally titled "Committee Polls / Questions", this section listed all of the different pieces of functionality the Committee wanted. Each of the 5 below questions sets of functionality was asked of WG14: nobody raised objections to even want to see a poll on it. This is interpreted as there was unanimous consent amongst participants to include all of this functionality in the paper, even if no formal poll was done for each of the 5 questions. If this changes, it is imperative to let the paper author know.

 For the Committee, this proposal is, effectively, five parts:

 		
 the endianness definitions;

		
 the stdc_memreverse8 functions (generic and width-specific);

		
 the stdc_load8_*/stdc_store8_* endianness functions;

		
 the suite of low-level bit functions:

 		
 stdc_count_(leading/trailing)_(ones/zeros),

		
 stdc_count_(ones/zeros),

		
 stdc_rotate_(left/right), and,

		
 stdc_first_(leading/trailing)_(zero/one),

 which map directly to instructions and/or intrinsics; and,

		
 the suite of useful bit functions:

 		
 stdc_bit_ceil,

		
 stdc_bit_floor,

		
 stdc_bit_width, and,

		
 stdc_has_single_bit,

 which may not map directly to instructions but are useful nonetheless in a wide variety of contexts

 These can be polled together or separately, depending on what the Committee desires.

 6.2. Example Implementations in Publicly-Available Libraries

 Optimized routines following the naming conventions present in this paper can be found in the Shepherd’s Oasis Industrial Development Kit (IDK) library, compilable with a conforming C11 compiler and tested on MSVC, GCC, and Clang on Windows, Mac, and Linux:

 		
 Bit Intrinsics (Declarations) (Source)

		
 Memory Reverse (Declarations) (Source)

		
 Endian Load/Store (Declarations) (Sources)

 Optimized routines following the basic principles present in this paper and used as motivation to improve several C++ Standard Libraries can be found in the Itsy Bitsy Bit Libraries, compilable with a conforming C++17 compiler and tested on MSVC, GCC, and Clang on Windows, Mac, and Linux:

 		
 Bit Intrinsics (Declarations) (Sources)

 Endianness routines and original motivation that spawned this proposal came from David Seifert’s Portable Endianness library and its deep dive into compiler optimizations and efficient code generation when alignment came into play:

 		
 Endian Load/Store (Declarations) (Sources)

 6.3. Implementation of Generic stdc_count_ones

 Sample implementation on Godbolt (clang/gcc specific builtins):

#define stdc_count_ones(...) \
	_Generic((__VA_ARGS__), \
		char: __builtin_popcount, \
		unsigned char: __builtin_popcount, \
		unsigned short: __builtin_popcount, \
		unsigned int: __builtin_popcount, \
		unsigned long: __builtin_popcountl, \
		unsigned long long: __builtin_popcountll \
)(__VA_ARGS__)

int main () {
	return stdc_count_ones((unsigned char)'0') + stdc_count_ones(13ull);
}

 6.4. Implementation of Generic stdc_bit_ceil

 Sample implementation on Godbolt (clang/gcc specific builtins):

#include <limits.h>

#define stdc_leading_zeros(...) \
	(_Generic((__VA_ARGS__), \
		char: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(char)) * CHAR_BIT), \
		unsigned char: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(unsigned char)) * CHAR_BIT), \
		unsigned short: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(unsigned short)) * CHAR_BIT), \
		unsigned int: __builtin_clz((__VA_ARGS__)), \
		unsigned long: __builtin_clzl((__VA_ARGS__)), \
		unsigned long long: __builtin_clzll((__VA_ARGS__)) \
))

#define stdc_bit_width(...) \
	_Generic((__VA_ARGS__), \
		char: (CHAR_BIT - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned char: (UCHAR_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned short: (USHRT_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned int: (UINT_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned long: (ULONG_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned long long: (ULLONG_WIDTH - stdc_leading_zeros((__VA_ARGS__))) \
)

// integer promotion rules means we need to
// precisely calculate the value here
#define __stdc_bit_ceil_promotion_protection(_Type, _Value) \
	_Generic((_Value), \
		char: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - UCHAR_WIDTH)), \
		unsigned char: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - UCHAR_WIDTH)), \
		unsigned short: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - USHRT_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - USHRT_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - USHRT_WIDTH)), \
		default: (_Type)0 \
)

#define stdc_bit_ceil(...) \
	_Generic((__VA_ARGS__), \
		char: __stdc_bit_ceil_promotion_protection(unsigned char, (__VA_ARGS__)), \
		unsigned char: __stdc_bit_ceil_promotion_protection(unsigned char, (__VA_ARGS__)), \
		unsigned short: __stdc_bit_ceil_promotion_protection(unsigned short, (__VA_ARGS__)), \
		unsigned int: (unsigned int)(1u << stdc_bit_width((unsigned int)((__VA_ARGS__) - 1))), \
		unsigned long: (unsigned long)(1ul << stdc_bit_width((unsigned long)((__VA_ARGS__) - 1))), \
		unsigned long long: (unsigned long long)(1ull << stdc_bit_width((unsigned long long)((__VA_ARGS__) - 1))) \
)

int main () {
	int x = stdc_bit_ceil((unsigned char)'\x13');
	int y = stdc_bit_ceil(33u);
	return x + y;
}

 6.5. Endian Enumeration

 The endian enumeration was struck from this paper. It had very marginal benefit and was mostly redundant for Standard C code, since the macros would suffice well enough. Nevertheless, the old rationale is presented below.

 6.5.1. Rationale

 A stdc_endian enumeration could have some benefits, and mirrors the same enumerations come from the (accepted) C++20 paper and idioms found in [p0463], which also went into a <bit> header. Similar ideas are also present in libraries such as [libcork-byte-order], which are hybrid C and C++ libraries that give definitions similar to the ones here. Compilers also define macros such as __BYTE_ORDER__ (Clang/GCC family), or are well-defined to be a certain endianness (Windows is always little-endian).

 The other portion of this is that providing an enumeration helps users pass this information along to functions. Users defining functions that take an endianness, without the enumeration, would define it as so:

void my_conversion_unsafe(int endian, size_t data_size,
	unsigned char data[static data_size]);

 The name may specify that it is for an endian, but the range of values is not really known without looking at the documentation. It is also impossible for the compiler to diagnose problematic uses: calling my_conversion(4595944, 4, ptr); is legal, and compilers will not diagnose such a call as wrong. Now, consider the same with the enumeration:

void my_conversion_safe(stdc_endian endian, size_t data_size,
	unsigned char data[static data_size]);

 This function call can get diagnosed in (some) implementations:

#include <stddef.h>

typedef enum stdc_endian {
	stdc_endian_little = __ORDER_LITTLE_ENDIAN__,
	stdc_endian_big = __ORDER_BIG_ENDIAN__,
	stdc_endian_native = __BYTE_ORDER__,
} stdc_endian;

void my_conversion_unsafe(int endian, size_t n, unsigned char ptr[static n]) {}
void my_conversion_safe(stdc_endian endian, size_t n, unsigned char ptr[static n]) {}

int main () {
	unsigned char arr[4];
	my_conversion_unsafe(48558395, sizeof(arr), arr);
	my_conversion_safe(48558395, sizeof(arr), arr);
	// ^
	// <source>:15:24: error: integer constant not in range
	// of enumerated type 'stdc_endian' (aka 'enum stdc_endian') [-Werror,-Wassign-enum]
	my_conversion_unsafe((stdc_endian)48558395, sizeof(arr), arr);
	my_conversion_safe((stdc_endian)48558395, sizeof(arr), arr);
	return 0;
}

 (Many current implementations do not diagnose it in the current landscape because such implicit conversions are, unfortunately, incredibly common, sometimes for good reason.)

 7. Acknowledgements

 Many thanks to David Seifert, Aaron Bachmann, Jens Gustedt, Tony Finch, Erin AO Shepherd, and many others who helped fight to get the semantics and wording into the right form, providing motivation, giving example code, pointing out existing libraries, and helping to justify this proposal.

 References

 Informative References

 		[ANDERSON-BIT-HACKS]

		Sean Eron Anderson. Bit Twiddling Hacks. May 5th, 2005. URL: https://graphics.stanford.edu/~seander/bithacks.html

		[ARM-SETEND]

		armKEIL. SETEND instruction: ARM and Thumb instructions. December 31st, 2019. URL: https://www.keil.com/support/man/docs/armasm/armasm_dom1361289895072.htm

		[CLANG-BUILTINS]

		LLVM Foundation; Clang Contributors. Clang Language Extensions: Clang Documentation. September 1st, 2021. URL: https://clang.llvm.org/docs/LanguageExtensions.html#intrinsics-support-within-constant-expressions

		[ENDIAN-FALLACY]

		Rob Pike. The Byte Order Fallacy. April 3rd, 2012. URL: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html

		[GCC-BUILTINS]

		GCC Contributors. Other Built-in Functions Provided by GCC. September 1st, 2021. URL: https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

		[LIBCORK-BYTE-ORDER]

		Douglas Creager. libcork: Byte order. November 22nd, 2017. URL: https://libcork.io/0.15.0/byte-order.html

		[LINUX-ENDIAN]

		Linux; BSD. endian(3). September 1st, 2021. URL: https://linux.die.net/man/3/endian

		[MSVC-BUILTINS]

		Microsoft. _byteswap_uint64, _byteswap_ulong, _byteswap_ushort. November 4th, 2016. URL: https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort?view=msvc-160

		[N2912]

		ISO/IEC JTC1 SC22 WG14 - Programming Languages, C; JeanHeyd Meneide; Freek Wiedijk. N2912: ISO/IEC 9899:202x - Programming Languages, C. June 8th, 2022. URL: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2912.pdf

		[NTOHL]

		Linux. ntohl(3). September 30th, 2021. URL: https://linux.die.net/man/3/ntohl

		[P0463]

		Howard E. Hinnant. endian. Just endian.. July 13th, 2017. URL: https://wg21.link/p0463

		[P0553]

		Jens Maurer. Bit operations. March 1st, 2019. URL: https://wg21.link/p0553

		[PORTABLE-ENDIANNESS]

		David Seifert. portable-endianness. May 16th, 2021. URL: https://github.com/SoapGentoo/portable-endianness

		[RUST-COUNT_ONES]

		Rust Standard Library Collaborators. u32 methods: count_ones. November 10th, 2021. URL: https://doc.rust-lang.org/std/primitive.u32.html#method.count_ones

		[SDCC]

		Dr. Philipp K. Krause. SDCC Manual §8.1.9 - Bit Rotations. September 25th, 2021. URL: http://sdcc.sourceforge.net/doc/sdccman.pdf

		[TI-TMS320C64X]

		Texas Instruments. TMS320C64x/C64x+ DSP: CPU and Instruction Set. July 31st, 2010. URL: https://www.ti.com/lit/ug/spru732j/spru732j.pdf

image9.emf
n3022.html

n3022.html
↑ Jump to Table of Contents← Collapse Sidebar

 N3022
Modern Bit Utilities

 Published Proposal, 2022-07-06

 		Previous Revisions:

		n3001 (r3), n2965 (r2), n2903 (r1), n2827 (r0)

		Author:

		JeanHeyd Meneide

		Latest:

		https://thephd.dev/_vendor/future_cxx/papers/C - Modern Bit Utilities.html

		Paper Source:

		github.com/ThePhD/future_cxx

		Issue Tracking:

		GitHub

		Proposal Category:

		Feature Request

		Target:

		C23

		Project:

		ISO/IEC JTC1/SC22/WG14 9899: Programming Language — C

 Abstract

 Endian preprocessor macros, byte swapping, big endian / little endian load and store, functions, and several bit utilities that have become commonplace amongst compilers, bytecodes, and implementations.

 Table of Contents

 		
 1 Changelog

 		1.1 Revision 4 - July 6th, 2022

		1.2 Revision 3 - June 17th, 2022

		1.3 Revision 2 - April 12th, 2022

		1.4 Revision 1 - January 1st, 2022

		1.5 Revision 0 - October 15th, 2021

		
 2 Polls

 		
 2.1 WG14 Virtual Meeting - February 2022

 		2.1.1 Does WG14 want the memreverse8 and endian load/store functions to only be required if CHAR_BIT == 8 similar to N2903?

		2.1.2 Does WG14 want new signed-count rotate functions in addition to what is in N2903?

		2.1.3 Does WG14 want to put something along the lines of N2903 into C23?

		
 3 Introduction & Motivation

 		3.1 Bits: How Much Faster?

		
 4 Design

 		4.1 Preliminary: Why the stdc_ prefix?

		4.2 Charter: unsigned char const ptr[static sizeof(uintN_t)] and More?

		
 4.3 Signed vs. Unsigned

 		4.3.1 In Defense of Signed Integers

		4.3.2 In Defense of Unsigned

		4.3.3 Which Does This Paper Choose?

		
 4.4 The __STDC_ENDIAN_* Macros

 		4.4.1 A (Brief) Discussion of Endianness

		4.4.2 Hey! Some Architectures Can Change Their Endianness at Run-time!

		4.4.3 Floating Point has a Byte Order, Too.

		
 4.5 Generic 8-bit Memory Reverse and Exact-width 8-bit Memory Reverse

 		4.5.1 But Memory Reverse Is Dangerous?

		4.5.2 Vetting the Implementation / Algorithm for memreverse

		
 4.6 stdc_load8_*/stdc_store8_* Endian-Aware Functions

 		4.6.1 Vetting the Implementation / Algorithm for 8-bit loads and stores

		
 4.7 Modern Bit Utilities

 		4.7.1 "Why not only generic interfaces or (u)intmax_t interfaces?"

		4.7.2 Type-Generic Macros and Counts for Types

		4.7.3 Argument Types

		4.7.4 Return Types

		4.7.5 stdc_count_ones/stdc_count_zeros

		4.7.6 stdc_rotate_left/stdc_rotate_right

		4.7.7 stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_ones

		4.7.8 stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_one

		4.7.9 stdc_has_single_bit

		4.7.10 stdc_bit_width/stdc_bit_ceil/stdc_bit_floor

		
 5 Wording

 		
 5.1 Decisions for the C Standards Committee

 		5.1.1 Question 0

		5.1.2 Question 1

		5.1.3 Question 2

		5.2 Add <stdbit.h> to freestanding headers in §4, paragraph 6

		
 5.3 Add a new §7.✨ sub-clause for "Bit and Byte Utilities" in §7

 		5.3.1 Add a new §7.✨.1 sub-sub-clause for "Endian" in §7.✨

		5.3.2 Add a new §7.✨.3 sub-sub-clause for "8-bit Memory Reversal" in §7.✨

		5.3.3 Add a new §7.✨.5 sub-sub-clause for "Endian-Aware" functions in §7.✨

		5.3.4 Add a new §7.✨.7 sub-sub-clause for Low-Level Bit Utilities in §7.✨

		5.3.5 Add a new §7.✨.19 sub-sub-clause for Fundamental Bit Utilities in §7.✨

		5.4 Add one new entry for Implementation-Defined Behavior in Annex J.3

		5.5 Modify an existing entry for Unspecified behavior in Annex J.1

		
 6 Appendix

 		6.1 Decisions to Committee Questions

		6.2 Example Implementations in Publicly-Available Libraries

		6.3 Implementation of Generic stdc_count_ones

		6.4 Implementation of Generic stdc_bit_ceil

		
 6.5 Endian Enumeration

 		6.5.1 Rationale

		7 Acknowledgements

		
 References

 		 Informative References

 1. Changelog

 1.1. Revision 4 - July 6th, 2022

 		
 Wording improvements:

 		
 Revised generic_count_type to simply be of the required signed-ness (it may be a narrower type, or a larger type: it does not matter).

		
 Provide concrete definitions for most significant index and least significant index in the wording.

		
 Rework all of the preamble and requirements into a "General" paragraph for the <stdbit.h> header, to leave no hanging paragraphs. (Hanging paragraphs are contrary to ISO wording policy).

		
 Add additional verification of the 8-bit memreverse function and use that implementation exactly in § 4.5.2 Vetting the Implementation / Algorithm for memreverse.

		
 Add additional verification of the 8-bit endian-aware load and store functions in § 4.6.1 Vetting the Implementation / Algorithm for 8-bit loads and stores, and try to transcribe that implementation directly to avoid errors in the wording.

 1.2. Revision 3 - June 17th, 2022

 		
 Removed a bullet point about adding a reservation for stdc_ in the future: that is taken care of by a different paper.

		
 Fixed the wording for Question 0 and Question 1 with respect to mentioning generic_count_type properly.

		
 Adjust the position of the <stdbit.h> header in the Freestanding list (the list is in alphabetical order).

		
 Formulated the return descriptions of the Endian-Aware Load and Store functions much more clearly and use pure mathematics notation, as suggested by Joseph Myers.

 1.3. Revision 2 - April 12th, 2022

 		
 Deeply discussed the rotate_left/rotate_right class of functionality, and it’s effect on the rest of the API, in § 4.3 Signed vs. Unsigned.

		
 Committed to taking a poll with the new information given about the functionality.

		
 Use bool instead of _Bool now that it has been accepted.

		
 Ensure the wording for stdc_first_(leading/trailing)_(one/zero) and friends is present in the paper.

		
 Discuss potentially having bit functions which take a width parameter in the future in polling section about CHAR_BIT and width definitions.

		
 Adjust wording for Endian-Aware Load/Store functions.

 		
 Typo fixes for the names of mask and index values.

		
 For right shifts, introduce a new unsigned_value to be used to avoid implementation-defined behavior in the specification for the store functions.

		
 Provide alternative wording solutions for various committee decisions in § 5.1 Decisions for the C Standards Committee.

 1.4. Revision 1 - January 1st, 2022

 		
 Drastically rework design section and motivations after several rounds of feedback from at least 4 vendors, 6 business partners, 3 Open Source maintainers, and more.

		
 Add additional bit utilities and design them from existing practice in C, C++, Go, Rust, Zig, and implementation-specific constraints in Visual C++, CLang, GCC, SDCC, TCC and more.

 		
 stdc_first_(leading/trailing)_(one/zero)

		
 stdc_count_(leading/trailing)_(ones/zeros)

		
 Return types for bit functions counting bits is int, and for type-generic functions computing an input-related value is "type suitably large enough to hold the result".

		
 Arguments types should be int by default or the target input type, unless otherwise specified.

		
 Provide backing implementation for all functionality in this paper at an official repository.

		
 Provide benchmarks showing performance comparisons using the intrinsics vs. not in § 3.1 Bits: How Much Faster?.

		
 Use zeros consistently in the function name spelling instead of zeroes.

 1.5. Revision 0 - October 15th, 2021

 		
 Initial release. ✨

 2. Polls

 These polls help guide the design of this paper in accordance with WG14 consensus. Where consensus was not sufficient or close (or there were many abstentions in conjunction with not having much consensus), the author chose in a particular direction and provided rationale.

 2.1. WG14 Virtual Meeting - February 2022

 WG14 reviewed an earlier version of this paper in N2903, discussing many of its design choices and aspects. WG14 was asked about which functions from the given set below to keep in the paper or remove: all sets of functions were approved when asking the 5 questions about which functionality should be kept (answered questions were moved to the Appendix in § 6.1 Decisions to Committee Questions). This was interpreted as unanimous consent to proceed with all of the functionality in this paper. If there is anyone who is interested in bisecting or taking pieces apart from this proposal, please let the authors know as soon as is humanly possible.

 2.1.1. Does WG14 want the memreverse8 and endian load/store functions to only be required if CHAR_BIT == 8 similar to N2903?

 		Yes
 		No
 		Abstain

 		6
 		5
 		8

 This was interpreted as not strong enough consensus, but it was left to the author to decide. As we do not want to leave freestanding implementations which have CHAR_BIT == 16 or CHAR_BIT == 32 out in the cold, we decided to leave the CHAR_BIT % 8 == 0 mandate in, rather than switch to CHAR_BIT == 8 as a stringent constraint. This complicates the specification but makes the functionality more widely available.

 One of the suggestions that came from doing this would also be to require the generic bit functions to take a parameter indicating the desired final width of the integer result, that the user would then cast. This is seen currently in the standard in functions such as fromfp, ufromfp, and similar found in the C Standard in §7.12.9.10 and §7.12.9.11. Unfortunately, this is less justifiable because existing practice does not follow this pattern for any bit intrinsics. Bit intrinsics are deeply tied to the width of the object being computed and the assumption of that width is what produces the most optimal code since it maps 1:1 with instruction sets and hardware sets. Better code generation can be achieved by providing a width parameter that is a constant (e.g., (unsigned int)stdc_leading_zeros(value, UINT_WIDTH) or similar). The only problem with this is when either (a) weaker compilers that do not do any constant propagation or expression computation beyond the very minimal set required by the C compiler, or (b) the width parameter is not a constant value by necessity or accident.

 For example, MISRA C and CERT discourage #define constants without strong justification. This is due to unbounded scoping issues endemic to the preprocessor (for macro constants). Similarly, using "magic numbers" (unnamed constants) is non-compliant. Trying to use const int width = UINT_WIDTH; is also discouraged as it - and other constant expressions stored in const or even const static variables - may or may not optimize to a constant (it is strictly not a constant expression, as determined by C’s abstract machine rules; see: CERT C DCL06). Using enumerations may solve this problem partially for MISRA C/Safety Standard Compliance, but this is an awful lot of effort for what should be straightforward code generation on even low-quality, non-optimizing implementations. (Recognizing a standard function and providing a builtin for it is existing practice, even on compilers who barely afford to do optimizations such as "tinycc". Propagating constant expressions into function calls, standard or not, is less so existing practice from available implementations whose source code can be inspected.)

 We also do not have existing practice for bit functions that are specified in this way. These functions are usually meant to map to a tight set of hardware instructions, and are meant to be cheaply translatable to said hardware instructions. So, we focus on providing things that map directly to standard and extended unsigned integer types as well as bit-precise integers that match exact-width integer types. This proposal does not spend further time explore providing width as a parameter. We think that this may be a good idea in the future, but this is something we should allow for implementations to provide for.

 2.1.2. Does WG14 want new signed-count rotate functions in addition to what is in N2903?

 		Yes
 		No
 		Abstain

 		8
 		6
 		6

 This was interpreted as very close consensus, and also left to the author to decide. However, it was made clear in post-discussion that the current design for rotate left/right is fine, because it is a symmetrical operation, and is completely free to implement on 2’s complement implementations. Another important factor in making this decision was noting that most compilers already generate optimal code with a signed count value, including x86_64, x32_64, i686, AARCH64 (Arm 64-bit), and Arm 32-bit targets. Finally, there are architectures were both rotate left and rotate right instructions are available, but they do not have the same performance characteristics: the end-user should be able to use either rotate_left or rotate_right to bias the implementation towards a given instruction where possible.

 2.1.3. Does WG14 want to put something along the lines of N2903 into C23?

 		Yes
 		No
 		Abstain

 		19
 		2
 		2

 This is very clear direction to put it into C23, provided that the wording and other design details are hammered into place. We are working on these details.

 3. Introduction & Motivation

 There is a lot of proposals and work that goes into figuring out the "byte order" of integer values that occupy more than 1 octet (8 bits). This is nominally important when dealing with data that comes over network interfaces and is read from files, where the data can be laid out in various orders of octets for 2-, 3-, 4-, 6-, or 8-tuples of octets. The most well-known endian structures on existing architectures include "Big Endian", where the least significant bit comes "last" and is featured prominently in network protocols and file protocols; and, "Little Endian", where the least significant bit comes "first" and is typically the orientation of data for processor and user architectures most prevalent today.

 In more legacy architectures (Honeywell, PDP), there also exists other orientations called "mixed" or "middle" endian. The uses of such endianness are of dubious benefit and are vanishingly rare amongst commodity and readily available hardware today, but nevertheless still represent an applicable ordering of octets.

 In other related programming interfaces, the C functions/macros ntoh ("network to host") and hton ("host to network") (usually suffixed with l or ul or others to specify which native data type it was being performed on such as long) were used to change the byte order of a value ([ntohl]). This became such a common operation that many compilers - among them Clang and GCC - optimized the code down to use an intrinsic __builtin_bytewap(...)/__builtin_bswap(...) (for MSVC, for Clang, and for GCC). These intrinsics often compiled into binary code representing cheap, simple, and fast byte swapping instructions available on many CPUs for 16, 32, 64, and sometimes 128 bit numbers. The bswap/byteswap intrinsics were used as the fundamental underpinning for the ntoh and hton functions, where a check for the translation-time endianness of the program determined if the byte order would be flipped or not.

 This proposal puts forth the fundamentals that make a homegrown implementation of htonl, ntoh, and other endianness-based functions possible in Standard C code. It also addresses many of the compiler-based intrinsics found to generate efficient machine code, with a few simpler utilities layered on top of it.

 3.1. Bits: How Much Faster?

 Just how much faster can using intrinsics and bit operations as proposed in this paper be? Below is a quantification of the performance differences from naïve algorithms that worked over one "bit" (or bool) at a time by attempting to implement a few algorithms using it. The explanations of these graphs can be found at one of the publicly available implementation of this code in its documentation - https://ztdidk.readthedocs.io/en/latest/benchmarks/bit.html.

 If you don’t read the previous link, then at the very least it should be shown that the code describes in this proposal provides the means to implement the improvements shown in the ztdc_packed group of benchmark bars.

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_vector_bool

naive_packed

cpp_std_array_bool

cpp_std_bitset

bit - count

12.8

25.6

38.4

512 64.0 76.8
measured in microseconds - lower is better

89.6

102.4

15.2

 [image:]1st is real time,

2nd is cpu time

cpp_std_array_bool

2tdc_packed

cpp_std_vector_bool

naive_packed

cpp_std_bitset

bit - find

8.0

16.0

24.0

320 40.0 48.0
measured in microseconds - lower is better

56.0

64.0

72.0

80.0

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_array_bool

naive_packed

cpp_std_bitset

cpp_std_vector_bool

bit - is_sorted

25.6

512

76.8

102.4 128.0 153.6
measured in microseconds - lower is better

179.2

204.8

2304

 [image:]1st is real time,

2nd is cpu time

2tdc_packed

cpp_std_array_bool

naive_packed

cpp_std_bitset

cpp_std_vector_bool

bit - is_sorted_until

295

59.0

88.5

118.0 1475 177.0
measured in microseconds - lower is better

206.5

236.0

265.5

 4. Design

 This is a library addition. It is meant to expose both macros and functions that can be used for translation time-suitable checks. It provides a way to check endianness within the preprocessor, and gives definitive names that allow for knowing whether the endianness is big, little, or neither. We state big, little, or neither, because there is no settled-upon name for the legacy endianness of "middle" or "mixed", nor any agreed upon ordering for such a "middle" or "mixed" endianness between architectures. This is not the case for big endian or little endian, where one is simply the reverse of the other, always, in every case, across architectures, file protocols, and network specifications.

 The next part of the design is functions for working with groupings of 8 bits. They are meant to communicate with network or file protocols and formats that have become ubiquitous in computing for the last 30 years.

 This design also provides a small but essential suite of bit utilities, all within the #include <stdbit.h> header.

 4.1. Preliminary: Why the stdc_ prefix?

 We use the stdc_ prefix for these functions so that we do not have to struggle with taking common words away from the end user. Because we now have 31 bytes of linker name significance, we can afford to have some sort of prefix rather than spend all of our time carving out reserved words or header-specific extensions. This will let us have good names that very clearly map to industry practice, without replacing industry code or being forced to be compatible with existing code that already has taken the name with sometimes-conflicting argument conventions.

 4.2. Charter: unsigned char const ptr[static sizeof(uintN_t)] and More?

 There are 2 choices on how to represent sized pointer arguments. The first is a void* ptr convention for functions arguments in this proposal. The second is an unsigned char ptr[static n]/unsigned char ptr[sizeof(uintN_t)] convention.

 To start, we still put any size + ptr arguments in the proper "size first, pointer second" configuration so that implementation extensions which allow void [static n] can exist no matter what choice is made here. That part does not change. The void* argument convention mean that pointers to structures, or similar, can be passed to these functions without needing a cast. This represents the totality of the ease of use argument. The unsigned char ptr[static n] argument convention can produce both better compile-time safety and articulate requirements using purely the function declaration, without needing to look up prose from the C Standard or implementation documentation. The cost is that any use of the function will require a cast in strictly conforming code.

 One of the tipping arguments in favor of our choice of unsigned char ptr[static n] is that void* can be dangerous, especially since we still do not have a nullptr constant in the language and 0 can be used for both the size and the pointer argument. (Which is, very sadly, an actual bug that happens in existing code. Especially when users mix memset and memcpy calls and use the wrong 0 argument because of writing one and meaning the other, and copying values over a large part of their 0-pointer in their low-level driver code.) Using an unsigned char* (or its statically-sized array function argument form) means that usage of the functions below would require explicit casting on the part of the user. This is, in fact, the way it is presented in [portable-endianness]: as far as existing practice is concerned, users of the code would rather cast and preserve safety rather than easily use something like stdc_memreverse8 with the guts of their structure.

 4.3. Signed vs. Unsigned

 This paper has gone back and forth between signed vs. unsigned count offsets for the rotl/rotr instruction-based functions, and similarly the return types for many of the types which return purely a "count"-style value. Some important properties and facts follow:

 		
 All of the values returned from the functions here return conceptually unsigned/natural numbers (0 to potentially infinity, but not negative).

		
 Some existing practice — e.g., C++ — has in recent years struggled against unsigned integers and tried to move towards signed. "Anything that is a count should just be an int", and similar guidance, grows from these functions and their types.

		
 Conversely, some of C’s most fierce proponents use unsigned numbers almost exclusively until they have a proper justification for a signed number. For them, unsigned/size_t is the default.

		
 Whatever decision we make for one (e.g., for the arugment type of rotate_left or rotate_right), we must make the identical decision for the return values of other functions (e.g., count_ones/popcount, or similar).

 This brings up a lot of questions about whether or not the functions here should be signed or unsigned. We will analyze this primarily from the standpoint of rotate_left and rotate_right, as that has the greatest impacts for the portability and semantics of the code presented here.

 4.3.1. In Defense of Signed Integers

 Let us consider a universe where stdc_rotate_left and friends take a signed count. This allows negative numbers to be passed to the count value for the rotate left. So, when stdc_rotate_leftuc(1, -1) is called, it will call itself again with stdc_rotate_rightuc(value, -count); if (e.g.) stdc_rotate_rightuc(1, -1) is called, it will call itself again with stdc_rotate_leftuc(value, -count). This is because, specification-wise, these functions are symmetric and cyclical in what they are meant to do. This matches the behavior from C++ and avoids undefined behavior for negative numbers, while also avoiding too-large shift errors from signed-to-unsigned conversions.

 SDCC and several other compilers optimize for left and right shifts ([sdcc]). Texas Instruments and a handful of other specialist architectures also have "variable shift" instructions (SSHVL), which uses the sign of the argument to shift in one direction or the other ([ti-tms320c64x]). Having a rotate_left where the a negative number produces the opposite rotate_right cyclic operation (and vice-versa) means that both of these architectures can optimize efficiently in the case of hardcoded constants, and still produce well-defined behavior otherwise (SSHVL instructions just deploy a "negated by default" for the count value or not, depending on whether the left or right variant is called, other architectures propagate the information to shift left or right). This also follows existing practice with analogous functions from the C++ standard library.

 To test code generation for using a signed integer and 2’s complement arithmetic, we used both C++ and C code samples. It’s a fairly accurate predictor of how notable compilers handle this kind of specification. The generated assembly for the compilers turns out to be optimal, so long as an implementation does not do a literal copy-paste of the specification’s text

 Using non-constant offset, with generated x86_64 assembly:

#include <bit>

extern unsigned int x;
extern int offset;

int main () {
 int l = std::rotl(x, offset);
 int r = std::rotr(x, offset);
 return l + r;
}

main: # @main
	mov eax, dword ptr [rip + x]
	mov cl, byte ptr [rip + offset]
	mov edx, eax
	rol edx, cl
	ror eax, cl
	add eax, edx
	ret

 — And, using constant offset, with generated x86_64 assembly.

#include <bit>

extern unsigned int x;

int main () {
 int l = std::rotl(x, -13);
 int r = std::rotr(x, -13);
 return l + r;
}

main: # @main
	mov eax, dword ptr [rip + x]
	mov ecx, eax
	rol ecx, 19
	rol eax, 13
	add eax, ecx
	ret

 The generated code shows that the compiler understands the symmetric nature of the operations (from the constant code) and also shows that it will appropriately handle it even when it cannot see through constant values. The same can be shown when writing C code using a variety of styles, as shown here:

#if UNSIGNED_COUNT == 1

static unsigned int rotate_right(unsigned int value, unsigned int count);

inline static unsigned int rotate_left(unsigned int value, unsigned int count) {
	unsigned int c = count % 32;
	return value >> c
		| value << (32 - c);
}

inline static unsigned int rotate_right(unsigned int value, unsigned int count) {
	unsigned int c = count % 32;
	return value << c
		| value >> (32 - c);
}

#elif TWOS_COMPLEMENT_CAST == 1

static unsigned int rotate_right(unsigned int value, int count);

inline static unsigned int rotate_left(unsigned int value, int count) {
	unsigned int c = (unsigned int)count;
	c = c % 32;
	return value >> c
		| value << (32 - c);
}

inline static unsigned int rotate_right(unsigned int value, int count) {
	unsigned int c = (unsigned int)count;
	c = c % 32;
	return value << c
		| value >> (32 - c);
}

#else

static unsigned int rotate_right(unsigned int value, int count);

inline static unsigned int rotate_left(unsigned int value, int count) {
	int c = count % 32;
	if (c < 0) {
		return rotate_right(value, -c);
	}
	return value >> c
		| value << (32 - c);
}

	inline static unsigned int rotate_right(unsigned int value, int count) {
	int c = count % 32;
	if (c < 0) {
		return rotate_left(value, -c);
	}
	return value << c
		| value >> (32 - c);
}

#endif

#if UNSIGNED_COUNT == 1
unsigned int f (unsigned int x, unsigned int offset) {
#else
unsigned int f (unsigned int x, int offset) {
#endif
	unsigned int l = rotate_left(x, offset);
	unsigned int r = rotate_right(x, offset);
	return l + r;
}

 When using the various definitions, we find that the generated assembly for f is identically good using either the internal unsigned "two’s complement" cast, or by just using an unsigned number. Because of how poorly basic mathematics with unsigned numbers happens, we want to avoid a situation where negation or subtraction with unsigned qualities may yield undesirable results or promotions. Therefore, we used signed integers for both the offset count and the return values of these functions. Note that even in purely standard C, converting from a signed integer to an unsigned integer is perfectly well-defined behavior and does not raise any signals:

 2   Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or subtracting one more than the maximum value that can be represented in the new type until the value is in the range of the new type.

 — §6.3.1.3, ¶2, ISO/IEC 9899:202x "C2x" Standard

 Finally, the vast majority of existing practice takes the offset value in as a signed integer, and all the return types are also still some form of signed integer (unless the intrinsic is returning the exact same unsigned value put in that was manipulated). It also allows "plain math" being done on the type to naturally manifest negative numbers without accidentaly having roundtripping or signed/unsigned conversion issues.

 4.3.2. In Defense of Unsigned

 Unsigned, on the other hand, has existing practice in hardware. While the intrinsics defined by glibc, C++'s standard libraries, and many more use signed integers, they are conceptually unsigned in their implementations. For example, for a 32-bit rotate, most standard libraries taking an int offset parameter perform:

count = count & 31;

 This is critical for optimization here. Note that, if we were to provide a specification using a signed offset, our specification has to very deliberately specify that we are going to negate the value and then pass it to the rotate of the opposite direction. This is, effectively, the same as obliterating the sign value and then calling the (symmetrical, cyclical) rotate: a 32-bit rotate therefore can get identical codegen as a signed variant by using the a bit AND (NOT a normal % 32, as that preserves the sign as we do NOT want that). For an unsigned variant, no such trickery is necessary. Simply truncating the value using:

count = count % 32;

 produces optimal code generation for most compilers, as they understand that bit AND for hexadecimal 0x1F (decimal 31) is identical to modulus of decimal 32. This means that, by default, unsigned values are the same here. Abusing 2’s complement, one can save this by simply doing unsigned u_count = (unsigned)count; and then perform modulus to get the same behavior as performing bit AND with 31. The "obvious" code is the efficient code here, as shown by the example of the assembly above.

 Rust is one of the few languages that provides optimal versions of this code using unsigned. Their code is optimal under both optimizations and a lack thereof, compared to C and C++ code which struggles with function call elision and similar. This may be aided in the future by having this paper put into the C standard, which would allow compilers to treat standard-specific rotate calls as intrinsics to be replaced with the instructions directly.

 All in all, unsigned naturally optimizes better and matches the size type of C. It has no undefined behavior on overflow and produces better assembly in-general when it comes to bit intrinsics. Shifting behavior is also well-defined for unsigned types and not signed types, further compounding unsigned types as far better than their signed counterparts.

 4.3.3. Which Does This Paper Choose?

 Ultimately, this paper chooses signed integer types. This is primarily to satisfy architectures which have signed-based variably style shifts. These platforms would have to convert to signed values to perform their variable shifts either way, so it benefits them. We also know that, for 2’s complement architectures, signed can be treated best by simply deploying count & 31 as a way to produce a truncated absolute value.

 Furthermore, existing practice in C uses signed integer types for the count for rotate_left (and it’s analogous builtins and similar). Nominally, breaking with existing practice is actually not difficult in this case because the behavior for the rotate is, once again, done as-if it’s an unsigned value that can rotate in any direction. However, it is important to remember that the use of positive or negative values can influence the direction of the rotate, as well as the choice of which function.

 I expect this decision will not be extremelty popular. Ultimately, I expect to poll this at the next meeting. Whichever direction gets higher consensus, will be the direction I pursue for this functionality.

 4.4. The __STDC_ENDIAN_* Macros

 The enumeration is specified as follows:

#include <stdbit.h>

#define __STDC_ENDIAN_LITTLE__ /* some unique value */
#define __STDC_ENDIAN_BIG__ /* some other unique value */
#define __STDC_ENDIAN_NATIVE__ /* see below! */

 The goal of these macros is that if the system identifies as a "little endian" system, then __STDC_ENDIAN_LITTLE__ == __STDC_ENDIAN_NATIVE__, and that is how an end-user knows that the implementation is little endian. Similarly, a user can check __STDC_ENDIAN_BIG__ == __STDC_ENDIAN_NATIVE__, and they can know the implementation is big endian. Finally, if the system is neither big nor little endian, than __STDC_ENDIAN_NATIVE__ is a unique value that does not compare equal to either value:

#include <stdbit.h>
#include <stdio.h>

int main () {
	if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_LITTLE__) {
		printf("little endian! uwu\n");
	}
	else if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_BIG__) {
		printf("big endian OwO!\n");
	}
	else {
		printf("what is this?!\n");
	}
	return 0;
}

 If a user has a Honeywell architecture or a PDP architecture, it is up to them to figure out which flavor of "middle endian"/"mixed endian"/"bi endian" they are utilizing. We do not give these a name in the set of macros because neither the Honeywell or PDP communities ever figured out which flavor of the 32-bit byte order of 2341/3412/2143/etc. was strongly assigned to which name ("mixed" endian? "mixed-big" endian? "bi-little" endian?), and since this is not a settled matter in existing practice we do not provide a name for it in the C Standard. It is also of dubious determination what the byte order for a 3-byte, 5-byte, 6-byte, or 7-byte integer is in these mixed-endian types, whereas both big and little have dependable orderings.

 4.4.1. A (Brief) Discussion of Endianness

 There is a LOT of design space and deployed existing practice in the endianness space of both architectures and their instruction sets. A non-exhaustive list of behaviors is as follows:

 		
 Instruction set, OS, and register conventions are in-sync (Windows, Apple, and most *Nix Distributions).

		
 Instruction set has variability that can be toggled (ARM with the SETEND instruction).

		
 Instruction set has no variability, but data can be stored in unconventional endianness (RISC-V, mainframe architectures, and similar).

		
 Instruction set has no variability, but it changes endianness between types/sizes (FORTRAN-implemented floating point units used Big Endian, PDP-11 compatibility with those machines required 32-bit big-endian instructions on a little-endian machine (hilarity/shenanigans ensued)).

		
 Instruction set has no variability, but historical weight forces certain choices (PDP-11 had 16-bit little-endian integers. Some folk interpreted two of them next to each other as a single 32-bit integer, resulting in the 2143 byte order).

 Suffice to say, there exists a lot of deployed practice. Note that this list effectively has these concerns in priority order. The first is the most conventional software; as the list goes down, each occurrence becomes more rare and less interesting. Therefore, we try not to spend too much time focusing on what are effectively the edge cases of software and hardware. Some of the past choices in endianness and similar were simply due "going with the flow" (PDP’s "2143" order) or severe historical baggage (early FORTRAN dealing in big endian floating point numbers, and those algorithms and serialization methods being given to PDP machines without thinking about the ordering). With much of the industry moving away from such modes in both newer mainframes and architectures and towards newer implementations and architectures, it does not seem prudent to try to standardize the multitude of their behaviors.

 This proposal constraints its definition of endianness to integer types without padding, strictly because trying to capture the vast berth of existing architectures and their practices can quickly devolve down a slope that deeply convolutes this proposal’s core mission: endian and bit utilities.

 4.4.2. Hey! Some Architectures Can Change Their Endianness at Run-time!

 This is beyond the scope of this proposal. This is meant to capture the translation-time endianness. There also does not appear to be any operating system written today that can tolerate an endianness change of the whole program happening arbitrarily at runtime, after a program has launched. This means that the property is effectively a translation-time property, and therefore can be exposed as a compile-time constant. A future proposal to determine the run-time byte order is more than welcome from someone who has suitable experience dealing with such architectures and programs, and this proposal does not preclude their ability to provide such a run-time function e.g. stdc_endian get_execution_endian(void);.

 Certain instruction sets have ways to set the endianness of registers, to change how data is accessed ([arm-setend]). This functionality is covered by byte swapping, and byte swaps can be implemented using the SETEND instruction plus an access. (The compiler would have to remember to unwind the endian state back to its original value, however, or risk contaminating the entire program and breaking things.)

 4.4.3. Floating Point has a Byte Order, Too.

 For the design of this paper, we strictly consider the design space for (unsigned) integers, only. Floating point numbers already have an implementation-defined byte order, and none of these functions are meant to interact with the floating point types. While the stdc_memreverse8 function can work on any memory region, which includes any structure, scalar, or similar type with or without padding bits, the function just swaps bytes. Nothing needs to be said about padding bits in this case, since the operation is well-defined in all cases.

 It shall be noted that for C++, since C++20, its endian enumeration applies to all scalar types:

 This subclause describes the endianness of the scalar types of the execution environment.

 — C++ Standard Working Draft, bit.endian/p1

 It does not specify what this means for padding bits or similar; nor, I think, does it have to. Byte order means very little for padding bits until serialization comes into play. C++ does not define any functions which do byte-order aware serialization. So, it does not have to write any specification governing what may or may not happen and the left is rest undefined / unspecified.

 For this proposal, we focus purely on integer types and, more specifically, on integer types which do not have padding or where we can work with a padding bits-agnostic representation. While it is acknowledged that floating point types and pointers have byte orders too, we do not want to interact directly with these types when it comes to endianness load and store functions. Byte swaps, (bit) population counts, and other bit operations can be performed on floating point types after they have been copied or type-punned (with implementation checking/blessing) into equivalent (unsigned) integer objects to do the necessary work.

 4.5. Generic 8-bit Memory Reverse and Exact-width 8-bit Memory Reverse

 In order to accommodate both a wide variety of architectures but also support minimum-width integer optimized intrinsics, this proposal takes from the industry 2 forms of byteswap:

 		
 one generic mem_ version which takes a pointer and the number of bytes to perform a reverse operation; and,

		
 a sequence of exact-width byte swapping instructions which (typically) map directly to intrinsics available in compilers and instructions in hardware.

 These end up inhabiting the stdbit.h header and have the following interface:

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if (CHAR_BIT % 8 == 0)
void stdc_memreverse8(size_t n, unsigned char ptr[static n]);
uintN_t stdc_memreverse8uN(uintN_t value);
#endif

 where N is one of the minimum-width integer types such as 8, 24, 16, 32, 64, 128, and others. On most architectures, this matches the builtins (MSVC, Clang, GCC) and the result of compiler optimizations that produce instructions for many existing architectures as shown in the README of this portable endianness function implementation. We use the exact-width values for the uN-suffixed functions because we expect that C compilers would want to lower the stdc_memreverse8uN call to existing practice of byteswapN instructions and compiler intrinsics. Using uint_leastN_t reduces the ability to match these existing optimizations in the case where uintN_t functions are not defined.

 One property of note is that memreverse8 swaps 8 bits at a time rather than CHAR_BIT bits at a time (this is why it has the suffix "8" in the name). This matches existing practice: all known byteswap operations work on 8 bits. This caveat is here because we need to retain cross-platform behavior. If we swapped to using CHAR_BIT, then the behavior of a program that uses no implementation-defined properties would suddenly become dependent on implementation/architecture properties:

// NOT guaranteed, if it works on CHAR_BIT
// instead of working on 8 bits at a time.
assert(stdc_memreverse8u32(0xAABBCCDD) == 0xDDCCBBAA);

 One of the problems with this approach is that it opens us up to potentially having padding bits if CHAR_BIT is not a multiple of 8. There are a number of approaches to this, but the ultimate reality is that it is simply not portable using any other definition. If the goal is standard functions and the purpose of these types is to create a way to talk to other processors (or different kinds of cores all along the same bus), files in specific formats, or networks, then we have to stick to using an 8-bit byte and not letting unspecified amounts of padding filtering into the representation. This also allows the code, when present, to map reasonably to available intrinsics: note that even the GCC builtins work explicitly on 8-bit-bytes, no matter the platform. We are simply following existing practice, here.

 There is also the concern of bit orderings on top of byte orderings. Unfortunately, there is no practical way to deal with sub-8 bit orderings that may be different or change from machine to machine in a way that is practical when put in conjunction with larger-than-8-bit-bytes.

 4.5.1. But Memory Reverse Is Dangerous?

 Byte swapping, by itself, is absolutely dangerous in terms of code portability. Users often program strictly for their own architecture when doing serialization, and do not take into consideration that their endianness can change. This means that, while stdc_memreverse functions can compile down to intrinsics, those intrinsics get employed to change "little endian" to "big endian" without performing the necessary "am I already in the right endianness" check. Values that are already in the proper byte order for their target serialization get swapped, resulting in an incorrect byte order for the target network protocol, file format, or other binary serialization target.

 The inclusion of the <stdbit.h> header reduces this problem by giving access to the __STDC_NATIVE_ENDIAN__ macro definition, but does not fully eliminate it. This is why many Linux and BSDs include functions which directly transcribe from one endianness to another. This is why the Byte Order Fallacy has spread so far in Systems Programming communities, and why many create their own versions of this both in official widespread vendor code ([linux-endian]) and in more personal code used for specific distributions ([portable-endianness]). Thusly, this proposal includes some endianness functions, specified just below.

 4.5.2. Vetting the Implementation / Algorithm for memreverse

 In previous iterations of the paper, there were various off-by-one errors in transcribing the algorithm used to get the job done. Therefore, we more directly lifted the code for the algorithm from the example implementation here. To further prove that it works on "bytes" that may be larger than 8 bits, we also took the following steps.

 		
 Implemented it as a macro (as shown from the link above).

		
 Use that macro implementation in the normal unsigned char-based [implementation]();

		
 Use that macro implementation all unsigned integer types that are larger than unsigned char to test if it deals with sub-8-bit-groups correctly;

		
 Apply -fno-strict-alias or equivalent flag to the compiler and test across platforms.

 All of the tests pass across the three major compilers (MSVC, GCC, and Clang) and across platforms (Windows, Linux, Mac OS). We find this to be compelling enough to ensure that the implementation and the algorithm in the wording is suitably correct. Nevertheless, any wording failures present here represent the authors' collective inability to properly serialize wording, not that an implementation is not possible or too inventive.

 4.6. stdc_load8_*/stdc_store8_* Endian-Aware Functions

 Functions meant to transport bytes to a specific endianness need 3 pieces of information:

 		
 the sign of the input/output;

		
 the byte order of the input; and,

		
 the desired byte order of the output.

 To represent any operation that goes from/to the byte order that things like long longs are kept in, the Linux/BSD/etc. APIs use the term "host", represented by h. Every other operation is represented by explicitly naming it, particularly as be or le for "big endian" or "little endian". Again, because of the severe confusion that comes from what the exact byte order a "mixed endian" multi byte scalar is meant to be in, there seems not to exist any widely available practice regarding what to call a PDP/Honeywell endian configuration. Therefore, mixed/bi/middle-endian is not included in this proposal. It can be added at a later date if the community ever settles on a well-defined naming convention that can be shared between codebases, standards, and industries.

 The specification for the endianness functions borrows from many different sources listed above, and is as follows:

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if ((N % CHAR_BIT) == 0 && (CHAR_BIT % 8 == 0))
void stdc_store8_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_leuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_beuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_leuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_beuN(
	const unsigned char ptr[static (N / CHAR_BIT)]);

void stdc_store8_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_lesN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_besN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_lesN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_besN(
	const unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Thanks to some feedback from implementers and librarians, this first implementation would also need an added signed variant to the load and store functions as well as aligned and unaligned loads and stores. While C23 will mandate a two’s complement representation for integers, because we are using the uint_leastN_t functions (which may be larger than the intended N == 24 or N == 32 specification), it is important for the sign bit to be properly serialized an transported. Therefore, during stdc_load8_(le/be)sN/stdc_load8_(le/be)uN operations, the sign bit will be directly serialized into resulting signed value or byte array where necessary.

 This specification is marginally more complicated than the stdc_memreverseuN functions because they operate on uint_leastN_t, where N is the minimum-width bit value. These functions, on most normal implementations, will just fill in the exact number of 8, 16, 32, 64, etc. bits. But for Digital Signal Processors (DSPs), select embedded architectures, and many freestanding implementations, it is impossible to offer a CHAR_BIT == 8 guarantee. For example, some Digital Signal Processors have CHAR_BIT == 32, and all of uint_least8_t, uint_least16_t, uint_least24_t, and uint_least32_t are all aliased to the same fundamental type.

 We are fine with not making these precisely uintN_t/intN_t because the upcoming C23 Standard includes a specific allowance that if uintN_t/intN_t exist, then uint_leastN_t/int_leastN_t must match their exact-width counterparts exactly, which has been existing practice on almost all implementations for quite some time now.

 Similarly to stdc_memreverse8, we want a dependable set of functionality that can work across platforms. Therefore, the functions only exist if both N and CHAR_BIT is evenly divisible by 8. We use the (u)int_leastN_t types still because we want these functions to be generally available when the requirements are met, because we can guarantee a proper value as long as a user is working with (u)int_leastN_t as anticipated. A lack of padding bits is not required to work with the memory correctly, unlike stdc_memreverse8 and its exact-width counterpart.

 Note that this means a CHAR_BIT == 16 implementation can still implement a stdc_load8_les24 function, as it satisfies both ((CHAR_BIT % 8) == 0) and ((N % 8) == 0) and uses the int_least24_t parameter, which is guaranteed to be available in that implementation’s <stdint.h> header.

 4.6.1. Vetting the Implementation / Algorithm for 8-bit loads and stores

 In previous iterations of the paper, getting the algorithm written down properly in a way that does not rely on any kind of implementation-defined behavior for signed and unsigned endian-aware loads and stores was tough and resulted in many errors in the wording. Still, we know that the implementation is solid because we have tested it (both theoretically and factually) by writing implementations which base "unit" for writing into has a width greater than CHAR_BIT. It is similar to the design

 		
 Implemented the core bodies of the functions as macros whose base unit is not necessarily unsigned char (as shown here).

		
 Use that macro implementation in the normal unsigned char-based implementation;

		
 Use that macro implementation all unsigned integer types that are larger than unsigned char to test if it deals with sub-8-bit-groups correctly;

		
 Apply -fno-strict-alias or equivalent flag to the compiler and test across platforms.

 All of the tests pass across the three major compilers (MSVC, GCC, and Clang) and across platforms (Windows, Linux, Mac OS). We find this to be compelling enough to ensure that the implementation is suitably correct, even if the wording may not be proper or ideal. Therefore, we hope this can serve as a good basis in establishing that, at the very least, this is both implementable and usable. This also corroborates additional materials outside of compilers who always target CHAR_BIT == 8, such as the F2838x/F28069 series, and C28x series, of chips from Texas Instruments. For example, the TMS320C28x reference guide gives a listing for how to properly and effectively swap 8-bit bytes of a 32-bit integer, despite being a 16-bit architecture (Page 292). It is, at least in some cases, important enough to include in reference material and programming guides for these chips, even if the authors could not personally find implementations of publicly-discussable compilers which provided a C-style intrinsic for a CHAR_BIT == 16/32/64 platform.

 4.7. Modern Bit Utilities

 Additionally to this, upon first pre_review of the paper there was a strong supporting groundswell for bit operations that have long been present in both hardware and as compiler intrinsics. This idea progressed naturally from the bswap and __builtin_bswap discussion. As indicated in [p0553] (merged into C++20 already), here’s a basic rundown of some common architectures and their support for various bit functionality:

 		operation
 		Intel/AMD
 		ARM
 		PowerPC

 		rotl
 		ROL
 		-
 		rldicl

 		rotr
 		ROR
 		ROR, EXTR
 		-

 		popcount
 		POPCNT
 		-
 		popcntb

 		leading_zero
 		BSR, LZCNT
 		CLZ
 		cntlzd

 		leading_one
 		-
 		CLS
 		-

 		trailing_zero
 		BSF, TZCNT
 		-
 		-

 		trailing_one
 		-
 		-
 		-

 Many of the below bit functions are defined below to ease portability to these architectures. For places where specific compiler idioms and automatic detection are not possible, similar assembly tricks or optimized implementations can be provided by C. Further bit functions were also merged into C++, resulting in the current state of the C++ bit header.

 There is further a bit of an "infamous" page amongst computer scientists for Bit Twiddling Hacks. These may not all map directly to instructions but they provide a broad set of useful functionality commonly found in not only CPU-based programming libraries, but GPU-based programming libraries and other high performance computing resources as well.

 We try to take the most useful subset of these functions that most closely represent functionality on both old and new CPU architectures as well as common, necessary operations that have been around in the last 25 years for various industries. We have left out operations such as sign extension, parity computation, bit merging, clear/setting bits, fast negation, bit swaps, lexicographic next bit permutation, and bit interleaving. The rest are more common and appear across a wide range of industries from cryptography to graphics to simulation to efficient property lookup and kernel scheduling.

 4.7.1. "Why not only generic interfaces or (u)intmax_t interfaces?"

 For many of the bit-based utilities, you will see it introduces functions with several suffixes for the various types. Often, it is asked: why? Even the GCC builtins for things like popcount only take long and long long. The answer is in the blank spaces in the table above: for architectures that do not have perfect instruction mappings for a given built-in type (e.g., ARM for popcount), the amount of bits one is utilizing for the given function is actually incredibly important. There is a difference between counting for 8 bits in a loop and counting 64 bits (or larger for extended integer types), so the various forms are provided to allow implementations to produce the most efficient code on their platforms when the user requests a specific size.

 The generic interfaces can be used by individuals who want automatic selection of the best. And, as shown in the § 6 Appendix, platforms can use any builtins or techniques at their disposal to select an appropriate built-in, instruction, or function call to fit the use case.

 4.7.2. Type-Generic Macros and Counts for Types

 All of the functions below have type generic macros associated with them. This can bring up an interesting question: if the return value depends on the type of the argument going into the function (i.e. for trailing_zeros, trailing_ones, leading_zeros, leading_ones, rotate_left, and rotate_right), is it bad for literal arguments? The answer to this question, however, is the same as its always been when dealing with literal values in C: use the suffix for the appropriate type, or cast, or put it in a const variable so that it can be used with the expected semantics. We cannot sink macro-based generic code use cases in the off-chance that someone calls stdc_trailing_zeros(0) and thinks it returns a dependable answers. Integers (and their literals) are the least portable part of Standard C code: use the exact-width types if you are expecting exact-width semantics. Or, call the fundamental-type suffixed versions to get answers dependable for that given type (e.g., stdc_trailing_zerosui(0)).

 4.7.3. Argument Types

 Many of the functions below are defined over the fundamental unsigned integer types, rather than their minimum width or exact width counterparts. This is done to provide maximum portability: users can combine information from the recently-introduced (S/U)CHAR/(U)SHRT/(U)INT/(U)LONG/(U)LLONG_WIDTH macros to determine the width of the sizes at translation time as well as enjoy a disjoint and distinct set of fundamental types over which generic selection will always work.

 The (u)int_leastN_t types also have WIDTH macros, but those macros are not exactly guaranteed to cover a wide range of actual bit sizes either (if the uintN_t types do not exist, then a conforming implementation can simply just name all of the types as typedefs for (unsigned) long long and call it a day). While an implementation could also define each of the distinct fundamental types from (unsigned) char to (unsigned) long long to all be the same width as well, we are at the very least guaranteed that they are, in fact, distinct types. This makes selection over types in _Generic predictable and usable (i.e. _Generic(x, uint_least32_t: 0, uint_least64_t: 1) is not guaranteed to compile since those types are not required to form a mutually exclusive or disjoint set).

 The exact-width types suffer from non-availability on specific platforms, which makes little sense for functions which do not depend on a no-padding bits requirement. As long as the values read from the array only involve N bits (including the sign bit), and the rest are zero-initialized, we can have predictable semantics.

 Extended integer types, least-width integer types, and exact-width integer types, can all be used with the type-generic macros since the type-generic macros are required to work over all standard (unsigned) integer types and extended (unsigned) integer types, while excluding bool and bit-precise (_BitInt(N)) integer types that do not match pre-existing type widths. This provides a complete set of functionality that is maximally portable while also allowing for precise semantic control with exact or least-width types.

 This paper does not concern itself with the implications of passing a uint_leastN_t to bit-counting type-generic functions like stdc_leading_zeros directly: a user must account for such use and be prepared to have types larger than N bits in width. This is, very literally, what users are signing up for when they use such types and it is their responsibility to query the UINT_LEASTN_WIDTH macros. We expect users to use the N of their exact-width integer types with the type-generic macros as well.

 Finally, in general bool objects are disallowed from the above functions. There is just not a meaningful body of functionality that can be provided, and there is a fundamental difference between something that is expected to be a boolean value and something that is expected to be a 1-bit number (even if they can both serve similar purposes). It is also questionable to compute things such as rotation for bool objects. If we can grow a consistent set of answers for these operations across the industry, than we can weaken the requirements and add the behavior in. (Note that if we put it in now and choose a behavior, we cut off any improvements made in the future, so it is best to be conservative here.)

 4.7.4. Return Types

 There is the question of what is meant to happen for types which return bit counts, such as stdc_(leading/trailing)_(ones/zeros), stdc_first_(leading/trailing)_(one/zero), and stdc_count_(ones/zeros). Ostensibly, part of the motivation to capture here should be that the types used to do things such as rotations should be identical to the return type used to do things like count zeros, e.g. stdc_rotate_left(value, stdc_count_zeros(value));. This is mostly non-problematic until someone uses _BitInt: Clang already supports several megabyte-large _BitInt. On platforms where int is actually 16 bits, this is far too small to accommodate even a 1 MB _BitInt.

 At the moment, the functions do not accept all bit-precise integer types (just ones that are bit-width equivalent to the existing standard and extended integer types), so this is technically a non-issue. But, if and when bit-precise integer types are given better handling in _Generic macros or similar features that make them more suitable for type-generic macro implementations, this could become a problem. At the moment, we use wording to defer the issue by saying that type generic macros return a type suitably large for the range of the computed value. This allows us forward compatibility while fixing non-type-generic macro return types to int. The type-generic macros will have the flexibility from the specification to return larger signed integer types to aid in a smooth transition once bit-precise integer types sees more standard support.

 4.7.5. stdc_count_ones/stdc_count_zeros

 stdc_count_ones (also known as popcount/Population Count) is an older computer science term taken from the statistics / biology nomenclature to indicate how many bits are set within a grouping. It’s a very useful instruction with applications in everything from game development to scientific computing. It is also directly provided by many instruction sets. Its antithesis is stdc_count_zeros, which counts the number of zeros in the type. There exist efficient computation, intrinsics, and instructions for both zeros and ones computation, albeit it is more prevalent as popcount. We chose the name stdc_count_zeros and stdc_count_ones due to not having a good way to describe the zeros-analogous version of popcount in industry-settled terminology. But, the count_zeros/count_ones split has been used to good success in C libraries, C++ libraries, Julia, Rust, and other (standard) libraries.

 The API for it is as such:

#include <stdbit.h>

int stdc_count_onesuc(unsigned char value);
int stdc_count_onesus(unsigned short value);
int stdc_count_onesui(unsigned int value);
int stdc_count_onesul(unsigned long value);
int stdc_count_onesull(unsigned long long value);

int stdc_count_zerosuc(unsigned char value);
int stdc_count_zerosus(unsigned short value);
int stdc_count_zerosui(unsigned int value);
int stdc_count_zerosul(unsigned long value);
int stdc_count_zerosull(unsigned long long value);

// type-generic macros
generic_return_type stdc_count_ones(
	generic_value_type value);
generic_return_type stdc_count_zeros(
	generic_value_type value);

 It covers all of the built-in unsigned integer types. The type-generic macro supports all of the built-in types as well as any of the implementation-defined extended integer types. See the appendix for an implementation.

 4.7.6. stdc_rotate_left/stdc_rotate_right

 stdc_rotate_left/stdc_rotate_right are common CPU instructions and the forms of the commonly-used circular shifts. They are common operations with applications in cyclic codes. They are commonly expressed (for 32-bit numbers) as value <​< count | value >​> (32 - count) (rotate left) or value >> count | value << (32 - count) (rotate right).

#include <stdbit.h>

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

unsigned char stdc_rotate_rightuc(unsigned char value, int count);
unsigned short stdc_rotate_rightus(unsigned short value, int count);
unsigned int stdc_rotate_rightui(unsigned int value, int count);
unsigned long stdc_rotate_rightul(unsigned long value, int count);
unsigned long long stdc_rotate_rightull(unsigned long long value, int count);

// type-generic macro
generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);
generic_value_type stdc_rotate_right(
	generic_value_type value, generic_count_type count);

 They cover all of the built-in unsigned integer types. A discussion of signed vs. unsigned integer types for the count type and the return type can be found in a previous section, here § 4.3 Signed vs. Unsigned.

 As for choosing a single function like stdc_rotate(unsigned-integer-type value, int count); that chooses left / right based on the value, it unfortunately imposes the worst code generation properties of all the options. When using entirely runtime values, unless you have a deliberately have a variable-rotate/shift instruction, you are requireed to emit a branch in order to handle the two cases, as rotate left / right - despite being symmetric - need some help. Here is the assembly for a tehcnically optimal left/right rotate:

f:	# @f
	mov r8d, edi
	mov ecx, esi
	rol r8d, cl
	mov edx, edi
	ror edx, cl
	mov ecx, esi
	neg ecx
	mov eax, edi
	rol eax, cl
	ror edi, cl
	test esi, esi
	cmovs edx, r8d
	cmovle eax, edi
	add eax, edx
	ret

 This is more than double the size of the rotates found using left/right directly in § 4.3 Signed vs. Unsigned. Due to this, we decided that it was not advantageous to have a signed count with an unknown left/right: it is important to be capable of biasing the optimizer to whether a given rotate is left/right oriented.

 4.7.7. stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_ones

 stdc_leading_zeros, stdc_leading_ones, stdc_trailing_zeros, and stdc_trailing_zeros are semi-common CPU instruction for counting the number of zeros/ones from the most significant bit ("leading") and the least significant bit ("trailing"). C++ adopted this one using the names of the form count(l|r)_(zero|one). The l/r stand for "left" and "right". C++ uses left to match the concept of the left hand side of integers in lexical parsing and left shift operators in C an C++. We choose "leading" and "trailing" here as that’s the more common instruction name, and tie in a little bit better with "most/least significant bit" than "left" or "right" do. The name most_significant_zeros (and its variations for the other 3 operations) can also work, albeit it would be one of the biggest names in the C standard library if we do choose it. (This could potentially be shortened to most_signif_zeros or even most_sig_zeros). It may also run afoul of the 31 minimum linker bytes of significance we have, so we chose these names instead.

#include <stdbit.h>

int stdc_leading_zerosuc(unsigned char value);
int stdc_leading_zerosus(unsigned short value);
int stdc_leading_zerosui(unsigned int value);
int stdc_leading_zerosul(unsigned long value);
int stdc_leading_zerosull(unsigned long long value);

int stdc_leading_onesuc(unsigned char value);
int stdc_leading_onesus(unsigned short value);
int stdc_leading_onesui(unsigned int value);
int stdc_leading_onesul(unsigned long value);
int stdc_leading_onesull(unsigned long long value);

int stdc_trailing_zerosuc(unsigned char value);
int stdc_trailing_zerosus(unsigned short value);
int stdc_trailing_zerosui(unsigned int value);
int stdc_trailing_zerosul(unsigned long value);
int stdc_trailing_zerosull(unsigned long long value);

int stdc_trailing_onesuc(unsigned char value);
int stdc_trailing_onesus(unsigned short value);
int stdc_trailing_onesui(unsigned int value);
int stdc_trailing_onesul(unsigned long value);
int stdc_trailing_onesull(unsigned long long value);

// type-generic macros
generic_return_type stdc_leading_zeros(
	generic_value_type value);
generic_return_type stdc_leading_ones(
	generic_value_type value);
generic_return_type stdc_trailing_zeros(
	generic_value_type value);
generic_return_type stdc_trailing_ones(
	generic_value_type value);

 4.7.8. stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_one

 stdc_first_leading_zero, stdc_first_leading_one, stdc_first_trailing_zero, and stdc_first_trailing_zero are semi-common CPU instruction (bsf/bsr for Intel, bfffo for Motorola, ffs for VAX, and so on) for counting the number of zeros/ones from the most significant bit ("leading") and the least significant bit ("trailing"). The caveat here is that it produces the bit index plus one. There are a few compiler-based implementations of this. The first is MSVC’s _BitScanForward and _BitScanReverse (with 64 prefix for 64-bit versions). They are meant to mimic Intel’s instruction behavior where a flag is set if "0" is passed, which is returned to the user who called the _BitScan* function. The actual output is populated in an output pointer variable of type int*. Notably, MSVC does not offer any ISA protection: it will emit an illegal CPU instruction if the target architecture doesn’t support the functionality. The other implementations are from Clang, GCC and NVIDIA CUDA, which have a compiler intrinsic which is then mapped to instructions where possible. They returns 0 when the input value is zero.

 We specify things to use the interpretation that 0 produces the return value 0 and otherwise returns 1 + index. This interpretation is favorable because it allows an end-user to easily check the return value in a way consistent with typical C boolean checking, which is with if (result) { ... }. If result is zero, than the user knows it’s zero and knows no bit was found. Otherwise, they can proceed and subtract 1 to get the index suitable for shifts. If a user has advanced knowledge, they can simply not branch and immediately subtract.

 ffs and its similar names covers the behavior behind stdc_first_leading_one. The others are permutations on this behavior: we provide them for completeness, and for the fact that other architectures cover some or part of these other named operations. Whatever happens, stdc_first_leading_one is incredibly important, if only for the fact that it is responsible for significant speedups in algorithms that scan over bits to find certain behaviors. The others can be built out of different the other existing intrinsics or with specially-crafted code, but not taxing the compiler’s optimize and simply providing the operations directly may be of great benefit.

 It is of note that users can implement the find_first_set functionality by using the stdc_(trailing/leading)_zeros functions.

#include <stdbit.h>

int stdc_first_leading_zerouc(unsigned char value);
int stdc_first_leading_zerous(unsigned short value);
int stdc_first_leading_zeroui(unsigned int value);
int stdc_first_leading_zeroul(unsigned long value);
int stdc_first_leading_zeroull(unsigned long long value);

int stdc_first_leading_oneuc(unsigned char value);
int stdc_first_leading_oneus(unsigned short value);
int stdc_first_leading_oneui(unsigned int value);
int stdc_first_leading_oneul(unsigned long value);
int stdc_first_leading_oneull(unsigned long long value);

int stdc_first_trailing_zerouc(unsigned char value);
int stdc_first_trailing_zerous(unsigned short value);
int stdc_first_trailing_zeroui(unsigned int value);
int stdc_first_trailing_zeroul(unsigned long value);
int stdc_first_trailing_zeroull(unsigned long long value);

int stdc_first_trailing_oneuc(unsigned char value);
int stdc_first_trailing_oneus(unsigned short value);
int stdc_first_trailing_oneui(unsigned int value);
int stdc_first_trailing_oneul(unsigned long value);
int stdc_first_trailing_oneull(unsigned long long value);

// type-generic macros
generic_return_type stdc_first_leading_zero(
	generic_value_type value);
generic_return_type stdc_first_leading_one(
	generic_value_type value);
generic_return_type stdc_first_trailing_zero(
	generic_value_type value);
generic_return_type stdc_first_trailing_one(
	generic_value_type value);

 4.7.9. stdc_has_single_bit

 This is a function that determines if an unsigned integer is a power of 2. It can be written either using a normal expression such as value != 0 && ((value & (value - 1)) == 0), or by using stdc_count_ones(value) == 1. Checking that something is a power of 2 (or that it has a single bit set) is an operation used for checking if something can be turned into a mask value efficiently (useful in specific kinds of containers which specific bit limits like hash tables) and many other applications. This one does not map directly to a hardware instruction.

#include <stdbit.h>

bool stdc_has_single_bituc(unsigned char value);
bool stdc_has_single_bitus(unsigned short value);
bool stdc_has_single_bitui(unsigned int value);
bool stdc_has_single_bitul(unsigned long value);
bool stdc_has_single_bitull(unsigned long long value);

// type-generic macro
bool stdc_has_single_bit(generic_value_type value);

 4.7.10. stdc_bit_width/stdc_bit_ceil/stdc_bit_floor

 These set of functions provide a way to determine the number of bits it takes to represent a given value (bit_width), the next largest power of 2 from the value (bit_ceil), the previous largest power of 2 from the value (bit_floor), and the number of bits required to store the given value. All of these operations are extremely useful, especially in the context of GPUs. bit_width can be used to drastically simplify the implementation of both bit_ceil and bit_floor.

 bit_width can be calculated with VALUE_WIDTH - stdc_leading_zeros(value), where VALUE_WIDTH is one of the <limits.h> macros for the given unsigned integer type. bit_ceil's computation is subtle and involves a bit of preparation to avoid problems with integer promotions and bit shifts in specific cases (typically unsigned char, char, and unsigned short on most implementations). This aids in making the case for a would make for a good candidate for standardization (since it can be hard to get right). One can detect integer promotion by checking if +x and x yield the same type. If not, then an integer promotion happens, and the implementation needs to account for that. See the appendix for an implementation. stdc_bit_floor is simpler, and is comprised of a simple computation of x == 0 ? 0 : (1 << (stdc_bit_width(x) - 1)) (with appropriately typed / casted constants so the right type is returned without promotions or casts).

 The declarations look as follows:

#include <stdbit.h>

unsigned char stdc_bit_flooruc(unsigned char value);
unsigned short stdc_bit_floorus(unsigned short value);
unsigned int stdc_bit_floorui(unsigned int value);
unsigned long stdc_bit_floorul(unsigned long value);
unsigned long long stdc_bit_floorull(unsigned long long value);

unsigned char stdc_bit_ceiluc(unsigned char value);
unsigned short stdc_bit_ceilus(unsigned short value);
unsigned int stdc_bit_ceilui(unsigned int value);
unsigned long stdc_bit_ceilul(unsigned long value);
unsigned long long stdc_bit_ceilull(unsigned long long value);

int stdc_bit_widthuc(unsigned char value);
int stdc_bit_widthus(unsigned short value);
int stdc_bit_widthui(unsigned int value);
int stdc_bit_widthul(unsigned long value);
int stdc_bit_widthull(unsigned long long value);

// type-generic macro
generic_return_type stdc_bit_floor(generic_value_type value);
generic_return_type stdc_bit_ceil(generic_value_type value);
generic_return_type stdc_bit_width(generic_value_type value);

 Notably, stdc_bit_width requires that the number is big enough to fit the representation. For the generic functions, we need to provide the built-in versions. Conceivably, it might be beneficial to synchronize these return types and just return int. But, in the case of something like an implementation for _BitInt(N), N can be so catastrophically enormous that we could not count it in a (presumably 16 or 32-bit) int or unsigned int type. C++ always returns the type T that was put in, but following a WG21 Library Working Group (LWG #3656) Issue accepted for C++23, the return type is being changed. However, in anticipation of a potentially enormous N in _BitWidth(N) — and not wanting to return an e.g. 4 GB _BitInt to represent a _BitWidth that has an N of 4 billion — we allow the return type for the generic functions to be a "suitably large (unsigned/signed) integer type".

 5. Wording

 The following wording is relative to N2912. For the rotate functions, wording is attached for all permutations of the polls taken, which are listed just below.

 5.1. Decisions for the C Standards Committee

 These are decisions the Committee might want to make to alter the wording below. Alternative wording is provided to guide the discussion and to make voting with the actual alternative specification in front of people’s eyes easier.

 5.1.1. Question 0

 — Given the new information present in the paper, do we want a single UnsignedType stdc_rotate(UnsignedType value, int count); function or two different stdc_rotate_left(UnsignedType value, int count); and stdc_rotate_right(UnsignedType value, int count); functions?

 NOTE: #3 from § 5.1.2 Question 1 does not apply if this question is accepted, because then the rotate must have a sign to communicate left/right.

 If the answer to this question is "Yes", then the below sections on "§7.✨.15 Rotate Left" and "§7.✨.16 Rotate Right" will be swapped out for the following wording:

 7.✨.15 Rotate

 Synopsis

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate functions perform a bitwise rotate left or right. This operation is typically known as a left or right circular shift.

 Returns

 Let N be the width corresponding to the type of the input value. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value <​< r) | (value >> (N - r));

		
 — otherwise, if r is negative, returns (value >> -r) | (value << (N - -r)).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 5.1.2. Question 1

 — Do we want unsigned (unsigned int, and similar) rotate counts + return values? (Both the function parameters for counts and the count-like return value types will be changed to be consistent with this decision).

 If the answer to this question is "Yes", then the following mechanical changes are made to the wording:

 		
 The return types for the following functions is changed:

 		

 stdc_count_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_count_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_leading_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_leading_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_trailing_ones (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_trailing_zeros (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_leading_one (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_leading_zero (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_trailing_one (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_first_trailing_zero (and all derivatives) from
 int
 to
 unsigned int

		

 stdc_bit_width (and all derivatives) from
 int
 to
 unsigned int

		
 Replace all instances of the following text:

 		

 —
 "The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be a suitably large signed integer type capable of representing the computed result."

		
 … with …

		

 —
 "The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be a suitably large unsigned integer type capable of representing the computed result."

		
 Make the following modifications to the stdc_rotate_left and stdc_rotate_right functions:

 		

 Replace the parameter type for all the rotate functions from
 int count
 to
 unsigned int count
 for the second parameter.

		

 Remove the bullet point for when a negative count/"r" is encountered:
 — otherwise, if r is negative, returns …
 .

		
 Change the last sentence for both functions concerning the types of the generic count and returns from:

 		
 The generic_return_type type shall be a suitably large signed integer type capable of representing the width of the computed. The generic_count_type type shall be a signed integer type.

		
 … to …

		
 The generic_return_type type shall be a suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type type shall be an unsigned integer type.

 NOTE: #3 does not apply if § 5.1.1 Question 0 is accepted, because then the rotate must have a sign. This is captured in the wording shown above.

 5.1.3. Question 2

 There is also 1 more question that has been consistently asked of me as I’ve moved this proposal forward: changing how the suffixes for the types is done. Rather than doing uc, us, ui, ul, and ull, users have asked for _uc, _us, _ui, _ul, and _ull. This question is strictly for renaming the suffixes to have that additional underscore, for example going from stdc_leading_zerosull to stdc_leading_zeros_ull.

 — Do we want to change the suffixes of all of the type-specific functions to use an underscore before the suffix?

 5.2. Add <stdbit.h> to freestanding headers in §4, paragraph 6

 A conforming freestanding implementation shall accept any strictly conforming program in which the use of the features specified in the library clause (Clause 7) is confined to the contents of the standard headers <float.h>, <iso646.h>, <limits.h>, <stdalign.h>, <stdarg.h>,
 <stdbit.h>,
 <stdbool.h>, <stddef.h>, <stdint.h>, and <stdnoreturn.h>

 5.3. Add a new §7.✨ sub-clause for "Bit and Byte Utilities" in §7

 7.✨ Bit and Byte Utilities <stdbit.h>

 7.✨.1 General <stdbit.h>

 The header <stdbit.h> defines the following macros, types, and functions, to work with the byte and bit representation of many types, typically integer types. This header makes available the size_t type name (7.19) and any uintN_t,intN_t, uint_leastN_t, or int_leastN_t type names defined by the implementation (7.20).

 For declarations and definitions in 7.✨, an identifier with a suffix containing le typically represents little-endian. An identifier with a suffix containing be typically represents big-endian. This clause describes the endianness of the execution environment with respect to bit-precise integer types, standard integer types, and extended integer types which do not have padding bits.

 The most significant index is the 0-based index counting from the most significant bit, 0, to the least significant bit, w−1, where w is the width of the type that is having its most significant index computed.

 The least significant index is the 0-based index counting from the least significant bit, 0, to the most significant bit, w−1, where w is the width of the type that is having its least significant index computed.

 It is unspecified whether any generic function declared in <stdbit.h> is a macro or an identifier declared with external linkage. If a macro definition is suppressed in order to access an actual function, or a program defines an external identifier with the name of a generic function, the behavior is unspecified.

 5.3.1. Add a new §7.✨.1 sub-sub-clause for "Endian" in §7.✨

 7.✨.2 Endian

 Two common methods of byte ordering in multi-byte scalar types are little-endian and big-endian. Little-endian is a format for storage of binary data in which the least significant byte is placed first, with the rest in ascending order. Or, that the least significant byte is stored at the smallest memory address. Big-endian is a format for storage or transmission of binary data in which the most significant byte is placed first, with the rest in descending order. Or, that the most significant byte is stored at the smallest memory address. Other byte orderings are also possible.

 The macros are:

__STDC_ENDIAN_LITTLE__

 which represents a method of byte order storage least significant byte is placed first and the rest are in ascending order, and is an integer constant expression;

__STDC_ENDIAN_BIG__

 which represents a method of byte order storage most significant byte is placed first and the rest are in descending order, and is an integer constant expression;

__STDC_ENDIAN_NATIVE__ /* see below */

 which represents the method of byte order storage for the execution environment and is an integer constant expression.

 __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression whose value is equivalent to the value of __STDC_ENDIAN_LITTLE__ if the execution environment is little-endian. Otherwise, __STDC_ENDIAN_NATIVE__ shall expand to an integer constant expression whose value is equivalent to the value of __STDC_ENDIAN_BIG__ if the execution environment is big-endian. If __STDC_ENDIAN_NATIVE__ is not equivalent to either, then the byte order for the execution environment is implementation-defined.

 5.3.2. Add a new §7.✨.3 sub-sub-clause for "8-bit Memory Reversal" in §7.✨

 7.✨.3 8-bit Memory Reversal

 Synopsis

#include <stdbit.h>
#include <limit.h>

#if (CHAR_BIT % 8) == 0
void stdc_memreverse8(size_t n, unsigned char ptr[static n]);
#endif

 Description

 The stdc_memreverse8 function provides an interface to reverse the order of a given sequence of bytes by treating them as sequences of 8 bits at a time. The function is only present if CHAR_BIT is a multiple of 8. It is equivalent to the following algorithm:

for (size_t index = 0, limit = ((n * CHAR_BIT) / 2); index < limit;) {
	const size_t ptr_index = index / CHAR_BIT;
	const size_t rev_ptr_index = n - 1 - ptr_index;
	unsigned char* p = ptr + ptr_index;
	unsigned char* rev_p = ptr + rev_ptr_index;
	const unsigned char b_temp = *p;
	const unsigned char rev_b_temp = *rev_p;
	*p = 0;
	*rev_p = 0;
	const size_t bit_limit = CHAR_BIT;
	for (size_t bit_index = 0; bit_index < bit_limit; bit_index += 8) {
		const size_t rev_bit_index = CHAR_BIT - 8 - bit_index;
		const unsigned char bit_mask = ((unsigned char)0xFF) << bit_index;
		const unsigned char rev_bit_mask = ((unsigned char)0xFF) << rev_bit_index;
		*p |= (((rev_b_temp & rev_bit_mask) >> rev_bit_index) << bit_index);
		*rev_p |= (((b_temp & bit_mask) >> bit_index) << rev_bit_index);
		index += 8;
	}
}

 7.✨.4 Exact-width 8-bit Memory Reversal

 Synopsis

#include <stdbit.h>
#include <limits.h>
#include <stdint.h>

#if ((N % 8) == 0) && ((CHAR_BIT % 8) == 0)
uintN_t stdc_memreverse8uN(uintN_t value);
#endif

 Description

 The stdc_memreverse8uN functions provide an interface to swap the bytes of a corresponding uintN_t object, where N matches one of the exact-width integer types (7.20.1.1). If an implementation provides the corresponding uintN_t typedef, it shall define the corresponding exact-width memory reversal function for that value of N.

 Returns

 The stdc_memreverse8uN functions returns the 8-bit memory reversed uintN_t value, as if by invoking stdc_memreverse8(sizeof(value), (unsigned char*)&value).

 5.3.3. Add a new §7.✨.5 sub-sub-clause for "Endian-Aware" functions in §7.✨

 7.✨.5 Endian-Aware 8-bit Load

 Synopsis

#include <stdbit.h>

#if ((N % 8) == 0) && ((CHAR_BIT % 8) == 0)
uint_leastN_t stdc_load8_leuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_beuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_leuN(const unsigned char ptr[static (N / CHAR_BIT)]);
uint_leastN_t stdc_load8_aligned_beuN(const unsigned char ptr[static (N / CHAR_BIT)]);

int_leastN_t stdc_load8_lesN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_besN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_lesN(const unsigned char ptr[static (N / CHAR_BIT)]);
int_leastN_t stdc_load8_aligned_besN(const unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Description

 The 8-bit load family of functions functions read an int_leastN_t or uint_leastN_t object from the provided ptr in an endian-aware (7.✨.2) manner, where N matches an existing minimum-width integer type (7.20.1.2). If this function is present, N shall be a multiple of 8 and CHAR_BIT shall be a multiple of 8. The functions containing _aligned in the name shall assume that ptr is suitably aligned to access a signed or unsigned integer of width N for a signed or unsigned variant of the function, respectively. If the function name contains the sN suffix in the name, it is a signed variant. Otherwise, the function is an unsigned variant. If the function name contains the lesN or leuN suffix, it is a little-endian variant. Otherwise, if the function name contains the besN or beuN suffix, it is a big-endian variant.

 Returns

 Let the computed value result be:

 ∑index=0(N÷CHAR_BIT)−1bindex×28×index

 where bindex is:

 		
 — (ptr[index / (CHAR_BIT / 8)] >> ((index % (CHAR_BIT / 8)) * 8)) & 0xFF, if the function is the little-endian variant;

		
 — otherwise, (ptr[(((N / CHAR_BIT) - 1) - index) / (CHAR_BIT / 8)] >> (((((N / CHAR_BIT) - 1) - index) % (CHAR_BIT / 8)) * 8))) & 0xFF, if the function is the the big-endian variant.

 If the function is an unsigned variant, return result. Otherwise, if the function is a signed variant, return:

 		

 		
 result, if result is less than 2N−1;

		

 		
 otherwise, result−2N.

 7.✨.6 Endian-Aware 8-bit Store

 Synopsis

#include <stdbit.h>

#if ((N % CHAR_BIT) == 0) && ((CHAR_BIT % 8 == 0)
void stdc_store8_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_leuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_beuN(uint_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);

void stdc_store8_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_lesN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
void stdc_store8_aligned_besN(int_leastN_t value,
	unsigned char ptr[static (N / CHAR_BIT)]);
#endif

 Description

 The 8-bit store family of functions functions write a int_leastN_t or uint_leastN_t object into the provided ptr in an endian-aware (7.✨.2) manner, where N matches an existing minimum-width integer type (7.20.1.2). If this function is present, N shall be a multiple of 8 and CHAR_BIT shall be a multiple of 8. The functions containing _aligned in the name shall assume that ptr is suitably aligned to access a signed or unsigned integer of width N. If the function name contains the sN suffix in the name, it is a signed variant. Otherwise, the function is an unsigned variant. If the function name contains the lesN or leuN suffix, it is a little-endian variant. Otherwise, if the function name contains the besN or beuN suffix, it is a big-endian variant.

 Let value_unsigned be value if the function is a unsigned variant. Otherwise, let value_unsigned be the conversion of value to its corresponding unsigned type, if the function is a signed variant.

 Let index be an integer in a sequence that

 		
 — starts from 0 and increments by 8 in the range of [0, N), if the function is a little-endian variant;

		
 — starts from N - 8 and decrements by 8 in the range of [0, N), if the function is a big-endian variant.

 Let ptr_bit_index be an integer that starts from 0. Let byte_index8 be index % CHAR_BIT. For each index in the order of the above-specified sequence:

 		

 		
 Let byte_mask8 be an object of value (0xFF << byte_index8) of a suitably large unsigned type.

		

 		
 Sets the 8 bits in ptr[ptr_bit_index / CHAR_BIT] at offset byte_index8 to (value_unsigned >> index) & byte_mask8.

		

 		
 Increments ptr_bit_index by 8.

 5.3.4. Add a new §7.✨.7 sub-sub-clause for Low-Level Bit Utilities in §7.✨

 7.✨.7 Count Leading Zeros

 Synopsis

int stdc_leading_zerosuc(unsigned char value);
int stdc_leading_zerosus(unsigned short value);
int stdc_leading_zerosui(unsigned int value);
int stdc_leading_zerosul(unsigned long value);
int stdc_leading_zerosull(unsigned long long value);

generic_return_type stdc_leading_zeros(generic_value_type value);

 Returns

 Returns the number of consecutive 0 bits in value, starting from the most significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.8 Count Leading Ones

 Synopsis

int stdc_leading_onesuc(unsigned char value);
int stdc_leading_onesus(unsigned short value);
int stdc_leading_onesui(unsigned int value);
int stdc_leading_onesul(unsigned long value);
int stdc_leading_onesull(unsigned long long value);

generic_return_type stdc_leading_ones(generic_value_type value);

 Returns

 Returns the number of consecutive 1 bits in value, starting from the most significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.9 Count Trailing Zeros

 Synopsis

int stdc_trailing_zerosuc(unsigned char value);
int stdc_trailing_zerosus(unsigned short value);
int stdc_trailing_zerosui(unsigned int value);
int stdc_trailing_zerosul(unsigned long value);
int stdc_trailing_zerosull(unsigned long long value);

generic_return_type stdc_trailing_zeros(generic_value_type value);

 Returns

 Returns the number of consecutive 0 bits in value, starting from the least significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.10 Count Trailing Ones

 Synopsis

int stdc_trailing_onesuc(unsigned char value);
int stdc_trailing_onesus(unsigned short value);
int stdc_trailing_onesui(unsigned int value);
int stdc_trailing_onesul(unsigned long value);
int stdc_trailing_onesull(unsigned long long value);

generic_return_type stdc_trailing_ones(generic_value_type value);

 Returns

 Returns the number of consecutive 1 bits in value, starting from the least significant bit.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.11 First Leading Zero

 Synopsis

int stdc_first_leading_zerouc(unsigned char value);
int stdc_first_leading_zerous(unsigned short value);
int stdc_first_leading_zeroui(unsigned int value);
int stdc_first_leading_zeroul(unsigned long value);
int stdc_first_leading_zeroull(unsigned long long value);

generic_return_type
 stdc_first_leading_zero(generic_value_type value);

 Returns

 Returns the most significant index of the first 0 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.12 First Leading One

 Synopsis

int stdc_first_leading_oneuc(unsigned char value);
int stdc_first_leading_oneus(unsigned short value);
int stdc_first_leading_oneui(unsigned int value);
int stdc_first_leading_oneul(unsigned long value);
int stdc_first_leading_oneull(unsigned long long value);

generic_return_type
	stdc_first_leading_one(generic_value_type value);

 Returns

 Returns the most significant index of the first 1 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an:

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.13 First Trailing Zero

 Synopsis

int stdc_first_trailing_zerouc(unsigned char value);
int stdc_first_trailing_zerous(unsigned short value);
int stdc_first_trailing_zeroui(unsigned int value);
int stdc_first_trailing_zeroul(unsigned long value);
int stdc_first_trailing_zeroull(unsigned long long value);

generic_return_type
	stdc_first_trailing_zero(generic_value_type value);

 Returns

 Returns the least significant index of the first 0 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.14 First Trailing One

 Synopsis

int stdc_first_trailing_oneuc(unsigned char value);
int stdc_first_trailing_oneus(unsigned short value);
int stdc_first_trailing_oneui(unsigned int value);
int stdc_first_trailing_oneul(unsigned long value);
int stdc_first_trailing_oneull(unsigned long long value);

generic_return_type
	stdc_first_trailing_one(generic_value_type value);

 Returns

 Returns the least significant index of the first 1 bit in value, plus 1. If it is not found, this function returns 0.

 The type-generic function (marked by its generic_value_type argument) returns the appropriate value based on the type of the input value, so long as it is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.15 Rotate Left

 Synopsis

unsigned char stdc_rotate_leftuc(unsigned char value, int count);
unsigned short stdc_rotate_leftus(unsigned short value, int count);
unsigned int stdc_rotate_leftui(unsigned int value, int count);
unsigned long stdc_rotate_leftul(unsigned long value, int count);
unsigned long long stdc_rotate_leftull(unsigned long long value, int count);

generic_value_type stdc_rotate_left(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate_left functions perform a bitwise rotate left. This operation is typically known as a left circular shift.

 Returns

 Let N be the width corresponding to the type of the input value. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value <​< r) | (value >> (N - r));

		
 — otherwise, if r is negative, returns stdc_rotate_right(value, -r).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 7.✨.16 Rotate Right

 Synopsis

unsigned char stdc_rotate_rightuc(unsigned char value, int count);
unsigned short stdc_rotate_rightus(unsigned short value, int count);
unsigned int stdc_rotate_rightui(unsigned int value, int count);
unsigned long stdc_rotate_rightul(unsigned long value, int count);
unsigned long long stdc_rotate_rightull(unsigned long long value, int count);

generic_value_type stdc_rotate_right(
	generic_value_type value, generic_count_type count);

 Description

 The stdc_rotate_right functions perform a bitwise rotate right. This operation is typically known as a right circular shift.

 Returns

 Let N be the width corresponding to the type of the input value.. Let r be count % N.

 		
 — If r is 0, returns value;

		
 — otherwise, if r is positive, returns (value >> r) | (value << (N - r));

		
 — otherwise, if r is negative, returns stdc_rotate_left(value, -r).

 The type-generic function (marked by its generic_value_type argument) returns the above described result for a given input value so long as the generic_value_type is

 		
 — a standard unsigned integer type, excluding bool;

		
 — an extended unsigned integer type;

		
 — or, a bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be suitably large unsigned integer type capable of representing the width of the computed result. The generic_count_type shall be a signed integer type.

 7.✨.17 Count Ones

 Synopsis

int stdc_count_onesuc(unsigned char value);
int stdc_count_onesus(unsigned short value);
int stdc_count_onesui(unsigned int value);
int stdc_count_onesul(unsigned long value);
int stdc_count_onesull(unsigned long long value);

generic_return_type stdc_count_ones(generic_value_type value);

 Returns

 The stdc_count_ones functions returns the total number of 1 bits within the given value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type shall be a suitably large signed integer type capable of representing the computed result.

 7.✨.18 Count Zeros

 Synopsis

int stdc_count_zerosuc(unsigned char value);
int stdc_count_zerosus(unsigned short value);
int stdc_count_zerosui(unsigned int value);
int stdc_count_zerosul(unsigned long value);
int stdc_count_zerosull(unsigned long long value);

generic_return_type stdc_count_zeros(generic_value_type value);

 Returns

 The stdc_count_zeros functions returns the total number of 0 bits within the given value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be suitably large unsigned integer type capable of representing the computed result.

 5.3.5. Add a new §7.✨.19 sub-sub-clause for Fundamental Bit Utilities in §7.✨

 7.✨.19 Single-bit Check

 Synopsis

bool stdc_has_single_bituc(unsigned char value);
bool stdc_has_single_bitus(unsigned short value);
bool stdc_has_single_bitui(unsigned int value);
bool stdc_has_single_bitul(unsigned long value);
bool stdc_has_single_bitull(unsigned long long value);

bool stdc_has_single_bit(generic_value_type value);

 Returns

 The stdc_has_single_bit functions returns true if and only if there is a single 1 bit in value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 7.✨.20 Bit Width

 Synopsis

int stdc_bit_widthuc(unsigned char value);
int stdc_bit_widthus(unsigned short value);
int stdc_bit_widthui(unsigned int value);
int stdc_bit_widthul(unsigned long value);
int stdc_bit_widthull(unsigned long long value);

generic_return_type stdc_bit_width(generic_value_type value);

 Description

 The stdc_bit_width functions compute the smallest number of bits needed to store value.

 Returns

 The stdc_bit_width functions return 0 if value is 0. Otherwise, they return 1 + ⌊log2(value)⌋.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 The generic_return_type type for the type-generic function need not be the same as the type of value. It shall be suitably large signed integer type capable of representing the computed result.

 7.✨.21 Bit Floor

 Synopsis

unsigned char stdc_bit_flooruc(unsigned char value);
unsigned short stdc_bit_floorus(unsigned short value);
unsigned int stdc_bit_floorui(unsigned int value);
unsigned long stdc_bit_floorul(unsigned long value);
unsigned long long stdc_bit_floorull(unsigned long long value);

generic_value_type stdc_bit_floor(generic_value_type value);

 Description

 The stdc_bit_floor functions compute the largest integral power of 2 that is not greater than value.

 Returns

 The stdc_bit_floor functions return 0 if value is 0. Otherwise, they return the largest integral power of 2 that is not greater than value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 7.✨.22 Bit Ceiling

 Synopsis

unsigned char stdc_bit_ceiluc(unsigned char value);
unsigned short stdc_bit_ceilus(unsigned short value);
unsigned int stdc_bit_ceilui(unsigned int value);
unsigned long stdc_bit_ceilul(unsigned long value);
unsigned long long stdc_bit_ceilull(unsigned long long value);

generic_value_type stdc_bit_ceil(generic_value_type value);

 Description

 The stdc_bit_ceil functions compute the smallest integral power of 2 that is not less than value. If the computation does not fit in the given return type, the behavior is undefined.

 Returns

 The stdc_bit_ceil functions return the smallest integral power of 2 that is not less than value.

 The type-generic function (marked by its generic_value_type argument) returns the previously described result for a given input value so long as the generic_value_type is an

 		
 — standard unsigned integer type, excluding bool;

		
 — extended unsigned integer type;

		
 — or, bit-precise unsigned integer type whose width matches a standard or extended integer type, excluding bool.

 5.4. Add one new entry for Implementation-Defined Behavior in Annex J.3

 — The value of __STDC_ENDIAN_NATIVE__ if the execution environment is not big-endian or little-endian (7.✨.2).

 — The value of __STDC_ENDIAN_BIG__, and __STDC_ENDIAN_LITTLE__ if the execution environment is not big-endian or little-endian (7.✨.2).

 5.5. Modify an existing entry for Unspecified behavior in Annex J.1

 — The macro definition of a generic function is suppressed in order to access an actual function
(7.17.1)
 , (7.✨).

 6. Appendix

 A collection of miscellaneous and helpful bits of information and implementation.

 6.1. Decisions to Committee Questions

 Originally titled "Committee Polls / Questions", this section listed all of the different pieces of functionality the Committee wanted. Each of the 5 below questions sets of functionality was asked of WG14: nobody raised objections to even want to see a poll on it. This is interpreted as there was unanimous consent amongst participants to include all of this functionality in the paper, even if no formal poll was done for each of the 5 questions. If this changes, it is imperative to let the paper author know.

 For the Committee, this proposal is, effectively, five parts:

 		
 the endianness definitions;

		
 the stdc_memreverse8 functions (generic and width-specific);

		
 the stdc_load8_*/stdc_store8_* endianness functions;

		
 the suite of low-level bit functions:

 		
 stdc_count_(leading/trailing)_(ones/zeros),

		
 stdc_count_(ones/zeros),

		
 stdc_rotate_(left/right), and,

		
 stdc_first_(leading/trailing)_(zero/one),

 which map directly to instructions and/or intrinsics; and,

		
 the suite of useful bit functions:

 		
 stdc_bit_ceil,

		
 stdc_bit_floor,

		
 stdc_bit_width, and,

		
 stdc_has_single_bit,

 which may not map directly to instructions but are useful nonetheless in a wide variety of contexts

 These can be polled together or separately, depending on what the Committee desires.

 6.2. Example Implementations in Publicly-Available Libraries

 Optimized routines following the naming conventions present in this paper can be found in the Shepherd’s Oasis Industrial Development Kit (IDK) library, compilable with a conforming C11 compiler and tested on MSVC, GCC, and Clang on Windows, Mac, and Linux:

 		
 Bit Intrinsics (Declarations) (Source)

		
 Memory Reverse (Declarations) (Source)

		
 Endian Load/Store (Declarations) (Sources)

 Optimized routines following the basic principles present in this paper and used as motivation to improve several C++ Standard Libraries can be found in the Itsy Bitsy Bit Libraries, compilable with a conforming C++17 compiler and tested on MSVC, GCC, and Clang on Windows, Mac, and Linux:

 		
 Bit Intrinsics (Declarations) (Sources)

 Endianness routines and original motivation that spawned this proposal came from David Seifert’s Portable Endianness library and its deep dive into compiler optimizations and efficient code generation when alignment came into play:

 		
 Endian Load/Store (Declarations) (Sources)

 6.3. Implementation of Generic stdc_count_ones

 Sample implementation on Godbolt (clang/gcc specific builtins):

#define stdc_count_ones(...) \
	_Generic((__VA_ARGS__), \
		char: __builtin_popcount, \
		unsigned char: __builtin_popcount, \
		unsigned short: __builtin_popcount, \
		unsigned int: __builtin_popcount, \
		unsigned long: __builtin_popcountl, \
		unsigned long long: __builtin_popcountll \
)(__VA_ARGS__)

int main () {
	return stdc_count_ones((unsigned char)'0') + stdc_count_ones(13ull);
}

 6.4. Implementation of Generic stdc_bit_ceil

 Sample implementation on Godbolt (clang/gcc specific builtins):

#include <limits.h>

#define stdc_leading_zeros(...) \
	(_Generic((__VA_ARGS__), \
		char: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(char)) * CHAR_BIT), \
		unsigned char: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(unsigned char)) * CHAR_BIT), \
		unsigned short: __builtin_clz((__VA_ARGS__)) - ((sizeof(unsigned) - sizeof(unsigned short)) * CHAR_BIT), \
		unsigned int: __builtin_clz((__VA_ARGS__)), \
		unsigned long: __builtin_clzl((__VA_ARGS__)), \
		unsigned long long: __builtin_clzll((__VA_ARGS__)) \
))

#define stdc_bit_width(...) \
	_Generic((__VA_ARGS__), \
		char: (CHAR_BIT - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned char: (UCHAR_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned short: (USHRT_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned int: (UINT_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned long: (ULONG_WIDTH - stdc_leading_zeros((__VA_ARGS__))), \
		unsigned long long: (ULLONG_WIDTH - stdc_leading_zeros((__VA_ARGS__))) \
)

// integer promotion rules means we need to
// precisely calculate the value here
#define __stdc_bit_ceil_promotion_protection(_Type, _Value) \
	_Generic((_Value), \
		char: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - UCHAR_WIDTH)), \
		unsigned char: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - UCHAR_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - UCHAR_WIDTH)), \
		unsigned short: (_Value <= (_Type)1) ? (_Type)0 : (_Type)(1u <fake-production-placeholder class=production bs-autolink-syntax='<< (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - USHRT_WIDTH)) >>' data-opaque> (stdc_bit_width((_Type)(_Value - 1)) + (UINT_WIDTH - USHRT_WIDTH)) </fake-production-placeholder> (UINT_WIDTH - USHRT_WIDTH)), \
		default: (_Type)0 \
)

#define stdc_bit_ceil(...) \
	_Generic((__VA_ARGS__), \
		char: __stdc_bit_ceil_promotion_protection(unsigned char, (__VA_ARGS__)), \
		unsigned char: __stdc_bit_ceil_promotion_protection(unsigned char, (__VA_ARGS__)), \
		unsigned short: __stdc_bit_ceil_promotion_protection(unsigned short, (__VA_ARGS__)), \
		unsigned int: (unsigned int)(1u << stdc_bit_width((unsigned int)((__VA_ARGS__) - 1))), \
		unsigned long: (unsigned long)(1ul << stdc_bit_width((unsigned long)((__VA_ARGS__) - 1))), \
		unsigned long long: (unsigned long long)(1ull << stdc_bit_width((unsigned long long)((__VA_ARGS__) - 1))) \
)

int main () {
	int x = stdc_bit_ceil((unsigned char)'\x13');
	int y = stdc_bit_ceil(33u);
	return x + y;
}

 6.5. Endian Enumeration

 The endian enumeration was struck from this paper. It had very marginal benefit and was mostly redundant for Standard C code, since the macros would suffice well enough. Nevertheless, the old rationale is presented below.

 6.5.1. Rationale

 A stdc_endian enumeration could have some benefits, and mirrors the same enumerations come from the (accepted) C++20 paper and idioms found in [p0463], which also went into a <bit> header. Similar ideas are also present in libraries such as [libcork-byte-order], which are hybrid C and C++ libraries that give definitions similar to the ones here. Compilers also define macros such as __BYTE_ORDER__ (Clang/GCC family), or are well-defined to be a certain endianness (Windows is always little-endian).

 The other portion of this is that providing an enumeration helps users pass this information along to functions. Users defining functions that take an endianness, without the enumeration, would define it as so:

void my_conversion_unsafe(int endian, size_t data_size,
	unsigned char data[static data_size]);

 The name may specify that it is for an endian, but the range of values is not really known without looking at the documentation. It is also impossible for the compiler to diagnose problematic uses: calling my_conversion(4595944, 4, ptr); is legal, and compilers will not diagnose such a call as wrong. Now, consider the same with the enumeration:

void my_conversion_safe(stdc_endian endian, size_t data_size,
	unsigned char data[static data_size]);

 This function call can get diagnosed in (some) implementations:

#include <stddef.h>

typedef enum stdc_endian {
	stdc_endian_little = __ORDER_LITTLE_ENDIAN__,
	stdc_endian_big = __ORDER_BIG_ENDIAN__,
	stdc_endian_native = __BYTE_ORDER__,
} stdc_endian;

void my_conversion_unsafe(int endian, size_t n, unsigned char ptr[static n]) {}
void my_conversion_safe(stdc_endian endian, size_t n, unsigned char ptr[static n]) {}

int main () {
	unsigned char arr[4];
	my_conversion_unsafe(48558395, sizeof(arr), arr);
	my_conversion_safe(48558395, sizeof(arr), arr);
	// ^
	// <source>:15:24: error: integer constant not in range
	// of enumerated type 'stdc_endian' (aka 'enum stdc_endian') [-Werror,-Wassign-enum]
	my_conversion_unsafe((stdc_endian)48558395, sizeof(arr), arr);
	my_conversion_safe((stdc_endian)48558395, sizeof(arr), arr);
	return 0;
}

 (Many current implementations do not diagnose it in the current landscape because such implicit conversions are, unfortunately, incredibly common, sometimes for good reason.)

 7. Acknowledgements

 Many thanks to David Seifert, Aaron Bachmann, Jens Gustedt, Tony Finch, Erin AO Shepherd, and many others who helped fight to get the semantics and wording into the right form, providing motivation, giving example code, pointing out existing libraries, and helping to justify this proposal.

 References

 Informative References

 		[ANDERSON-BIT-HACKS]

		Sean Eron Anderson. Bit Twiddling Hacks. May 5th, 2005. URL: https://graphics.stanford.edu/~seander/bithacks.html

		[ARM-SETEND]

		armKEIL. SETEND instruction: ARM and Thumb instructions. December 31st, 2019. URL: https://www.keil.com/support/man/docs/armasm/armasm_dom1361289895072.htm

		[CLANG-BUILTINS]

		LLVM Foundation; Clang Contributors. Clang Language Extensions: Clang Documentation. September 1st, 2021. URL: https://clang.llvm.org/docs/LanguageExtensions.html#intrinsics-support-within-constant-expressions

		[ENDIAN-FALLACY]

		Rob Pike. The Byte Order Fallacy. April 3rd, 2012. URL: https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html

		[GCC-BUILTINS]

		GCC Contributors. Other Built-in Functions Provided by GCC. September 1st, 2021. URL: https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

		[LIBCORK-BYTE-ORDER]

		Douglas Creager. libcork: Byte order. November 22nd, 2017. URL: https://libcork.io/0.15.0/byte-order.html

		[LINUX-ENDIAN]

		Linux; BSD. endian(3). September 1st, 2021. URL: https://linux.die.net/man/3/endian

		[MSVC-BUILTINS]

		Microsoft. _byteswap_uint64, _byteswap_ulong, _byteswap_ushort. November 4th, 2016. URL: https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort?view=msvc-160

		[N2912]

		ISO/IEC JTC1 SC22 WG14 - Programming Languages, C; JeanHeyd Meneide; Freek Wiedijk. N2912: ISO/IEC 9899:202x - Programming Languages, C. June 8th, 2022. URL: https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2912.pdf

		[NTOHL]

		Linux. ntohl(3). September 30th, 2021. URL: https://linux.die.net/man/3/ntohl

		[P0463]

		Howard E. Hinnant. endian. Just endian.. July 13th, 2017. URL: https://wg21.link/p0463

		[P0553]

		Jens Maurer. Bit operations. March 1st, 2019. URL: https://wg21.link/p0553

		[PORTABLE-ENDIANNESS]

		David Seifert. portable-endianness. May 16th, 2021. URL: https://github.com/SoapGentoo/portable-endianness

		[RUST-COUNT_ONES]

		Rust Standard Library Collaborators. u32 methods: count_ones. November 10th, 2021. URL: https://doc.rust-lang.org/std/primitive.u32.html#method.count_ones

		[SDCC]

		Dr. Philipp K. Krause. SDCC Manual §8.1.9 - Bit Rotations. September 25th, 2021. URL: http://sdcc.sourceforge.net/doc/sdccman.pdf

		[TI-TMS320C64X]

		Texas Instruments. TMS320C64x/C64x+ DSP: CPU and Instruction Set. July 31st, 2010. URL: https://www.ti.com/lit/ug/spru732j/spru732j.pdf

image10.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image11.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image12.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image13.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image14.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image15.emf
n3059.pdf

n3059.pdf
N3059: C23 fopen "x" and "a"

Document #: N3059

Date: 2022-09-26
Project: Programming Language C
Reply-to: Niall Douglas

<s_ sourceforge@nedprod.com>

In the May 2022 WG14 meeting we discussed [N2857| C2z fopen("x") and fopen("a") v2, and the
committee sought:

1. Fixes to the proposed normative wording changes, specifically:
(a) Add mention of processes in statements about atomicity of checks.

(b) Remove mention of atomicity applies to other users of fopen only, as other syscalls may
be used by other threads or functions.
(c) ‘must’ => ‘shall’.
2. That the second half of the permitted implementation of the existing C11 fopen("x") be split

out into a standalone fopen letter, for which I have chosen ‘p’ (private).

I believe that these solve the committee’s concerns raised in the meeting about ensuring TOCTOU
safety both in terms of file content use, and file naming on the file system.

‘Real life’ then intruded and I was unable to deliver the next revision of this paper before the C23
IS cutoff, so I have split the paper into two:

e The uncontroversial bits already agreed by the committee as a C23 IS delta suitable for NB
comment (this paper).

e The bits perhaps needing another round by the committee targeting post-C23, which include
taking the opportunity to reconcile the fopen modifier specification with that from the next
release of POSIX (NOT this paper).

Contents

1 Proposed DR wording 2
1.1 7T.21.5.3.5 o o e 2
1.2 T.21.5.3.6 . o o o e 2
1.3 K852 1.7 . o o o e 2

2 Platform compatibility 3
2.1 fopen(/xX’) . . . e 3
2.2 fopen(’a’) . . .o e e e e e e e 3

mailto:s_sourceforge@nedprod.com

2.3 Topen_s('X') . .o e e e 4
3 Acknowledgements 5

4 References 5

1 Proposed DR wording

1.1 7.21.5.3.5

Opening a file with exclusive mode (’x’ as the last character in the mode argument) fails if the file
already exists or cannot be created. SPWSE; is—er i i

—t -eess: The check
for the existence of the file and the creation of the file if it does not exist is atomic with respect
to other threads and processes. If the implementation is not capable of performing the check for
the existence of the file and the creation of the file atomically, it shall fail instead of performing a

non-atomic check and creation.

[Note: The last sentence is important: if a program is written assuming that the check
is atomic, and it is not atomic, then data loss or corruption would occur. It is better
to return an error here so the program can adapt rather than silently allow data loss or
corruption. — end note|

1.2 7.21.5.3.6

Opening a file with append mode (’a’ as the first character in the mode argument) causes all sub-
sequent writes to the file to be forced to the current end-of-file at the point of buffer flush or actual
write, regardless of intervening calls to the fseek-funetion, fsetpos, or rewind functions. Increment-
ing the current end-of-file by the amount of data written is atomic with respect to other threads
writing to the same file provided the file was also opened in append mode. If the implementation
is not capable of incrementing the current end-of-file atomically, it shall fail instead of performing
non-atomic end-of-file writes. In some implementations, opening a binary file with append mode
("b” as the second or third character in the above list of mode argument values) may initially position
the file position indicator for the stream beyond the last data written, because of null character
padding.

[Note: This text only guarantees the atomicity of the increment of the end of file, NOT
the atomicity of the write of the data. This difference is important: no additional locking
is needed here on platforms capable of atomic integer increment. — end note|

1.3 K.3.5.2.1.7

[Note: Robert Seacord suggested that this ought to be removed for consistency with the
change above. Me personally I am agnostic, but given that the only implementation that
I know of of fopen_s which is Microsoft’s, it would now conform to C2x if this stanza is
removed. — end note|

2 Platform compatibility

I checked whether the proposed new wording would break any existing platforms implementing C11:

2.1 fopen(’x’)

e Linux (glibc): Existing implementation is compatible.

e FreeBSD: Existing implementation is compatible.

e NetBSD: Existing implementation is compatible.

e OpenBSD: Existing implementation is compatible.

e MacOS: Existing implementation is compatible.

e Microsoft VS2019: Existing implementation is compatible.
e QNX: fopen(’x’) not supported. open() is compatible.

e HPUX: fopen(’x’) not supported. open() is compatible.

The excellent compatibility story here is almost certainly due to POSIX 0 EXCL creating an easy
choice for how to implement fopen(’'x’).

2.2 fopen(’a’)

e glibc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per the
proposed wording.
https://sourceware.org/git/?p=glibc.git;a=blob;f=1ibio/fileops.c;h=0986059e7b16f885f8ab62bc9
hb=HEAD#1237.

e BSD libc implements fopen(’a’) as 0_APPEND, so appends are atomic across the system as per
the proposed wording.
https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=
markup#172

e Microsoft UCRT implements fopen(’a’) as _0_APPEND:

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://sourceware.org/git/?p=glibc.git;a=blob;f=libio/fileops.c;h=0986059e7b16f885f8ab62bc9a98bda5fde10264;hb=HEAD#l237

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

https://svnweb.freebsd.org/base/head/lib/libc/stdio/flags.c?revision=326025&view=markup#l72

N N

case 'a’:
result._lowio_mode
result._stdio_mode
break;

_0_WRONLY | _O_CREAT | _O_APPEND;
_IOWRITE;

Then:

// Set FAPPEND flag if appropriate. Don’t do this for devices or pipes:
if ((options.crt flags & (FDEV | FPIPE)) == 0 && (oflag & 0 _APPEND))
_osfile(xpfh) |= FAPPEND;

Then:

if (_osfile(fh) & FAPPEND)
(void)_1lseeki64_nolock(fh, O, FILE_END);

Which eventually calls Win32 SetFilePointerEx(). This means appends are atomic within the
local process per file descriptor, but are not atomic per inode in the local process, nor atomic
across the system.

I suspect that this is an implementation oversight considering there are two forms of whole
system atomic append supported on Windows:

1. Win32 CreateFile() when opened with
GENERIC_READ | FILE_WRITE_ATTRIBUTES | STANDARD_RIGHTS_WRITE | FILE_APPEND_DATA in-
stead of GENERIC_READ | GENERIC WRITE does perform atomic appends across the system.

2. Win3d2 WriteFile() when supplied with an offset to write value of all bits one will perform
an atomic append for that specific write across the system.

Steve Wishnousky from Microsoft who helps maintain their UCRT doesn’t see any major
impact from ensuring the file access is atomic (stated on the WG21-WG14 liason mailing list,
11th Oct 2021).

The source code of other platform’s fopen() implementation was not easily available to me, so I
cannot say more about how those implement fopen(’a’).

2.3

fopen_s(’'x")

Linux (glibc): fopen s() is not provided.

FreeBSD: fopen_s() is not provided.

NetBSD: fopen_s() is not provided.

OpenBSD: fopen_s() is not provided.

MacOS: fopen_s() is not provided.

Microsoft VS2019: Existing implementation is compatible.
QNX: fopen_s() is not provided.

e HPUX: fopen_s() is not provided.

3 Acknowledgements

Thanks to Robert Seacord for his help in drafting the proposed normative wording. Thanks to
Aaron Ballman for reminding me of the existence of [N2357|. Thanks to Nick Stoughton for writing
the original paper raising this issue, and to Joseph Myers for his feedback on earlier drafts.

4 References

[N2357] Stoughton, Nick
Change Request for fopen exclusive access
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2357.htm

[N2731] C2x Working Draft
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2731.pdf

[N2857] Douglas, Niall
C2x fopen("x") and fopen("a") v2
http://www.open-std.org/jtcl/sc22/wgl4d/www/docs/n2857.pdf

[POSIX.2017| The 2017 POSIX standard
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.
html

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2357.htm

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2731.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2857.pdf

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/functions/contents.html

		Proposed DR wording

		7.21.5.3.5

		7.21.5.3.6

		K.3.5.2.1.7

		Platform compatibility

		fopen('x')

		fopen('a')

		fopens('x')

		Acknowledgements

		References

image1.emf
n3046.pdf

n3046.pdf
Proposal for C2X

WG14 N 3046

Title:

Author, affiliation:

Date:

Proposal category:

Target audience:
Abstract:

Prior art:

$ in Identifiers

Robert C. Seacord, Woven Planet
rcseacord@agmail.com

Steve Downey, Bloomberg, USA
<sdowney@gmail.com, sdowney2@bloomberg.net>

Peter Bindels, TomTom, Netherlands,
<dascandy@gmail.com>

2022-7-26
Defect
Implementers

Allow $ as an implementation extension in identifiers

C23

mailto:rcseacord@gmail.com

mailto:sdowney2@bloomberg.net

mailto:dascandy@gmail.com

$ in Identifiers

Reply-to: Robert C. Seacord (rcseacord@gmail.com)
Document No: N 3046

Reference Document: N2939, N2836, P1949R7 (http://wg21.link/p1949)

Date: 2022-3-02

This paper is to repair a potential defect introduced by voting N2836 Identifier Syntax using Unicode
Standard Annex 31 into C23.

Change Log
2022-7-26:

Initial version

1.0 PROBLEM DESCRIPTION

A question was raised at the July 2022 WG14 meeting concerning going back to the original identifier
rules. The following straw poll was taken:

Straw poll: Does WG14 want to bring back the original identifier rules (e.g., allow $ in identifiers as an
extension, but not required to allow it)?

The results had clear consensus:
Results: 10 yes 2 no 8 abstain

Further discussion showed that the actual direction was less clear with the following opinions being
noted:

e Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties,
with the addition of s.

The original text allowed any implementation-defined characters, not just $
| am strongly against what I'm suggesting but the “best” solution is to revert the “other
implementation-defined characters” that got removed

e | would be much strongly opposed to something that would mention $ or any other
specific character explicitly

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2939.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://wg21.link/p1949

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2836.pdf

e Allowing $ in identifiers would be a massive and unjustifiable land grab for both C and
C++
e Would the following change suffice?

6.4.2.1#1 add to identifier-nondigit:
other implementation-defined characters

e Probably adding that sentence to both identifier-start and
identifier-continue

As can be seen, opinions ranged from reverting to implementation-defined characters to keeping the
current wording.

A quick survey of existing practice shows that current versions of gcc, clang, and icc all allow the s
character anywhere in an identifier by default:

https://godbolt.org/z/frGzcTWoK
Only clang will diagnose the use of a $ in an identifier, but only in -pedantic mode.

In both GCC and Clang, this is controlled by the -f [no-]dollars-in-identifiers flag which
defaults to allow.

This paper proposes allowing $ anywhere in identifiers as an implementation extension.

2.0 PROPOSED WORDING

Wording Alternative #1

The $ does not currently appear in any production for identifiers. Using $ in an identifier is
consequently undefined behavior. Implementations are free to provide their own definition for this
otherwise undefined behavior, and allow $ in identifiers.

Add the text in green to the end of Subclause 5.2.1 Character sets, paragraph 3:

If any other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never
converted to a token), the behavior is undefined. The $ character is reserved for use in
identifiers as an implementation-defined extension.

https://godbolt.org/z/frGzcTWoK

Wording Alternative #2

Add the text in green to Subclause 6.4.2.1 paragraph 2 in the N2912 working draft:

An identifier is a sequence of nondigit characters (including the underscore _, the lowercase and
uppercase Latin letters, and other characters) and digits, which designates one or more entities as
described in ??. The nondigit characters may also include a dollar sign $. Lowercase and uppercase
letters are distinct. There is no specific limit on the maximum length of an identifier.

Wording Alternative #3
Add the text in green in the N2912 working draft:
Subclause 6.4.2.1 paragraph 1
nondigit: one of
_$abcdefghijklm
nopqgrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ
Subclause 6.4.2.1 paragraph 2

An identifier is a sequence of nondigit characters (including the underscore _, the dollar sign $, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates one or more
entities as described in ??. It is implementation-defined if a dollar sign $ may be used as a nondigit
character. Lowercase and uppercase letters are distinct. There is no specific limit on the maximum
length of an identifier.

4.0 Acknowledgements

We would like to recognize the following people for their help with this work: Jens Maurer, Zach Laine,
Tom Honermann, Corentin Jabot, and Aaron Ballman.

5.0 References

[Altld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax
[Defld] Unicode Standard Annex.
http://www.unicode.org/reports/tr31/tr31-11.html#Default_ldentifier _Syntax

[N3146] Clark Nelson. 2010. Recommendations for extended identifier characters for C and
C++.

https://wg21.link/n3146

[UAX15] Ken Whistler. Unicode Normalization Forms.
http://www.unicode.org/reports/tr15

[UAX31] Mark Davis. Unicode Identifier and Pattern Syntax.
http://www.unicode.org/reports/tr31

[UAX36] Mark Davis and Michel Suignard. Unicode Security Considerations.
http://www.unicode.org/reports/tr36

[UAX44] Ken Whistler and Laurentiu lancu. Unicode Character Database.
http://www.unicode.org/reports/tr44

[UTS51] Mark Davis and Peter Edberg. Unicode Emoji.

http://www.unicode.org/reports/tr51

http://www.unicode.org/reports/tr31/tr31-11.html#Alternative_Identifier_Syntax

http://www.unicode.org/reports/tr31/tr31-11.html#Default_Identifier_Syntax

https://wg21.link/n3146

http://www.unicode.org/reports/tr15

http://www.unicode.org/reports/tr31

http://www.unicode.org/reports/tr36

http://www.unicode.org/reports/tr44

http://www.unicode.org/reports/tr51

