G W/ N30o9
X35l /93-056
Extended Integers

Version 1.0
John W Kwan Randy Meyers
Hewlett Packard Company Digital Equipment Corporation
Cupertino, California Nashua, New Hampshire

1. Introduction

The ANSIISO C standard specifies that the language should support 4 integer data types, “char”,
“short”, “int” and “long”. However, the Standard places no requirement on their length (number of
bits) other than that “int” should be at least as long as “short” and “long” should be at least as long as
“int”. Traditionally (i.e. under Kernighan and Ritchie), C had always assumed that “int” is the most
efficient integer data type on a machine and the ANSI Standard, with its integral promotion rule,
tacitly continues this assumption. For 16-bit based systems, as in some early PCs, most
implementations assigned 8, 16, 16 and 32 bits to “char”, “short” “int” and “long” respectively. For 32-
bit based systems, the common practice is to assign 8, 16, 32 and 32 bits to these types. This
differences in “int” size can create some interesting problems for users that migrate from one system
to another that assigns different sizes to integral types. ANSI's promotion rule can produce silent
changes unexpectedly.

Consider the following example :

main ()
{
long L = -1;
unsigned int i = 1;
if (L > 1)
printf (“L greater than i\n*)
else

printf (*L not greater than i\n®) ;
}

Under the ANSI promotion rule, this program will print “L greater than i” if size of “int” equals size of
“long”; but will print “L not greater than i” if size of “int” is less than size of “long”. Both results are
legal and correct.

To complicate matters further, the need for a larger integer than 32 bits arises with the recent
introduction of 64-bit based systems and for those systems that support large files. For those systems
that feel a need to have a larger integer type, a new 64-bit integer type commonly referred to as “long
long” was implemented.

“long long” is created specifically to satisfy the need for an integer type larger than 32 bits, is intended
for 64-bit architected systems (rather than n-bit based systems) and is far from being a general
solution. It is non-standard and this makes it non-portable. Efforts to find a general solution for the
“extended” integer problem turned out to be much more difficult than expected.

First of all, any change in the size of “int” from the current definition will produce incompatibility;
and no mapping of the base integer types to a particular range of values produces satisfactory
performance in all systems. Any one model that is optimal for one architecture is usually sub-optimal

we:e'/~3°‘3
2 Extended Integers X33—”/83"05_6

for another. After much discussion, the industry remains divided. However, the current system of
different “int” sizes on different platforms makes life difficult for software developers who must

maintain different source for different machines (at least by using #ifdef).

To help software developers to write portable code, implementations should provide a set of integer
types whose definitions are consistent across machines and independent of operating systems and
other implementation idiosyncrasies. These integer types will be contained in a header called
<inttypes.h>. This header will define, via typedefs, integer types of various sizes and implementations
are free to typedef them to base types that they support. By using this header, and the types that it
provides, developers will be able to use a certain integer type and be assured that it will have the
same properties and behavior on different machines.

xs

Extended Integers 3
w6 |4{/N309
X3xi1/33~056

2. <inttypes.h>

#ifndef __inttypes_included
#define __inttypes_included

/****i*******i********** Basic integer types L2 2222222222222ttt Rl RS S

* %
** The following defines the basic fixed-size integer types.

** Implementations are free to typedef them to C base types or extensions
** that they support. If an implementation does not support one of the

** particular integer data types below, then it should not define the

** typedefs, macros, and functions corresponding to that datatype.

** intmax_t and uintmax_t are guaranteed to be the largest signed and
** unsigned integer types supported by the implementation.

** Section 3.3.4, lines 30-32 of the ANSI C Standard states that a pointer
** can be converted to an implementation defined data type. intptr_t is the
** signed integer datatype large enough to hold any pointer and uintptr_t
** is the unsigned integer datatype large enough to hold any pointer.

b/

typedef ? int8_t; /* 8-bit signed integer */

typedef ? intl6_t; /* 16-bit signed integer */

typedef ? int32_t; /* 32-bit signed integer */

typedef ? uint8_t; /* 8-bit unsigned integer */

typedef ? uintlé_t; /* 16-bit unsigned integer */

typedef ? uint32_t; /* 32-bit unsigned integer */

typedef ? intmax_t; /* largest signed integer supported */

typedef ? uintmax_t; /* largest unsigned integer supported */

typedef ? intptr_t; /* signed integer type capable of holding a ptr */
typedef ? uintptr_t /* unsigned integer type capable of holding a ptr */
typedef ? intfast_t; /* most efficient integer type */

typedef ? int64_t; /* 64-bit signed integer */

typedef ? uint64_t; /* 64-bit unsigned integer */

/* 2222222222 222222 X2 2 X limits (222 X222 222X X222 XXX X X X 2 X X X X R X R RRTRTE
* *
** The following defines the limits for the above types (in the manner of

** <limits.h>.
** INTMAX MIN, INTMAX MAX and UINTMAX MAX can be set to implementation
** defined limits.

** NOTE : A programmer can test to see whether an implementation supports
** a particular size of integer by seeing if the mcaro that gives the

Fk5

4 Extended Integers okl /N303
X33l /93~-056

** maximum for that datatype is defined.
** For example, #ifdef UINT64_MAX tests false, the implementation does not
** support unsigned 64 bit integers.

*/

#define INT8_MIN (-128)
#define INT16_MIN (-32768)
#define INT32_MIN (-2147483647-1)

#define INT8_MAX (127)
#define INT16_MAX (32767)
#define INT32_MAX (2147483647)

#define UINT8_MAX (255)
#define UINT16_MAX (65535)
#define UINT32_MAX (4294967295)

#define INTMAX_MIN ? /* implementation defined */
#define INTMAX_MAX ? /* implementation defined */
#define UINTMAX_MAX ? /* implementation defined */

##define INT64_MIN (-9223372036854775807-1)
#define INT64_MAX (9223372036854775807)
#define UINT64_MAX (18446744073709551615)

/* LA A2 22222222222 X2 2 X2 X 223 CONSTANTS L2222 2222 X X2 22 XXX X222 22 2 2 2R 222
* %
** Define macros for constants of the above types. The intent is that:

ol Constants defined using these macros have a specific length and
o signedness.
*/

#define __CONCAT__(A,B) A ## B

#define INT8_C(c) ((int8_t) c)

#define UINT8_C(c) ({uint8_t) __CONCAT__(c,u))
#define INT16_C(c) (intlé_t) c)

#define UINT16_C(c) (uintl6_t) __CONCAT__ (c,u))
#define INT32_C(c) ((int32_t) ¢)

#define UINT32_C(c) ((uint32_t) __CONCAT__(c,u))
##define INT64_C(c) ((int64_t) __CONCAT__ (c,11))
#define UINT64_C(c) ((uint64_t) _CONCAT__(c,ull))
#define INTMAX_C(c) ((int64_t) __CONCAT _ (c,11))
#define UINTMAX_C(c) ((uint64_t) __CONCAT__ (c,ull))

/*********Q***********t*t* Fomm I/o LAA A S X2 222 222 2R X X 2 X X X R R Ry
**

** Proposal I - library extension :

** Define extended version of the printf/scanf functions that will handle

Ty X

Extended Integers 5

wGIY/ N33
the above typedefs)(3:5'[[/ 93~ 056

The size specifier (e.g. ‘h’, ‘L’ etc) is extended to allow a width
specifier wN indicating that the integer is of N bits long. Note that
this will force changes to the existing library.
Example
intl6_t s16;
uint32_t u32;

printf (*intl6é is $wl6d\n uint32 is %w32u\n“, sl1l6, u32)

Proposal II - use the * size specifier and the sizeof macro

To print out an integer of “at least” 16 bits
intl6é_t myint;
printf (“int 16 is %$w*d\n”, sizeof(intl6_t) * bits_per_byte, myint);

Proposal III - use macros (no extensions to library):

The following macros can be used even when an implementation has not
extended the printf/scanf family of functions. The macros provide

the conversion specifier letter preceded by any needed size indicator
flags.

The form of the names of the macros is either “PRI” for printf specifiers
or "SCN” for scanf specifiers followed by the conversion specifier letter
followed by the datatype size. For example, PRId32 is the macro for

the printf d conversion specifier with the flags for 32 bit datatype.

Separate printf versus scanf macros are given because typically different
size flags must prefix the conversion specifier letter.

There are no macros corresponding to the c conversion specifier. These
macros only support what can be done without extending printf/scanf, and
most implementations do not support the c conversion specifier for
anything besides int.

Likewise, there are no scanf macros for the 8 bit datatypes. Most
implementations do not support reading 8 bit integers.

If an implementation does not support I/0 of a particular size datatype,
the corresponding macros below should not be defined. However, it is
believed that almost every ANSI C conforming implementation can support
the 16 and 32 bit I/0 macros.

An example use of these macros:

uint64_t u;
printf(*u = $016" PRIx64 *“\n”, u);

For the purpose of example, the definitions of the printf/scanf macros
below have the values appropriate for a machine with 16 bit shorts,

vy

6 Extended Integers

** 32 bit ints, and 64 bit longs.

* %
il 4
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
##define
#define
#define

#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#idefine

f##define

PRIdAS8

PRIA16
PRIA32
PRId64

PRIi8

PRIilé6
PRIi32
PRIi64

PRIo8

PRIol6
PRIo32
PRIo64

PRIu8

PRIulé
PRIu32
PRIub64

PRIx8

PRIx16
PRIx32
PRIx64

PRIXS8

PRIX16
PRIX32
PRIX64

SCNd1le6
SCNd32
SCNd64

SCNile
SCNi32
SCNi64

SCNol6
SCNo32
SCNo64

SCNulé
SCNu32
SCNu64

SCNx16
SCNx32
SCNx64

SCNX16

‘d'
‘d'
‘d'
Ildl

wje
“je
Ii'
“li~

Iol
‘ol
‘ol
‘10.

Iu'
‘u'
‘u'
‘lu'

‘x.
Ix'
‘x'
‘lx.

le
‘x.
‘x.
‘lx.

‘hd'
‘d'
Ild.

Ihi ' J

‘i'

Ili'

‘h°'
‘0.

Ilol

‘hu'
‘u'
Ilu'
‘hx.
‘x'

‘1x.

Ihx.

w1y /N309
X331/93-056

—

/7 %

Extended Integers 7
weé 1Y / N309
#define SCNX32 B X351 /93-050

#define SCNX64

/*************** conversion functions L2 2222222 2X2 X222 222 X2 X 2 X X XX XX 22

* %

** The following routines are proposed to do conversions from strings to the
** new integer types. They parallel the ANSI strto* functions.

** Implementations are free to equate them to any existing functions

** they may have. In addition to functions, implementations could supply
** macros as well.

=

extern int8_t strtoi8 (const char *, char**, int);

extern intl6_t strtoilé (const char *, char**, int);

extern int32_t strtoi32 (const char *, char**, int);

extern uint8 strtou8 (const char *, char**, int);

extern uintlé_t strtoulé (const char *, char**, int);

extern uint32_t strtou32 (const char *, char**, int);

extern intmax_t strtoimax (const char *, char**, int);
extern uintmax_t strtoumax (const char *, char**, int);

extern int64_t strtoi6d4 (const char *, char**, int);
extern uint64_t strtoué4 (const char *, char**, int);

#endif /* __inttypes_included */

/* end of inttypes.h */

173

