ANSVISO C Defect Report #rfg24: WG14/N303
X3J11/93-050

Subject: Abstract semantics, sequence points, and expression evaluation.

Question: Does the following code involve usage which renders the code
itself "not strictly conforming"?

int example ()

{

int x1 =2, x2=1, x_temp;

return (x_temp = x1, x_temp) + (x_temp = x2, x_temp);
}

Background:
Section 5.1.2.3; ISO C standard:

"The semantic descriptions in this Standard describe the behavior of
an abstract machine in which issues of optimization are irrelevant."

Section 6.3; ISO C standard:

"Between the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of an
expression."

Although it is quite clear that the above quoted "modified at most once" rule
was intended to render certain programs "not strictly conforming”, there is
an unfortunate amount of ambiguity built-in to the current wording of that
rule.

Quite simply, while the "modified at most once" rule is obviously telling

us what a "strictly conforming program" must not do between two particular
points IN TIME, it is altogether less than clear what events and/or actions
(exactly) are associated with these two points in time. Additionally, it

is also less than clear (from reading the remainder of the standard) what
actions and/or events are allowed (or required) to take place between some
pair of sequence points in cases where both members of the pair are part of
some large single expression whose evaluation order is not completely dic-
tated by the standard.

Note that despite the assertion given in ISO 5.1.2.3 (and quoted above) the
standard does not *fully* specify the behavior of the "abstract machine",
especially when it comes to the issue of the ordering of sub-expression
evaluation used by the "abstract machine" model.

This fact makes it inheriently impossible to precisely determine even just
the *relative* timings of various events (including the "occurance" of or

the "execution” of or the "evaluation" of sequence points) which may (or
must) occur sometime during the evaluation of a larger containing expression
(except in a few cases involving “II' or “&&' or *?:' or *,' operators).

To put it more plainly, if some pair of sequence points will be "reached”

(or "evaluated" or "executed") during the evaluation of any pair of sub-
expressions which are themselves operands for some binary operator (other
than the operators “II' or “&&' or *?:' or °,") then the standard's descrip-

tion of the "abstract machine" semantics are inadequate to enable us to

know either which *order* these two sequence points will occur in, or even
which other aspects of the evaluation of the overall expression may (or must)
occur "between" the two sequence points.

Thus, it seems that it may also be inheriently impossible to know whether
or not the prohibition against multiple modifications of a given variable
"between" two consecutive sequence points is (or may be) violated in such
contexts.

Here is a simple example of an expression which illustrates these points:
x=i,x)+(x=j,x)

In this expression there are two "comma" sequence points, however nothing
in the standard gives any indication as two which of these two may be (or
must be) "evaluated” or "reached" first. (Indeed, it would seem that on a
parallel machine of some sort, BOTH points could perhaps be reached simul-
taneously.) It is fairly clear however that each of the references to the

stored values of “x' must not be evaluated until their respective preceeding
"comma sequence points” have been "reached" or "evaluated". Thus, a partial
(but very incomplete) ordering is imposed upon the sequence of events which
must occur during the evaluation of this expression.

For the sake of this example, let us call the leftmost comma in the above
expression "lcomma" and call the rightmost comma "rcomma”. Given this ter-
minology, it would appear the the standard permits the following sequence of
events during evaluation of the above expression:

eval(i)

x= (leftmost assignment to x)

Icomma <==== sequence point

eval(x) (leftmost reference to stored value of x)
eval(j)

X= (rightmost assignment to x)

rcomma <==== sequence point
eval(x) (rightmost reference to stored value of x)
+

Note that in this (very realistic) example, the stored value of “x' is NEVER
modified more than once between any pair of sequence points. Given that
the ordering described above is both a perfectly PLAUSIBLE and also a per-

Ik

fectly PERMISSIBLE ordering for the evaluation of the expression in question,
and given that this particular permissible ordering of events does not violate

the "modified at most once" rule (quoted earlier) it therefore appears that

the expression in question may in fact be interpreted as being "strictly
conformant”, and that such expressions may appear within "strictly conformant"

programs.

I would like the committee to either confirm or reject this view, and to
provide some commentary explaining that confirmation or rejection.

ANSV/ISO C Defect Report #rfg25:

Subject: Completion point for enum types.
Question: Are diagnostics required for the following code examples?

enum E1 { enumeratorl = sizeof (enum E1) };
enum E2 { enumerator2 = sizeof (enum E2 *) };

(Justread on! This *isn't* just the same old question again!)

Background:

Section 6.3.3.4; ISO C standard (constraints):
"The sizeof operator shall not be applied to an expression that has
function type or an incomplete type, to the parenthesized name of
such a type..."

Section 6.5.2.1; ISO C standard (semantics):

"The [struct or union] type is incomplete until after the } that
terminates the list [of member declarations]."

(Bracketed portions added for clarity.)
CIB #1, RFI #13, response to question #5:
"For the example:
enum € { a = sizeof(enum ¢€) };
the relevant citations are { ANSI} 3.1.2.1 starting on page 21, line
39, indicating that the scope of the first “e' begins at the * {%
and {ANSI} 3.5.2.2, page 62, line 20, which attributes meaning to a

later "enum e' ONLY IF this use appears in a SUBSEQUENT declaration,
By subsequent, we mean "after the * }". Because in this case, the

' Y¥7

second “enum e' is not in a subsequent declaration, and no other
wording in the standard addresses the meaning, the standard has
left this example in the category of undefined behavior."

Please note that the above response to RFI #13, question #5 has totally
failed to solve the *real* problem with the current wording of the standard.

The *real* problem is that (unlike the case for struct and union type
definitions) nothing in the standard presently indicates where (or whether)
an enum type becomes "completed”.

This is a very serious flaw in the current standard. Given that the standard
currently contains no statement(s) which specify where (or whether) an enum
type becomes a "completed” type, any and all programs which use ANY enum
type in ANY context requiring a completed type are, by definition, NOT
"strictly conforming”. (This will come as quite a shock to a number of C
programmers!)

I feel that the committee must resolve this serious problem as soon as
possible. The only plausible way to do that is to add a statement to
section 6.5.2.2 of the ISO C standard which will specify the point at which
an enum type become a "completed” type.

Using the statement currently given in section 6.5.2.1 of the ISO C standard
(relating to struct and union types) as a guide, it would appear that section
6.5.2.2 should be ammended to include the following new semantic rule:

"The enum type is incomplete until after the } that terminates
the list of enumerators.”

Some such addition is obviously necessary in order to render enum types usable
as complete types within "strictly conforming" programs.

Note however that such a clarification would have the additional (beneficial?)
side effect of rendering the following declaration subject to a mandatory
diagnostic (due to the violation of the constraints for the operand of the
sizeof operator):

enum E1 { enumerator] = sizeof (enum E1) };
Even after such a clarification however, the status of:

enum E2 { enumerator2 = sizeof (enum E2 *) };
is still questionable at best, and the proper interpretation for such a case

should, I believe, still be drawn from the response given to RFI #13, question
#5... i.e. such examples should be viewed as involving undefined behavior.

-- Ronald F. Guilmette, Sunnyvale, California

