WG1Y S 217

[X J & 1y
From x.co.uk!clive Tue Nov 2 12:13:41 1993 remote from uunet Xéd////q 3019
Received: by plauger.UUCP (UUL1.3#20134)

from uunet with UUCP; Tue, 2 Nov 93 13:15:10 EST
Received: from cambs.x.co.uk by relay1.UU.NET with SMTP

(5.61/UUNET-internet-primary) id AA26831; Tue, 2 Nov 93 12:13:41 -0500
Message-1d: <9311021713.AA26831@relay 1.UU.NET>
Received: from hunts.x.co.uk by cambs.x.co.uk with v15.11; Tue, 2 Nov 93 17:14:28 gmt
Received: by hunts.x.co.uk with v1.37.109.4; Tue, 2 Nov 93 17:14:37 GMT
From: uunetlix.co.uk!clive (Clive Feather)
Subject: SC22WG 14 mailing
To: plauger!pjp
Date: Tue, 2 Nov 93 17:14:34 GMT
Mailer: EIm (revision: 70.85)

Here is a copy of my proposed Defect Report, which | would like adding
to the mailing. Currently it is being considered by BSI but, due to the
additional layer of mechanism, it hasn't been formally approved yet.
However, Derek says that it should be no problem unless the C panel wish
to modify it at their next meeting (which | can't attend, unfortunately).
Alternatively, either WG 14 or yourself may wish to adopt it as is (| am
assured that BSI wouldn't mind this in the slightest).

You will be glad to hear (I hope :-) that | will definitely be at the
Kona meeting.

Clive

PROPOSED DEFECT REPORT

Clive D.W. Feather

This is a collection of items intended to form a Defect Report on ISO C.

Most of them have been collected from Usenet discussions in the past, which
is why they will seem familiar to many. In some cases, suggested

Technical Corrigenda have been given; these may imply particular answers
to the questions, and it is accepted that different answers may render

these moot.

In these items, identifiers lexically identical to those declared in
standard headers refer to the identifiers declared in those standard
headers, whether or not the header is explicitly mentioned.

This collection has been prepared with considerable help from Mark Brader,
Jutta Degener, and a person whose employment conditions require anonymity.
However, opinions expressed or implied should not be assumed to be those

of any person other than myself.

[tem 1 - Null pointer constants

R s i ../) 7 ST

Feather, Page 2

Consider the following translation unit:

char *f1 (int i, int *pi)

{
*‘pl=1t
return 0;
}]
char *f2 (int i, int *pi)
{
return (*pi =1, 0);
}

In f1, the O'is a null pointer constant (6.2.2.3). Since return acts
as if by assignment (6.6.6.4) the function is strictly conforming.

If f2, the O'is a null pointer constant. However, a constant expression

cannot contain a comma operator (6.4), and so the expression being

returned is not a null pointer constant per se. Which of the following

is the case ?

(1) The property of being a null pointer constant percolates upwards through
an expression, and the function f2 is strictly conforming.

(2) The property of being a null pointer constant does not percolate upwards,
and the expression being notionally assigned in the return statement,
though of value 0, is not a null pointer constant but only of type int,
thus violating a constraint (6.3.16.1).

ltem 2 - locales

Consider the program:

#include <stdio.h>
#include <stdlib.h>
#include <locale.h>

int main (void)

{
int i;
char *loc () = { "English", "En_UK", "Loglan", " };
for(i=0;; i++)

if (setlocale (LC_ALL, loc (1)) = NULL)
{

5 .
* We must eventually get here, because setlocale (")
* cannot yield NULL.
%
printf ("Decimal point = '%s'\n",
" - .. localeconv O->decimal_point);
exit (0);

SN R THE

RO R

KR TERR éi"gh ea :.lnif‘u{;zN R B 8 R S AR R R R A RN SR SO 0 0 52 O PSR QU NN RN MBS SRR 1) LTI PR BERRR A SORU R A T S R S Y K B B
.

Feather, Page 3

}
}

The valid locales are implementation-defined (7.4.1.1). Nevertheless,
the output produced depends only on the locale, not any other
implementation-defined behaviour. Is the program strictly conforming ?

ltem 3 - locales

In a conforming implementation, can the value of any of the following
expressions (7.4.2.1) be a value other than 0 or 1 ? Can the value of the
first expression be 0 ?

strlen (localeconvQ->decimal_point)
strlen (localeconv()->thousands_sep)
strllen (localeconv()->mon_decimal_point)
strlen (localeconv(->mon_thousands_sep)

If the value can be greater than 1, can the string contain more than one
multibyte character ? If so, can the string contain shift sequences ? If
s0, can the string end other than in the initial shift state ?

Suggested Technical Corrigendum: add to the end of the definitions of
each of these four fields: "The string shall contain at most one

multibyte character, and shall start and end in the initial shift state.”

or "The string shall start and end in the initial shift state.”

depending on the answer.

ltem 4 - definitions of types

The terms "signed integer type", "unsigned integer type", and "integral
type" are defined in 6.1.2.5. The Standard also uses the terms “integer
type", "signed integral type", and "unsigned integral type" without
defining them. Integer-valued bitfields are also infroduced in 6.5.2.

(a) For each of the following types. which if any of the é categories above
do they belongto ?

char
21 sign*e"d*'c-ﬁ"o‘F“'?f' TSNS T e T rEe TRTEEY * B e P i Pop L A U 2 a0 RO i e
unsigned char
signed-shorf===semrrs g L ; ST SR
unsigned short
signed int
unsigned int
signed long
unsigned long
int: N /* l.e. biffield of size N */

unsigned int : N

Feather, Page 4
enumerated type

(b) For each of these categories, do the const and/or volatile
qualified versions of the types belonging to the category also
belong to the category ?

(c) Can an implementation extension add other types defined by the Standard
to any of these é categories ?

(d) Can an implementation define other types (e.g. "_very long") which
belong to any of these 6 categories ?

(e) If the answer to (c) or (d), or both, is yes, can size_t and ptrdiff_t
be one of these other types, or must it be a type in the above list ?

Suggested Technical Corrigendum: add to the end of the first paragraph
on p23 (6.1.2.5): "The signed and unsigned integer types are

collectively called the *integer types*.". In the second paragraph of

p24 (6.1.2.5), add after the first sentence: 'The signed integer types,

the type char (if and only if char values are tfreated as signed), and

any enumerated types that are compatible with signed integer types are
collectively called the *signed integral types*. The remaining integral
types are collectively called the *unsigned integral types”.

Item 5 - handling of char values

Values of the type char must be treated as either "signed” or
"nonnegative’ integers (6.1.2.5).

(Q) Is the treatment determined strictly by the value of the expression
CHAR_MAX == SCHAR_MAX ?

(b) If the treatment is as "signed" integers, does the type char behave
in every instance as the type signed char (though of course being a
different type) ? If not, what are the differences ?

(¢) If the treatment is as "nonnegative" infegers, does the type char behave
in every instance as the type unsigned char (though of course being a
different type) ? If not, what are the differences ? In particular,
do the "no overflow, reduce modulo semantics opply 2

Suggested Techmccl Corngendum cdd To The end of ’rhe thlrd or four’rh
paragraph of page 23 (6.1.2.5): "'The type char behaves in all respects
identically either to the type signed char or to the type unsigned char,
although it is distinct from both.*

ltem 6 - representation of integral types

nsemarsse s WD ClaUs@bv2burefers o dhesepresentalion-of:avalue-n-andntegralssmeamsmemmmenmmmme
type being in a "pure binary numeration system”, and defines this

T

SEEES A OREENEES S R R

B L R S R e e

Feather, Page 5
further in footnote 18. On the other hand, the wording of ISO 2382 is:

(In this franscription, words in {...} are in bold in the original, words
in <...> are in italics in the original, and 2A4 means 2 with a superscript
of 4.)

05.03.15 -,

{binary (numeration) system}

The <fixed radix numeration system> that uses the <digits> 0 and 1 and
the <radix> two.

Example: In this <numeration system>, the numeral 110,01 represents the
number "6,25"; thatis 1 x 2A2 + 1 x 2A1 + 1 x 2A-2,

05.03.11

{fixed radix (numeration) system}

{fixed radix notation}

A <radix numeration system> in which all the <digit places>, except
perhaps the one with the highest <weight>, have the same <radix>.

NOTES

1 The weights of successive digit places are successive integral powers
of a single radix, each multiplied by the same factor. Negative integral
powers of the radix are used in the representation of factors.

2 A fixed radix numeration system is a particular case of a <mixed radix
numeration system>; see also note 2 to 05.03.19.

{radix}

{base} (depreciated in this sense)

In a <radix numeration system>, the positive <integer> by which the
<weight> of any <digit place> is multiplied to obtain the weight of the
digit place with the next higher weight.

Example: In the <decimal numeration system> the radix of each digit
placeis 10.

NOTE - The term base is depreciated in this sense because of its
mathematical use (see definition in 05.02.01).

05.03.07

{radix (numeration) system}

{radix notation}

A <positional representation system> in which the ratio of the <weight>
of any one <digit place> to the weight of the digit place with the next

I
I
|
[
[
I
I
I
|
I
I
I
I
I
|
|
I
I
I
I
I
[
| 05.03.08
I
I
I
I
|
I
I
I
I
I
[
I
I
|
I
|
I
| lower weight is a positive <integer>.
i
|

NOTE The permISSIbIe volues of the <chorccTer> in ony dIgIT place

e e B oA PR S s R T

Feather, Page 6

I'1 {weight}

I In a <positional representation system>, the factor by which the value
represented by a <characters in a <digit place> is multiplied to obtain
its additive contribution in the representation of a number.

|

I

|

I

| {d|gn‘ ploce}

| {digit position}

I In a <positional representation system>, each site that may be occupied

| by a <character> and that may be identified by an ordinal number or by
| an equivalent identifier.
|

I

|

I

|

I

I

|
|
|
I
I
|
|
|
I
|
|
I'105.03.01
I | {positional (representation) system}
I 1 {positional notation}
I I Any <numeration system> in which a number is represented by an <ordered>
I | set of <characters> in such a way that the value contributed by a
I | character depends upon its position as well as upon its value.
(@) What is the legal force of the footnote, given that it quotes a

definition from a document other than ISO 2382 (see 3) ?

() Is the footnote wording correct, seeing that the ISO 2382 definition
does not appear to allow any of the common representations (note the
word "positive" in 05.03.07) ?

(c) Does the Standard require that an implementation appear to use only one
representation for each value of a given type ?

(d) Does the Standard require that all the bits of the value be significant ?

(e) Does the Standard require that all possible bit patterns represent
numbers ?

() Do the answers to questions (). (d), and (e) depend on whether the
type is signed or unsigned, and in the former case, on the sign of the
value ?

(@) If it is permitted for certain bit patterns not to represent values,
is generation of such a value by an application (using bit operators)
undefined behaviour, or is use of such a value strictly conforming
provided that it is not used with arithmetic operators ?

In particular, are the following five implementations allowed ?

(h) Unsigned values are pure binary.
Signed values are represented using ones-complement (in other words,
Sl EOSI‘I’IVG and n negative values with the same absolute value differ in
SRy Bifs, and zero has Two Tepresentations). POsITvE nUMBATrs have
1 lnbn‘ofO cndneohvenumberscsngnbn‘ of FBITY ST

BT T— S o pe s e n e
e W N— S —
e e s s s

PR 5 A SRS Eos e amm*%awzm

e st et e s 7 Ws—:—&

Feather, Page 7

() Unsigned values are pure binary.
Signed values are represented using sign-and-magnitude with a pure
binary magnitude (note that the top bit is not "additive"). Positive
numibers have a sign bit of 0, and negative numbers a sign bit of 1.
In both cases, all bits are significant.

() Unsigned values are pure binary, with all bits significant.
Signed values with an MSB (sign bit) of O are positive, and the remainder
of the bits are evaluated in pure binary. Signed values with an MSB
of 1 are negative, and the remainder of the bits are evaluated in BCD.
If ints are 20 bits, then INT_MAX is 524287 and INT_MIN is -79999.

(k) Signed values are twos-complement using all bits.
Unsigned values are pure binary, but ignoring the MSB (so each
number has two representations).
In this implementation, SCHAR_MAX == UCHAR_MAX, SHRT_MAX == USHRT_MAX,
INT_MAX == UINT_MAX, and LONG_MAX == ULONG_MAX.

() Signed values are twos-complement. Unsigned values are pure binary.
In both cases, the top 3 bits of the value are ignored (and each
number has 8 representations). For signed values, the sign bit is
the fourth bit from the top.

Furthermore:

(m) Does the Standard require that the values of SCHAR_MAX, SHRT_MAX,
INT_MAX., and LONG_MAX in <limits.h> (5.2.4.2.1) all be exactly one
less than a power of 2 ?

(n) If the answer to (m) is "yes", then must the exponent of 2 be
exactly one less than CHAR_BITS * sizeof (1), where T is signed char,
short, inf, or long respectively ?

(p) Does the Standard require that the values of UCHAR_MAX, USHRT_MAX,
UINT_MAX, and ULONG_MAX in <limits.h> (5.2.4.2.1) all be exactly one
less than a power of 2 ?

() If the answer to (p) is "yes", then must the exponent of 2 be
exactly CHAR_BITS * sizeof (T), where T is unsigned char, unsigned
short, unsigned int, or unsigned long respectively ?

“(ry Do8s the Standard tegUire That The absolute VAIUES Of SCHAR MIN oo sisimsiimn e
SHRT_MIN, INT_MIN, and LONG_MIN in <limits.h> (5.2.4.2.1) all be
exactly a power of 2 or exactly one less than a power of 2 ?

(s) If the answer o (1) is "yes", then must the exponent of 2 be b PR S
exactly one less than CHAR_BITS * sizeof (T), where T is signed char, ESepte B BE L A i egt e
wﬂwthQIr‘wumd—mLﬂla .~. "‘1‘ > . - -

Feather, Page 8
they ?

(u) Does the Standard require that the expressions (SCHAR_MIN + SCHAR_MAX),
(SHRT_MIN + SHRT_MAX), (INT_MIN + INT_MAX), and (LONG_MIN + LONG_MAX)
be exactly 0 or -1 ? If not, does it put any restrictions on these
expressions ?

Suggested Technical Corrigendum: change the second sentence of the
second pcrogroph of p24 (6.1.2.5) to read: "The representation of
integral types is described below." and delete footnote 18. Add a new
subclause 6.1.2.5A as follows (in this text, alternative wording is shown

by the notation "#choose", "#else", "#endif#"; (n) refers to footnotes

given at the end of the text):

6.1.2.5A Representation of integral types

Each integral type is represented as a sequence of bits. For bit-fields,
the number of bits is specified in the declaration of the bit-field. For
each other integral type T, the number of bits in the representation is
#choose
the number of bits in an object of type T (1).
#else
less than or equal to the number of bits in an object of type T (1).
If It is less than, then the values of any other bits in the object
shall not affect the value represented.
#endif
Which bits are contained in which bytes of the object is unspecified.

For unsigned integral types, each bit shall have a weight. The weights
of the bits shall be consecutive powers of 2, from 110 2A(N-1), where
N is the number of bits in (the representation of) the type. The value
represented by a number is the sum of the weights of the bits with
value 1.

For signed integral types, one bit shall be designated the *sign bit*,
and all other bits shall have a weight. The weights of the other bits
shall be consecutive powers of 2, from 110 2A(N-2), where N is the
number of bits in the representation of the type). If the sign bit

is 0, the value represented by the number is the sum of the weights of
the bits with value 1. If the sign bit is 1, then either:

- the value shcll be the negoflve of the value represenfed if the sign

DESSREe E SE E R e SR S e e v

AR R SR S RIS IRt

- The sngn bn‘ shcll clso hove a wetghf
#choose
which is either -2A(N-1) or 1-2A(N-1).
#ele -
which is negative and grecn‘er in magnitude than the weight of any
o’rher bn‘

Feather, Page 9

particular value. If a value can be represented in both an unsigned
integral type and the corresponding signed integral type, the
representation in both types shall be the same(2).

#else
It is permissible for a value to have more than one representation:;
all such representations shall compare equal.

If a value can be represented in both an unsigned integral type and

the corresponding signed integral type, the representation in the

unsigned type shall be a valid representation in the signed type.
#endif

(1) The number of bits in an object of type T is CHAR_BITS * sizeof(T).
(2) Thus a sign-and-complement machine must detect the bit pattern
with the sign bit set representing the value 0, and convert it to

the bit pattern with the sign bit clear before performing a bitwise
operation.

lfem 7 - interchangability of function arguments

Consider the following program:
#include <stdio.h>

void output (c)
int c;
{
printf ("C == %d\n", ¢);
}

int main (void)

{
output (6);
output (6U);
return Q;

}

The constant 6 has type int, and 6U has type unsigned int (6.1.3.2), and

they have the same representation (6.1.2.5). Footnote 16, which is not a
part of the Standard, states that this implies that they are inferchangable

as arguments. However, int and unsigned int are not compatible types, and
$0 6.3.2.2 makes the second call undefined.

Is the program strictly conforming ?

COSRS = o

on members).

HODAWH D RSO
urn values and

==mihotethatsimiarissues-arise incoppect
mentioned in footnote 16 (function ret

T ORR G P

NANe0IRe

uni

Item 8 - enumerated types

/7,(

Feather, Page 10

The Standard states (in effect) that an enumerated type is a set of
integer constant values (6.1.2.5). It also states that an enumerated
type must be compatible with an implementation-defined integer type
(6.5.2.2). Finally, the Integral promotions (6.2.1.1) convert an
enumerated type to signed or unsigned int.

Consider:

enum foo { foo_A =0,foo_B=1,foo . C=8};
enum bar{bar_ A=-10,bar B=10};
enum qux { qux_A = UCHAR_MAX * 4, qux_B };

(@) If any value between 0 and SCHAR_MAX (inclusive) is assigned to a
variable of type "enum foo", and the value of the variable is then
converted fo type int or unsigned int, does the Standard require the
original value to result, or is the implementation permitted or required
to convert it to one of the three values 0, 1, and 8, or is the result
of the assignment undefined ?

(b) Can a conforming implementation require all enumerated types to be
compatible with a single type ?

() If the answer to (b) is "yes", and assuming that the value UCHAR_MAX * 4
is less than SHRT_MAX, is the declaration of the type "enum qux"
strictly conforming, or can a conforming implementation require all
enumerated types to be compatible with a single type which is a
character type ?

(d) Can an implementation make the type that "enum bar" is compatible with '
be an unsigned type, even though it uses an enumeration constant not
representable in that type ?

(e) Can an implementation make the type that "enum qux" is compatible with
be either of signed char or unsigned char, even though it uses an
enumeration constant not representable in that type ?

(N If the answer to (d) or (e) is "yes". what is the effect of making
one of the enumeration constants of an enumerated type outside the
range of the compatible type ? What is the effect of assigning the
_value of that constant to an object of the enumerated type ?

(@ Can the type that an enumerated type is compatible with be signed or
unsigned long ? If so, what are the effects of the integral
promotions on a value of that type ?

(h) If an implementation is allowed to add other types to the list of

ee fems 4(b) ang : gji<.l& s

" enumerated type Is compatible with be such a fype ?

D T A LA SN RS0 2 A T SRR A R USRS SRR

ltem 9 - definition of object

)24

Feather, Page 11

Consider the following translation unit:
#include <stdlib.h>

typedef double T;
struct hacked
{ H
int size;
T data (1);
L

struct hacked *f (void);
{
T *pt;
struct hacked *q;
char *pc:

a = malloc (sizeof (struct hacked) + 20 * sizeof (N));
if (a == NULL)
return NULL;
a->size = 20;
/* Method 1 */
a->data (8) = 42; /*Line A*/
/* Method 2 */
pt = a->data;
pt += 8; /* LineB*/
*pt =42;
/* Method 3 */

pc =(char™) a;
pc += offsetof (struct hacked, data);

phk=(T-Y'pc; /*LineC*/
pt +=8; /*LineD*/
*ot=6*9;
RAAIE r‘eT’LJrn O;WW‘ St L) R VR e R R AN R e T

}

Now, Defect Report 51 has established that the assignment on line A
involves undefined behaviour.

Feather, Page 12
(©) Is the cast of line C strictly conforming ?

(d) Is the addition on line D strictly conforming ?

(e) If the answer to (¢) and (d) are "yes", are the five statements
forming "method 3" a valid way of implementing the "struct hack" ?

Now suppose that the definition of type T is changed to char. This means
that the last bullet in subclause 6.3 ("an object shall have its stored

value accessed only by ... a character type") now applies, and furthermore
it means that the location accessed is an integral multiple of sizeof(l)

bytes from the start of the malloced object, and so constitutes an

element of that object when viewed as an array-of-T.

M Is the assignment on line A now strictly conforming ?

(@) What are the answers to questions (a) to (e) with this change ?

lfem 10 - definition of object

Consider the following translation unit:

struct complex
{
double real (2);
double imag;
}
#define D_PER_C (sizeof (struct complex) / sizeof (double))

struct complex *f (double x)

{
struct complex *array = malloc (sizeof (struct complex) +
sizeof (double)):
struct complex *pc;
double *pd;
if (array == NULL)
return NULL;

array (1).real 0) = x; /*Lline A*/ x

“array (M.real ()= x; = /*LineB*/><
array (1).imag = x; /* Line C*/>"
pc=amray + 1; /*LineD*/
pc = aray + 2; /*LlineE*/ X
pd = &(array (1).real (0)); [* Line F*/>
pd = &(array (1).real (1)); /*Line G */ >
pd = &(array (1).imag): . ['LineH*/ >

¥ G o rs&%ébaﬁ*:&‘(gms{m%m}) EDEPERAEE S Lmeﬁp;ﬁ,& JeRPL 5*%@WMEVJ@ﬁT§nWﬂ‘;

pd = &(crrcy (0) reol an+ D PER il SO Llne J '/>c
:uvzzmmwwpdw&(v O)imac) =D 3 T
pd= &(arroy [O) real (0)) + D PER 2CT2; /' Llne E&e

Feather, Page 13

pd = &(array (0).real (0)) + D_PER_C + 1; /*LineM?*/ |
pd = &(array (0).real (0)) + D_PER_C +2; /*Line N?*/
return array;

}

Subscripting is strictly conforming if the array is "large enough’ (6.3.6).
For each of the marked lines, is the assignment strictly conforming ?

Item 11 - alignment and structure padding

The existence of structure padding (6.5.2.1) can be detected by a strictly
conforming program by use of the sizeof operator and the offsetof macro.

(o) If a structure has a field of type t, can the alignment requirements
of the field be different from the alignment requirements of objects
of the same type that are not members of structures ?

If the answer to (Q) is yes, then where applicable the remaining questions
should be assumed to have been asked for both objects within structures
and objects outside structures.

(b) If an array has a component type of 1, can the alignment requirements
of the elements of the array be different from those of independent
variables of type t ?

The alignment requirement of a type is that addresses of objects of that
type must be multiples of some constant (3.1); for some type t, this is
written A(®) in this item.

(c) For any type t, can the expression (sizeof(t) % A®)) be non-zero (in
other words, can A() be a value other than 1, sizeof(t), ora
factor of sizeof (1)) ?
It would appear not, because otherwise adjacent elements of an array
of objects of type t would either not be correctly aligned, or else
would not be contiguously allocated.

(d) Can A(struct foo) be greater than the least common multiple of
Alype_1), Altype_2). AGtype_n), where type_1 to type_n are the
types of the elements of struct foo ? In particular, if a structure
holds exactly one element, can A(structure type) be different from
A(element type) ? (In each case, if the answer to () is yes, Atype)
should be interpreted appropriately.)

(e) If, at any point in a structure or union (obviously excluding the
start), there is more than one size of padding that can satisfy all .
alignment requirements, can any size be used, or must the smallest
(possibly zero) padding be used because that is all that is
‘necessary to achieve the appropriate alignment” ?

i (f) [fQ sructared vy’pe"hos trailing padding 1o ensure That ifs Use as
an array element would be correctly aligned, must objects of that

Feather, Page 14

type which are not array elements also have the padding ? If not,
what is the effect of using memcpy to copy the value of one such
object to another thus ?

struct fred a, b;
e f
memcpy (&a, &b, sizeof (struct fred));

It appears from 6.3.3.4 ("the size is determined from the type of
the operand”) that "sizeof @' must equal "sizeof (struct fred)". Is
this correct ?

(@) When an element of a structure is in turn a structure, can tfrailing
padding of the inner structure be reused to hold other elements of
the enclosing structure ? For example, in:

struct outer

{
struct inner { long a; char b; } inner;
charc;

kL

is it permitted for "offsetof (struct outer, €)' to be less than
"sizeof (struct inner)" ?

Suggested Technical Corrigendum: in two places in subclause 6.5.2.1, change

"appropriate alignment" either to "appropriate alignment, or for any other
purpose’, or to "appropriate alignment, but not for any other purpose”.

[tem 12 - alignment of allocated memory

Is a piece of memory allocated by malloc required to be aligned suitably
for any type, or only for those types that will fit into the space ? For
example, following the assignment:

void *vp == malloc (1);
is it required that (void *)(int *)vp compare equal to vp (assuming that

sizeof(int) > 1), or is it permissible for vp to be a value not suitably
aligned to point to anint ?

ltem 13 - pointers to the end of arrays

Consider the following code exiracts:

int a (10);
int *p;

Feather, Page 15
and

int *n = NULL;
int *p

iy
p=&*n;

In the first extract, is the assignment strictly conforming (with p being
set to the expression a + 10), or is the constraint in 6.3.3.2 violated
because a(10) is not an object ? Note that this expression is often seen
in the idiom:

for (p = &a(0); p < &a(10); p++)
A

In the second extract, is the assignment strictly conforming (with p being
set to a null pointer), or is the constraint in 6.3.3.2 violated because
*n is not an object ?

If only one assignment is strictly conforming. what distinguishes the

two cases ? If either assignment s strictly conforming, what distinguishes
it from the situation described in the following extract from the response
to Defect Report 12 ?

Given the following declaration:
void *p:

I
I
Il
I
I 1 the expression &*p is invalid. This is because *p is of

I 1 type void and so is not an Ivalue, as discussed in the quote

I 1 from Section 1ISO:6.2.2.1 above. Therefore, as discussed in

I I the quote from Section 1SO:6.3.3.2 above, the operand of the
I | & operator in the expression &*p is invalid because it is

I' I neither a function designator nor an Ivalue.

I
I
[

This is @ constraint violation and the translator must issue a
diagnostic message.

Suggested Technical Corrigendum: append to the fifth paragraph of the
Semantics section of subclause 6.3.6: "and the result of that operator is
not directly used as the operand of the unary & operator".

Note that, given "int x(5)(5)", this change will explicitly permit
"&x(4)(5)" but not "&x(5)(0)". If the latter is considered desirable,
more complex wording will be needed.

ltem 14 - stability of addresses

Feather, Page 16

using fread(), is it guaranteed to compare equal to the address of the
original object taken again ?

[tem 15 - uniqueness of addresses

Consider the following translation unit:

unsigned int f (unsigned int a)

{
unsigned int x, y:

X=qQ;
X=xX*X+Q;
if (x> 100)
return x; /* Returned value must be > 100 */
if (&x == &y)
return O;
y=a+1;
y=y*y+19
return y; /* Returned value must be >= 19 */

}

unsigned int g1 (void) { return 0; };
unsigned int g2 (void) { return 0; };

unsigned int g (void)
{

return g1 = g2
}

unsigned int h (void)
{
return memcpy = memmove;

}

const int j1
const int j2

unsigned Int j (void)

return &j1 1= &j2;
}

(o) Can f ever return zero ? An aggressive optimizer could notice that x
and y are never used at the same time, and assign them the same memory
location. (The optimizer could be designed to conceal the fact that x
and y are sharing storage, for example by forcing the comparison to be
unequal. Such an application of the "as if* rule (5.1.2.3) would become
ooy Increcsml ; dlfflCUl‘l' to lmplemem‘ln the presence of operoﬂons such

‘ cnd ‘rhen reodung IT bcck in Icn‘er in the same run of the progrom T

) 3%

Feather, Page 17

However, this is irrelevant; the issue is whether or not the
implementation is required to conceal it in the first place.)

(b) Can g ever return zero ? A optimizer using an intermediate form can
easily determine that the two functions have identical effects.

(©) Can h ever return zero ? The library function memmove (7.11.2.2)
completely meets the requirements for memcpy (7.11.2.1) and so they
could be implemented using the same code (even if the answer to (b)
is no, this could happen if the system library is not implemented in C).

(d) Canj ever return zero ? Since the two variables are constants, code

which uses j1 instead of j2 anywhere except in an address comparison
cannot distinguish them.

ltem 16 - constancy of system library function addresses

(These questions approach the same problem from three slightly different
directions.)

(o) If a pointer to a given standard library function (say strlen) is
evaluated in two different translation units, and the pointers compared,
must they compare equal ?

() Can a conforming implementation declare a standard library function as
having internal linkage, or must the identifiers with file scope
declared in standard headers have external linkage ?

(©) If the contents of the header <string.h> include the following
definition of "strlen”, is the implementation conforming ?

static size_t strlen (const char *_s)

{

size_t _len=0;

while (*__s++)
_len++;
return __len;
}

[tem 17 - merging of string constants

Consider the following code:

char *s1 ="abcde" + 2;
char *s2 = "cde";

Can the expression (s1 == s2) be non-zero ? Is the answer different if
the first string literal is replaced by the two literals "ab" "cde"
(because then there are identical string literals) ?

135

Feather, Page 18

ltem 18 - left shiftf operator

The result of the left shiff operator E1 <z E2, when E1 is signed., Is
defined (6.3.7) as E1 left-shiffed by E2 bits, with vacated bits filled
with zeros. But what exactly does this mean ?

The Standard defines a bit (3.3) only as a unit of data storage. Bits

are related to the value of an object only in 6.1.2.5, which specifies

the representation of certain types. It may therefore be claimed that
the left shift operator must act on representations, which are of fixed
length. In this interpretation, the left E2 bits (including the sign bit)

are lost, as they would be if E1 was unsigned:; the sign bit of the result

is taken from a bit in E1, E2 places to the right of the sign bit and,
provided that the resultant bit pattern actually represents a value of the
result type, an exception is impossible.

On the other hand, it may also be claimed that the whole of subclause 6.3
specifies the meaning of operations in abstract mathematical terms, subject
to the general note in about exceptions. In this view, the bit sequence
representing the non-sign part of a signed integer is converted by the

shift operation to a bit sequence of indefinite length, and, to avoid an
exception due to overflow, this bit sequence must fit back in the non-sign
part without the loss at the left of anything but copies of the sign bit.

(@) Which of these two views is correct ?

(b) If the answer o (a) is the first view, does undefined behaviour oceur
if the resulting bit pattern is not the representation of an integer ?

The following questions apply only if the a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>