
Proposal for C2x 

WG14 N2960 

Title:   _BitInt Fixes 

Author, affiliation: Aaron Ballman, Intel 

    Philipp Klaus Krause, Albert-Ludwigs-Universität Freiburg 

    Elizabeth Andrews, Intel     

Date:    2022-04-11 

Proposal category:  Bug Fixes 

Abstract:   Offers several minor corrections to the wording for bit-precise integer types. 

  



_BitInt Fixes 
Reply-to: Aaron Ballman (aaron@aaronballman.com), 

                Philipp Klaus Krause (krauseph@informatik.uni-freiburg.de) 

                Elizabeth Andrews (elizabeth.andrews@intel.com) 

Document No: N2960 

Date: 2022-04-11 

Summary of Changes 
N2960 

• Prohibit using a bit-precise integer type as a compatible type for an enumeration 

N2946 

• Original proposal 

Introduction and Rationale 
After adding bit-precise integer types [N2763] to C23, some minor issues with the wording were 

discovered. This paper attempts to correct the issues known at this time. 

The proposed changes in this document are orthogonal and should be voted on separately by the 

committee for inclusion in C23. All proposed wording in this document is a diff from WG14 NYYYY. 

Green text is new text, while red text is deleted text. 

Clarifications to Integer Promotions 
The wording on integer promotion is ambiguous. While the examples clarify it, the wording should still 

be improved. 

Proposed Straw Poll 
Does WG14 wish to adopt NXXXX Clarifications to Integer Promotions into C23? 

Proposed Wording 
Modify 6.3.1.1p2 (drafting note: there is a colon inserted before the deleted text, but it may be hard to 

visually spot depending on how the text renders.): 

If the original type is not a bit-precise integer type (6.2.5): and if an int can represent all values of the 

original type (as restricted by the width, for a bit-field)... 

Clarify Increment/Decrement Behavior 
The wording for the prefix increment operator says that the expression E++ is equivalent to (E+=1). If E 

is a value of bit-precise integer type, this implies a conversion between the bit-precise integer and the 

integer literal 1. Instead, it should be made clear that there is no conversion involved as the integer literal 

should be of the same type as the expression E. 

Proposed Straw Poll 
Does WG14 wish to adopt NXXXX Clarify Increment/Decrement Behavior into C23? 



Proposed Wording 
Modify 6.5.3.1p2: 

The value of the operand of the prefix ++ operator is incremented. The result is the new value of the 

operand after incrementation. The expression ++E is equivalent to (E+=1), where the value 1 is of the 

appropriate type. … 

Exempt [u]intmax_t From Being Large Enough to Represent a Bit-

Precise Integer 
The current wording requires intmax_t and uintmax_t to be large enough to hold any value of an 

arbitrary bit-precise integer width. This could be a burden on implementations wanting to support a large 

width for bit-precise integers, and on users of intmax_t and uintmax_t. We propose to drop the 

requirement. 

Proposed Straw Poll 
Does WG14 want to drop the requirement of [u]intmax_t being able to hold any value of a bit-precise 

integer for C23 as in NXXXX? 

Proposed Wording 
Modify 7.20.1.5p1: 

The following type designates a signed integer type capable of representing any value of any signed 

integer type other than a signed bit-precise integer type: 

intmax_t 

The following type designates an unsigned integer type capable of representing any value of any unsigned 

integer type other than an unsigned bit-precise integer type: 

Which Types in stdint.h Should be Allowed to be a Bit-Precise Integer 

Type? 
The current wording disallows the use of bit-precise integer types for the types [u]intN_t, but is unclear 

on [u]intptr_t and [u]intmax_t. The intent of the original proposal for bit-precise integer types was 

to disallow their use for all types defined in stdint.h. 

On the other hand, the rationale for disallowing their use was that bit-precise integers narrower than int 

behave differently with regards to integer promotion vs. other types. So, it could make sense to only 

disallow the use of bit-precise integer types for stdint.h types narrower than int. This would allow 

implementations to easily provide e.g. an efficient [u]intptr_t type when int is 16 bits but pointers are 

24 bits without needing support for a 24-bit integer type other than the bit-precise type. 

Proposed Three-Way Straw Poll 
Which stdint.h types should be allowed to be bit-precise integer types? 

0) Leave it as is – [u]intN_t may not be bit-precise, but [u]intptr_t and [u]intmax_t are unclear. 

1) None of [u]intN_t, [u]intptr_t and [u]intmax_t. 

2) None of [u]intN_t, [u]intptr_t and [u]intmax_t, unless they are wider than int. 



Proposed Wording 1) 
Modify 7.20.1.4p1: 

The following type designates a signed integer type other than a bit-precise integer type with the property 

that… 

… 

The following type designates an unsigned integer type other than a bit-precise integer type with the 

property that… 

Modify 7.20.1.5p1: 

The following type designates a signed integer type other than a bit-precise integer type capable of 

representing any value of any signed integer type: 

intmax_t 

The following type designates an unsigned integer type other than a bit-precise integer type capable of 

representing any value of any unsigned integer type: 

Proposed Wording 2) 
Modify 7.20p4:  

None of the types shall be defined as a synonym for a bit-precise integer type, unless the width of the type 

is wider than int. 

Modify 7.20.1.4p1: 

The following type designates a signed integer type other than a bit-precise integer type with a width the 

same as or narrower than int with the property that… 

… 

The following type designates an unsigned integer type other than a bit-precise integer type with a width 

the same as or narrower than int with the property that… 

Modify 7.20.1.5p1: 

The following type designates a signed integer type other than a bit-precise integer type with a width the 

same as or narrower than int capable of representing any value of any signed integer type: 

intmax_t 

The following type designates an unsigned integer type other than a bit-precise integer type with a width 

the same as or narrower than int capable of representing any value of any unsigned integer type: 

Type Compatibility With Enumerations 
The standard currently allows an enumerated type to be compatible with “a signed integer type, or an 

unsigned integer type”, which currently allows for an enumerated type to be compatible with a bit-precise 

integer type. However, bit-precise integer types do not undergo integer promotion, and (considering C90 

DR013) it is unspecified whether the composite type of an enum and its compatible integer type is the 

enum or the compatible integer type. So we think it is best to restrict enumerated types such that they 



cannot be compatible with a bit-precise integer type in order to reduce surprising behavior for users 

involving integer promotions. 

Proposed Straw Poll 
Does WG14 wish to adopt NXXXX Type Compatibility With Enumerations into C23? 

Proposed Wording 
Modify 6.7.2.2p5: 

Each enumerated type shall be compatible with char, a signed integer type, or an unsigned integer type. 

The choice of type is implementation-defined, but shall not be a bit-precise integer type and shall be 

capable of representing the values of all the members of the enumeration. 

Acknowledgements 
We would like to recognize the following people for their help with this work: Jens Gustedt and Joseph 

Myers. 

References 
[N2763] 

Adding a fundamental type for N-bit integers. Ballman, et al. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2763.pdf 

 

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf

