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Change Log 
2021-12-07: 

• Updated to include the adoption of bit-precise integers. 
• s7.24 p6 now outlines requirements for a platform that defines its own checked & unchecked 

integer types. 
• Addressed comments made on post SC22WG14.20725 in the reflector. 

2021-08-02: 
• The inexact flag is now an “overflow” flag. 
• Wording change: A flag is no longer “set” or “clear”; it is now set to true or false. 
• Normative wording that the checked integer types are “complete object types”. 

2021-06-27: 
• Removed core proposal 

2021-03-10: 
• Many syntactic fixes to the normative text, such as: s/must/shall/g; s/In other words,/, (that is,/g;  
• Distinguished between types and variables in normative text 
• Added ‘Recommended practice’ sessions to encourage compiler diagnostics for invalid input 

types. 
2021-02-12: 

• Consistently used “integer type other than plain char, bool, or an enumeration type” to 
indicate the unchecked types supported by the proposed macros. 

• The result pointer in the checked integer operations must now reference a “modifiable” lvalue. 
• Added to the supplemental proposal that two checked integer types are compatible if their 

analogous unchecked types are compatible. 
2021-01-06: 

• There is a new “Usual Arithmetic Conversions” section that addresses some differences in 
behavior between the C arithmetic operators and the GCC Built-ins. Our checked integers 
follow the same behavior as the GCC Built-ins, and this is described in the normative text. 

• All new definitions now live in a new header: stdckdint.h, rather than the familiar 
stdlib.h. They also live in a new section of Chapter 7, instead of a subsection in the 
“General Utilities” section. 

• The checked integer types now have an "inexact" flag rather than an "exact" flag. The inexact 
flag is true if and only if overflow, truncation, or misinterpretation of sign occurred, and false 
otherwise.  Likewise, the macros that return a flag return true if and only if overflow, 
truncation, or misinterpretation of sign occurred, and false otherwise.  This is in accordance 
with the GCC built-ins. 

• Changed the make_ckd_type_t() function names to ckd_mk_type_t(). The functions 
are also marked [[nodiscard]] 

• Added a ckd_mk () macro, which provides the same functionality as the ckd_mk_type_t() 
functions. 
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• The checked integer types are now “complete object types”. 
• Removed “generic” from normative text, in lieu of addressing families of generic functions and 

macros in separate proposal 
• Replaced "signed or unsigned character or integer" with "signed or unsigned integer". 
• Added a paragraph to “Approach Conclusion” explaining that we don’t currently allow implicit 

conversion or typecasting between checked & unchecked integers. 
• Incorporated definition of ‘overflow’ and usage of wraparound / wrapping from ISO IEC 

10967-1. 
• Referenced the results of several straw polls to support paper’s approach. 

2020-05-05: 
• Incorporated heterogeneous capability (to add differently-type integers), which more closely 

resembles GCC/Clang behavior. Still a core + supplemental proposal but their contents have 
been reorganized. 

• Eliminated compile-time constant expressions from normative text. 
• New section that promotes use of checked/ckd_ over other terminology choices 
• New section that addresses compatibility with N2501 (extended integer types) 
• Updated proof-of-concept implementation, added discussion about extending it, including 

N2501 compatibility. 
• Removed most type-specific functions, leaving just the macros. (They could rely on type-

specific functions, but that is a quality-of-implementation issue.) 
 

2019-12-06:  
• s/checked_/ckd_/g; in proposed API 
• Added ‘Extensions’ section which lets us delegate extensions to subsequent proposals 
• API now uses naming conventions for integer types derived from atomics (C17, s7.17.6) 
• Added integer types for fixed-size integers (eg. uint32_t, etc) to API 
• Added normative text 
• Clarified overflow & wrapping to match usage in C17 
• New document number 

 

The Problem 
Because integers have fixed ranges, arithmetic operations on them can cause unexpected wrapping or 
overflow.  Unsigned integers display modular behavior. While this behavior is well-defined, it is often 
unexpected. Signed integers also frequently display modular behavior, but signed integer overflow is 
actually undefined behavior.  Many real-world vulnerabilities and exploits arise from signed integer 
overflow or unsigned integer wrapping (CVE-2009-1385 and CVE-2014-4377 among many others). 
 
Document n2683, "Towards Integer Safety" provided a Core Proposal and a Supplemental Proposal, 
and the core proposal was accepted by the committee to be adopted into the forthcoming C standard, at 
the June 2021 WG14 meeting.  The Supplemental Proposal was not voted on but received comments. 
This paper provides a current version of the Supplemental Proposal. 
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Convention 

The C17 standard does not define overflow or wrap-around / wrapping.  ISO IEC 10967-1 does define 
overflow, and uses wrap-around and wrapping, and ISO C complies with these definitions for both 
integers and floating-point types. Therefore, we follow the ISO IEC 10967-1 and C17 conventions 
when using these terms. 

In C17, ‘overflow’ is a condition where the result of an operation cannot be represented in the 
associated type of the operation result. Both signed and unsigned integer operations may overflow.  
Silent wrap-around is a behavior that can occur as a result of overflow.  

C17 s6.2.5 p9 clarifies unsigned integer behavior: 

A computation involving unsigned operands can never overflow, because a result that cannot be 
represented by the resulting unsigned integer type is reduced modulo the number that is one 
greater than the largest value that can be represented by the resulting type. 

Conventionally, signed integer overflow is considered undefined in C but unsigned integer overflow is 
defined to silently wrap. 

Related Work 

There have been several attempts to provide safe integer operations: 

GCC Built-Ins 
GCC provides a handful of non-standard intrinsic functions for performing safe arithmetic. They are 
documented at https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html 

These functions return a boolean value indicating whether overflow occurred in the computation. They 
also store the solution in a pointer passed to the function. For example, this function: 

bool __builtin_sadd_overflow (int a, int b, int *res) 

operates on signed ints.  There are similar functions for longs and long longs, as well as for unsigned 
types. There is also a __builtin_add_overflow() macro that takes three parameters and delegates them 
to the appropriate function based on their type. These types need not be identical. If they differ, then 
the result is true if the result cannot be expressed in the result’s type, which could be due to overflow, a 
truncation error or a misinterpretation of sign. That is, the types may be heterogeneous. 

There are also analogous functions for doing safe subtraction and multiplication. However, GCC 
provides no support for division, modulo, or left or right shift operations. 

Because these functions store the result in a pointed-to value, they are not suitable for compile-time 
arithmetic, and embedding them into expressions (such as multiplying the sum of two numbers with the 
subtraction of two more) is cumbersome. 
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Clang provides the same functions and macros described above as GCC. They are documented at:  
https://clang.llvm.org/docs/LanguageExtensions.html#checked-arithmetic-builtins 

MS Visual C has similar C functions in their intsafe.h header file: 
https://docs.microsoft.com/en-us/windows/win32/api/intsafe/ 

Supplemental GCC Built-Ins 

For compile-time operations, GCC provides several additional functions, which are not available in 
Clang or MS Visual C: 

bool __builtin_add_overflow_p (type1 a, type2 b, type3 c) 

This macro operates like the __builtin_add_overflow() , but it does not actually compute the solution 
or store it. It merely returns whether the solution would overflow. It uses the final parameter as the type 
that the solution should occupy to determine overflow. As such, it overcomes the compile-time 
limitations of __builtin_add_overflow(). 

The SafeInt Library 
This is a platform-independent library written by David LeBlanc for providing integer safety: 
https://archive.codeplex.com/?p=SafeInt 

The SafeInt library is implemented in C++ using C++ templates. This shortens the code, as these 
templates can apply to multiple integer types.  C++’s operator overloading also allows the safe 
operations to use the same operators as unsafe operations. That is, a+b is a safe operation if a and b are 
safe integers. 

SafeInt has been bundled with MS Visual Studio: 
https://docs.microsoft.com/en-us/cpp/safeint/safeint-library?view=vs-2019 

Boost Safe Numerics Library 
This is a library for handling safe integers, based on SafeInt: 

https://github.com/boostorg/safe_numerics 

Having evolved from SafeInt, it shares many of the pros and cons of SafeInt. 

Before being integrated into Boost, Robert Ramey proposed adding this library to C++’s standard 
library: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0228r0.pdf 

Java Math Exact Methods 
In 2014, Java 8 was released. One of its new features was the set of exact calculation methods in the 
Math class. They either return a mathematically correct value or throw an ArithmeticException if 
overflow occurs. 

These methods provide overflow checking for addition, subtraction, and multiplication, as well as 
increment and decrement. There are no “exact” methods for division, remainder, or shift operations. 
There are methods to operate on Java int types and Java long types.  
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Java’s +, -, * operators remain unchanged...they will still silently wrap if the mathematical solution 
cannot be represented by the expression type. (Java operations mandate two’s-complement semantics.) 

More information is available at: 

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html 

Approach 
Our approach depends on a number of factors: 
 

Terminology 
Any types, functions, and macros that we propose should use a term to distinguish operations that 
detect overflow from operations that do not. The following candidates are plausible terms: 
 
Term Source Context 
Checked Clang Informally called “checked 

arithmetic built-ins” 
Overflow GCC / Clang All built-ins end with 

“_overflow”                  
Safe LeBlanc / Ramey Proposed “safe<>” template for 

integer types       
Exact Java 8 Operation methods end in 

“Exact” 
 
ISO IEC 10967-1 defines:  

a) inexact: the result is rounded and different from the exact result.  
b) underflow: the absolute value of the unrounded result is less than the smallest normal value, and 

the rounded result may have lost accuracy due to the denormalization (more than lost by 
ordinary rounding if the exponent range was unbounded).  

c) overflow: the rounded result (when rounding as if the exponent range was unbounded) is larger 
than what can be represented in the result datatype.  

 
Ultimately the ISO definitions for ‘inexact’ and ‘overflow’ are too specific and exclusive to be used 
here, as a flag to indicate overflow also indicates truncation, misinterpretation of sign, and signed  
integer overflow and unsigned integer wrapping. 
 
Of these terms, the term “overflow” is the most precise. As noted earlier, overflow is, in C parlance, 
something that can happen with both signed and unsigned integers, and our types and operations 
prevent overflow and nothing else. Nonetheless, referring to them as “non-overflowing” types and 
methods is awkward. Furthermore, overflow is not the only possibility…values could be truncated 
during conversion, and misinterpretation of sign can occur, meaning that “overflow” is no longer 
correct.  However, referring to operations as checked types and operations (and the others as unchecked 
types and operations) is straightforward and intuitive, albeit less precise. We will therefore use “ckd_” 
as a prefix when designating those types and operations that detect overflow, truncation, or 
misinterpretation of sign.   
 
Any flag that determines if a number was computed incorrectly will be called an “overflow” flag. 
While ‘overflow’ has several varying meanings, with the most official coming from ISO TS 10967-1, 
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they are all subsets of the informal English definition, and thus the term, with its English meaning, is 
still considered the best fit. 
 
WG14 conducted a straw poll in the October 2020 virtual meeting. The poll asked if the prefix should 
be changed from "ckd_" to "checked_". The poll results were 8 in favor, 6 against, and 9 abstaining, 
which was interpreted as "divided". 

Invention 
While the committee's charter discourages invention, what constitutes “invention” is unclear. Is it 
invention to adopt __builtin_sadd_overflow(), implemented in GCC & Clang, but rename it? What if 
we reorder the arguments? What if we make it produce compile-time constant expressions?  We feel 
the function is not suitable for standardization as is, but we could standardize something with the same 
functionality but a better signature. 
 

Ease of use 
Computing a complicated mathematical equation such as a * b + c * d becomes cumbersome when 
using functions (or function-like macros) to perform the math. Preserving an “overflow bit” 
complicates things further.  A solution that merely provided functions without overloading operators 
would be cumbersome. For example: add( multiply( a, b), multiply( c, d)) is harder to read, even 
without considering the possibility of overflow. 
 
However, restricting ourselves to functions does have several advantages: Operators introduce 
ambiguities in the syntax, which are traditionally resolved by precedence order and the associative rule. 
The associative property of addition implies that (a+b)+c == a+(b+c), which means the additions can 
be done in either order.  Technically C does not guarantee this, because signed integer overflow is 
undefined behavior, but when signed overflow wraps, the associative rule is preserved. However, the 
associative rule is also not preserved when considering overflow.  (UINT_MAX + 1) – 1 and 
UINT_MAX + (1 – 1) both produce the same result in mathematical integers, and in C signed integers 
when overflow wraps. However, the first evaluation overflows, but the second doesn’t. 
 
Furthermore, a discussion on the WG14 reflector reveals that everyone has their own approach to 
integer safety. A one-size-fits-all solution is unlikely to satisfy enough committee members to gain 
traction. 
 
We therefore choose to forego usability and implement a minimal “bare-bones” solution, upon which 
everyone can propose more user-friendly options. 
 
An alternative proposal would be to standardize access to overflow bits. The x86 family of processors, 
as well as many others, will have an ‘overflow flag’ that indicates if signed integer overflow occurred 
in the last operation. They also have a ‘carry flag’ to indicate if unsigned integer wrapping occurred. 
However, these flags, while common, are not universal. The DEC Alpha lacks them completely, but 
provides other mechanisms for detecting overflow.  Therefore, we must standardize some way of 
detecting when operations overflow, but we cannot standardize access to these flags. 
 
Extensions 
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Our decision to produce a core proposal and supplemental proposal allows us to forego many 
extensions, delegating them to subsequent proposals, and we need only ensure that our core proposal 
makes them possible.  
 
For example, it has been suggested that we provide overflow checking for atomic types.  This could be 
done, but entails many difficulties dealing with concurrency, and would be best handled as a separate 
proposal.   We employ this same strategy to other suggestions, including operator overloading.  
 
There was also a suggestion to extend this proposal to smaller types like short and char.  We chose to 
ignore those types because of integer promotions, which promote shorts and chars to ints (signed or 
unsigned) before performing operations on them. Supporting shorts and chars would add extra 
portability complications, and hence we encourage others to provide support for them, but will not 
support them here. 
 
Compatibility with N2590 (Adding Fundamental Type for N-bit Integers) 
 
N2590 (fka N2501) proposes adorning ISO C with “extended” integers, that support an arbitrary width. 
They behave much like bit-fields, and they can have a minimum of 1 value bit, with no official 
maximum, although unofficially they may support millions of value bits.  While these integers support 
all of the standard C operators, operations on extended integers are currently unchecked.  A proposal to 
endow extended integers with checked types and operations would be useful should both this proposal 
and N2501 be standardized.  Such a proposal would be useful, but should be distinct from both our core 
and supplemental proposals. 
 
We can address some technical details in the “Proof of Concept” section. 
 

Compile-time Evaluation 
A solution that can be used to compute compile-time constant expressions is preferable to one that 
cannot be used at compile-time. Only the GCC supplemental functions provide compile-time constant 
expressions.  However, this can also be a quality-of-implementation issue; many platforms may choose 
to make their checked arithmetic provide constant expressions, and we should not prevent them from 
doing so. 
 
We have decided to forgo standardizing compile-time constant expressions in our checked arithmetic, 
and leave it as a quality-of-implementation issue. 
 

Namespace Pollution 
It has been suggested that the GCC built-ins, by defining many functions pollute the namespace, and a 
suitable standard proposal would suffer the same fate. This problem is being addressed by N2409, and 
we will not address it separately here. 
 
 

Standard Arithmetic Conversions 
The arithmetic operations in standard C can surprise programmers occasionally. Consider this code: 
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  signed int32_t MAX_INT = 0x7fffffff;       // max 32-bit value 
  signed int32_t a1 = MAX_INT + 1;           // Wraparound: a1 = - 2^32 
  signed int64_t a2 = MAX_INT + 1;           // Wraparound: a2 = - 2^32 
  signed int64_t a3 = (int64_t) MAX_INT + 1; // No wraparound: a3 = + 2^32 
 
This happens because C performs binary integer operations in a type sufficient to represent both 
operand types, even if this type is not sufficient to hold the mathematical result. 
 
The GCC built-ins circumvent this problem by not using arithmetic conversions. Instead, they use an 
“infinite precision signed type” to bypass overflow during the operation: 
 
  // assumes 32-bit int, so MAX_INT = 2^31 - 1 
  signed int64_t a4; 
  bool flag = __builtin_sadd_overflow( MAX_INT, 1, &a4); 
  // No wraparound: a4 = + 2^31, flag = false 
 
The GCC built-in wording for its operations is: 

These built-in functions promote the first two operands into infinite precision signed 
type and perform addition on those promoted operands. The result is then cast to the 
type the third pointer argument points to and stored there. If the stored result is equal 

to the infinite precision result, the built-in functions return false, otherwise they 
return true. As the addition is performed in infinite signed precision, these built-in 

functions have fully defined behavior for all argument values. 

 
For compatibility with the GCC built-ins, our checked-integer operations will employ the same 
strategy. An operation where the result type is specified (implicitly by an argument) will not be 
hindered by the limits of a type implied by usual arithmetic conversions.  However, an operation where 
the result type is implied (and not specified) will have the type determined by usual arithmetic 
conversions. So: 
 
  // assumes 32-bit int, so MAX_INT = 2^31 - 1 
  signed int64_t a5; 
  bool flag2 = ckd_add( &a5, MAX_INT, 1);  // from n2683 
  // No wraparound: a5 = + 2^31, flag = false 
 
  ckd_int64_t a6 = ckd_add( MAX_INT, 1); // from this proposal 
  // Error: ckd_add returns a ckd_int32_t, 
  // which does not implicitly convert to ckd_int64_t 
 
  ckd_int32_t a7 = ckd_add( MAX_INT, 1); // from this proposal 
  // Wraps around: ckd_value(a7) = -2^31, ckd_overflow(a7) = true 
 
There is some question of what terminology to use when adopting this strategy: C17 section 6.5, 
paragraph 8, footnote 96 uses "infinite range and precision" with regard to intermediate floating-point 
operations. Many other places in C17also use the terms "infinite range" or "infinite precision", but they 
all refer to floating-point operations. We can find no usage of these terms when describing integer 
arithmetic.  Nonetheless, we will boldly suggest that our checked integer operations will operate as if 
they cast their operands to an infinitely-ranged integer type before the operation. Afterwards the result 
is cast to a suitable resulting type, and this final cast can cause overflow, truncation, or 
misinterpretation of sign. 
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One final note: While our approach will use what the GCC built-ins call "infinite-precision" arithmetic, 
it can only apply such precision to the arguments of our operation functions and macros. An operation 
like ckd_add(&result, x+y, z) will still employ standard arithmetic conversions when adding 
x to y, although such conversions will not be used with adding x+y to z. 

Bit-Precise Integers 
In the June 2021 virtual meeting, WG14 adopted the “alternative one” proposed wording of 
N2709 Adding a Fundamental Type for N-bit integers.  In N2867, we proposed that the checked integer 
macros from N2683 not apply to N-bit integers, at least until we are confident the two features play 
well together. We continue that assumption for this paper. 

Approach Conclusion 
Given our design decisions, we have decided to provide a core proposal, and a supplemental proposal.  
The core proposal is low-level, and not necessarily easy to use. But it serves as a suitable foundation to 
provide friendlier APIs for the same functionality. Other proposals, such as a ‘checked’ qualifier to 
address integer types, can leverage the core proposal. 
 
The supplemental proposal does exactly this: it leverages the core proposal. Hence it is worthwhile 
only if the core proposal is acceptable. It requires no additional intrinsic functions, and could be 
implemented as a few additional headers and macros.  
 
Neither the core nor the supplemental proposal provide any implicit conversion mechanisms. You 
cannot implicitly or explicitly typecast an unchecked integer to a checked integer, and you cannot 
typecast a checked integer to a checked integer of a different type or signedness.  Such conversions 
could be added in a later proposal, if desired. 
 

Proposal 
The proposal builds on top of the macros defined in the core proposal (from N2683). 
 
We first propose a type to represent checked integers: 
 
  ckd_$TYPE_t 
 
This type provides access to its value, as well as access to an ‘overflow’ flag. It could be implemented 
as a struct, but need not be. It is declared as a “complete object type”, which allows users to copy one 
checked int to another of the same type, using assignment or memcpy().  Many complete object types, 
such as FILE, provide their own initialization routines, but should not be initialized with designated 
initializers. 
 
Here $TYPE represents the type of integer value, as indicated in the following table: 
 
$TYPE Type 
int signed int 

uint unsigned int 
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$TYPE Type 
long signed long 

ulong unsigned long 

llong signed long long 

ullong unsigned long long 

intmax intmax_t 

uintmax uintmax_t 

size size_t 

ptrdiff ptrdiff_t 

intptr intptr_t 

uintptr uintptr_t 

intN intN_t 

uintN uintN_t 

 
The last two types employ a size N, and indicate a signed or unsigned integer of exactly N bits.  The 
precise set of values for N for which signed or unsigned checked integer types are defined is 
implementation-dependent. 
 
The following function-like macros provide access to the contents of this type. Note that the contents 
need not be addressable.  The macro 
 
  bool ckd_overflow(x) 
 
returns true if x’s overflow flag has been set.  The macro 
 
  $TYPE ckd_value(x) 
 
returns x’s value. If the overflow flag is set to false, x’s value is implied to correctly represent the 
mathematical value of whatever operation(s) produced x.  If the overflow flag is set to true and the type 
is signed, then x’s value is unspecified. If the type is unsigned, then x’s value is the expected result of 
modular arithmetic. (Because the C committee has adopted two’s-complement representation, the value 
will be specified to be the expected two’s-complement result regardless of the type’s signedness.) (On 
platforms with two’s-complement arithmetic, x must represent the lower-order bits of the 
mathematically correct value.) 
 
In the October 2020 meeting, WG14 conducted several straw polls about the form of the ckd_mk_* 
services. When a function family was suggested, the poll results were 12 in favor, one against, and 8 
abstaining. When a type-generic macro was suggested, the poll results were 8 in favor, 3 against, and 
10 abstaining. Since both polls indicated favor, we provided both the macro and function family. 
 
The following functions can be used to construct a checked value: 
 
  ckd_$TYPE_t ckd_mk_$TYPE_t($TYPE value, bool overflow); 
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This explicitly constructs a checked integer type given the plain integer and an overflow flag (which 
will typically be false, indicating that the value is correct. However, an overflow flag that is set to true 
could be useful to explicitly indicate an error inside an expression). You could use this to create 
checked values: 
 
  ckd_int_t array[2] = {ckd_mk_int_t(1, false), ckd_mk_int_t(2, false)}; 
 
Likewise, the following macro serves the same purpose: 
 
  ckd_$TYPE_t ckd_mk($TYPE value, bool overflow); 
 
This explicitly constructs a checked integer type given a plain integer and an overflow flag. 
 
Checked integers can only be initialized through the functions or macro described above. They may not 
be initialized through an initializer list. 
 
The following macros from the core proposal: 
 
  ckd_add(result, x, y) 
  ckd_sub(result, x, y) 
  ckd_mul(result, x, y) 
 
are enhanced. In the supplemental proposal, x and y can be any integer type or any checked integer 
type. Likewise, result must be a pointer to any unchecked or checked integer type. If result 
points to a checked integer type, the overflow flag of result is set to the same Boolean value that is 
returned. 
 
To complete the supplemental proposal, these macros can also take the following forms: 
 
  ckd_add(x,y) 
  ckd_sub(x,y) 
  ckd_mul(x,y) 
 
Each macro performs its operation on two integers, checked or unchecked, and returns a result as a 
checked integer. Both x and y may be any integer type or any checked integer type. The resulting type 
of the checked integer’s value is based on the usual arithmetic conversions, as described in C17 
s6.3.1.8. 
 
The two-argument macro forms have several properties: 
 

• They do less than the three-argument macro forms. They check for overflow, but do not 
indicate conversion errors. 

• They do require the ckd_$TYPE_t type to be defined.  
• These macros allow chaining. That is, the expression ckd_add( a, ckd_mul( b, c)) will compute 

a + b * c, and indicate if any error occurs.  
• The type of the resulting expression follows the usual arithmetic conversions. 
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Each macro’s arguments will undergo default integer promotions before being passed to the macro, but 
will not undergo any implicit conversions, including the usual arithmetic conversions. Since checked 
integer types do not support implicit or explicit type conversions, the result of these macros cannot be 
assigned to a plain integer type, or a checked integer of the wrong type. Thus, these macros provide 
type-safety. 
 
 

Proof of Concept (2- vs 3-argument Macros) 
To verify that the supplemental proposal is feasible, we provide the following code. This code 
illustrates how a macro can be overloaded to use variadic forms, complete with type-safety. That is, if 
add() is invoked with invalid arguments, a compiler error is produced. 
 
This mirrors the API of the GCC builtins. 
 
// Prints (on MacOS) 
// Test A: 42 
// Test B: 2020 
 
int printf(const char *format, ...); 
 
void add3(int* ret, int x, int y) { 
  *ret = x + y; 
} 
 
int add2(int x, int y) { 
  return x + y; 
} 
 
#define add(w, ...)                             \ 
  _Generic((w),                                 \ 
           int*: add3,                          \ 
           int: add2                            \ 
           )(w, __VA_ARGS__) 
 
int main() { 
  printf("Test A: %i\n", add(40, 2)); 
  int temp; 
  add(&temp, 2000, 20); 
  printf("Test B: %i\n", temp); 
} 
 
 

Proposed Wording Changes 
These wording changes replace the “Checked Integer Arithmetic” section proposed in n2683. 

7.24 Checked Integer Arithmetic 
 
1 The header <stdckdint.h> defines several macros, functions, and types for performing checked 
integer arithmetic. 
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2 The following integer types are complete object types that support checked integer arithmetic. Some 
of these types may denote the same type.)  For each type described herein that the implementation 
provides, there shall be a checked-integer type. Each type has a key that appears for functions that 
support the type: 
 
Type Key 
signed int int 
unsigned int uint 
signed long long 
unsigned long ulong 
signed long long llong 
unsigned long long ullong 
intmax_t intmax 
uintmax_t uintmax 
size_t size 
ptrdiff_t ptrdiff 
intptr_t intptr 
uintptr_t uintptr 

 
3 Section 7.20 defines several additional integer types. For each such integer type that an 
implementation provides, it shall also provide a checked-integer type with the same width and 
signedness. For each width N, if a platform supports the following type of unchecked integer in column 
1 of the following table, that platform shall also support the analogous type of checked integer 
indicated in column 2 of the table: 
 
Type Key 
intN_t intN 
uintN_t uintN 
int_leastN_t int_leastN 

uint_leastN_t uint_leastN 

int_fastN_t int_fastN 

uint_fastN_t uint_fastN 

 
4 For each integer type listed in the two tables above, the type 
 
  ckd_type_t 
 
is a complete object type that indicates a checked value. This includes an integer value and a flag that 
indicates whether overflow, truncation, or misinterpretation of sign occurred when computing the 
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integer value.  The “type” in “ckd_type_t” is taken from the Key column in the above tables. For 
example, the ckd_ulong_t type indicates a checked value of type unsigned long. 
 
5. If two unchecked integer types are compatible, the analogous checked types are also compatible. 
 
6. A platform that provides an integer type that is not listed in either table may elect to also provide an 
analogous checked integer type with the same width and signedness. The checked type could be would 
be returned by a suitable call to the analogous chk_mk_type_t() function (see 7.24.3).  In this case, the 
platform must document the names of both the unchecked and checked types.  The platform must 
maintain the invariant that the unchecked type of the result of any binary operation performed on two 
unchecked integer types must also have an analogous checked type if the unchecked types of both 
operands also have analogous checked types. 
 
 
7.24.1 The ckd_overflow Macro 
 
Synopsis 
1  
#include <stdckdint.h> 
bool ckd_overflow(ckd_type_t x); 
 
Description 
2 If ckd_type is a checked integer type, the ckd_overflow macro indicates if x was computed 
using an operation that overflowed or suffered truncation or misinterpretation of sign. 
 
Recommended practice 
 
3 It is recommended to produce a diagnostic message if ckd_type_t is not a checked integer type. 
 
Returns 
4 The ckd_overflow macro returns true if overflow, truncation, or misinterpretation of sign 
occurred when x was computed and false otherwise. 
 
 
7.24.2 The ckd_value Macro 
 
Synopsis 
1 
#include <stdckdint.h> 
type ckd_value(ckd_type x); 
 
Description 
2 If ckd_type is a checked integer type, the ckd_value macro indicates the value of x. 
 
3 If the overflow flag is set to false, the value correctly represents the mathematical value of whatever 
operation(s) produced x. Otherwise, the value of x is converted as if by assignment to the type of x.  
 
Recommended practice 
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4 It is recommended to produce a diagnostic message if ckd_type_t is not a checked integer type. 
 
Returns 
5 The ckd_value macro returns the value of x. 
 
 
7.24.3 The ckd_mk_type_t functions 
 
Synopsis 
1  
#include <stdckdint.h> 
[[nodiscard]] ckd_type_t ckd_mk_type_t(type value, bool overflow); 
 
Description 
2 These functions construct a checked integer type given an unchecked integer and an overflow flag. 
 
3 if the overflow flag is true, the value is assumed to have involved overflow, truncation, or 
misinterpretation of sign.* Otherwise the value is assumed to be mathematically correct. 
 

The footnote on 7.24.3p3 should state: 
 

* Constructing a checked integer with an  overflow flag set to true can be useful when 
explicitly indicating an error inside an expression. 

 
Returns 
4 These functions return a checked type that represents the value indicated by value and the exact 
state indicated by overflow. 
 
7.24.4 The ckd_mk macro 
 
Synopsis 
1  
#include <stdckdint.h> 
ckd_type_t ckd_mk(type value, bool overflow); 
 
Description 
2 This macro constructs a checked integer type given an unchecked integer and an overflow flag. 
 
3 If the overflow flag is true, the value is assumed to have involved overflow, truncation, or 
misinterpretation of sign.* Otherwise the value is assumed to be mathematically correct. 
 

The footnote on 7.24.4p3 should state: 
 

* Constructing a checked integer with an  overflow flag set to true can be useful when 
explicitly indicating an error inside an expression. 

 
Recommended practice 
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4 It is recommended to produce a diagnostic message if type is not a suitable integer type. 
 
Returns 
5 This macro returns a checked type that represents the value indicated by value and the exact state 
indicated by overflow. 
 
 
7.24.5 The ckd_op macros 
 
Synopsis 
1  
#include <stdckdint.h> 
bool ckd_add(type1 *result, type2 a, type3 b); 
bool ckd_sub(type1 *result, type2 a, type3 b); 
bool ckd_mul(type1 *result, type2 a, type3 b); 
 
ckd_type_t ckd_add(type1 a, type2 b); 
ckd_type_t ckd_sub(type1 a, type2 b); 
ckd_type_t ckd_mul(type1 a, type2 b); 
 
Description 
2 These macros perform addition, subtraction, or multiplication of the mathematical values of a and b. 
In the first form, they store the result of the operation in *result, and in the second form, they return 
the result as a checked integer.  Each operation is performed as if both operands were represented in a 
signed integer type with infinite range, and the result was then converted from this integer type to a 
particular type.  For the first form, this particular type is type1. For the second form, this type is the 
type that would have been used had the operands undergone usual arithmetic conversion. (Section 
6.3.1.8) 
 
3 Both a and b shall be of any checked or unchecked integer type other than plain char, bool, a bit-
precise integer type, or an enumeration type and their types need not be the same. 
 
4 In the first form, *result shall be a modifiable lvalue and type1 shall be any checked or 
unchecked integer type other than plain char,  bool, a bit-precise integer type, or an enumeration 
type. In the second form, the result will be a checked integer whose type is determined by the usual 
arithmetic conversions. 
 
5 In the first form, the return value indicates if an error occurred in the operation or either argument 
was a checked type whose overflow flag indicated a previous error. In the second form, this 
information is stored in the overflow flag in the return value.  
 
Recommended practice 
 
6 It is recommended to produce a diagnostic message if type1, type2, or type3 are neither 
checked integer types nor suitable unchecked integer types. 
 
Returns 
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7 The macros of the first-form return false if type1 is sufficient to hold the mathematical result of 
the computation, which is then stored in *result... Otherwise, these macros return true. In this 
case, *result is the mathematical result reduced by modular arithmetic on two’s-complement 
representation with silent wrap-around on overflow. If *result is a checked integer type then its 
overflow flag will equal the macro’s return value. 
 
8 The macros of the second-form return a checked integer type that indicates the result of the 
computation as well as an overflow flag. 
 
9 EXAMPLE  If a and b are values of type signed int, and result is a signed long, then 
   ckd_sub(result, a, b); 
will indicate if a – b can be expressed as a signed long. If signed long has a greater width than signed 
int, this will always be possible and this macro will return false. This behavior occurs whether 
result, a, and b are checked or unchecked. 
 
10 EXAMPLE  If  a and b are values of type signed int and signed long, then 
   ckd_sub(a, b); 
returns a ckd_long_t	that indicates their difference, and whether computing the difference resulted 
in overflow.  It produces the same result if either	a, b or both are checked integers with overflow flags 
set to false. 
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