
JTC1/SC22/WG14 - N2778
Title: Variably-Modified Types
Author: Martin Uecker, University of Göttingen
Date: 2021-07-11

This is a follow up paper to N2660. As discussed there, array types with static or dynamic
bound can be used instead of pointers for safe programming because compilers can use
the length information encoded in the type to detect errors. In fact, a pointer to an array is
nothing else than a bounded pointer type and existing compilers can already add run-time
checks to detect out-of-bounds accesses [Keaton 2014]. From a theoretical point of view, a
variably-modified type is a dependent type, i.e. a type that depends on a value. Such types
were recognized previously as a valuable tool for type-safe low-level programming (e.g.
see [Condit 2007]). For these reasons, we propose to make variably-modified types
mandatory in C23. VLAs with automatic storage duration remain an optional language
feature due to their higher implementation overhead and security concerns on some
implementations (i.e. when allocated on the stack and not using stack probing).

Example:

void foo(int n, double (*x)[n])
{
 (*x)[n] = 1; // invalid access can be detected at run-time

 // (and possibly at compile-time with stronger analysis)
}

References:

[Keaton 2014] Keaton D., and Seacord. R. (2014) Performance of Compiler-Assisted Memory
Safety Checking. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Note CMU/SEI-2014-TN-014, 2014.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=299175

[Condit 2007] Condit J., Harren M., Anderson Z., Gay D., Necula G.C. (2007) Dependent Types for
Low-Level Programming. In: De Nicola R. (eds) Programming Languages and Systems. ESOP
2007. Lecture Notes in Computer Science, vol 4421. Springer, Berlin, Heidelberg.
DOI:10.1007/978-3-540-71316-6_35

Proposed Wording (relative to N2596)

6.10.8.3 Conditional feature macros
__STDC_NO_VLA__ The integer constant 1 , intended to indicate that the implementation
does not support variable length arrays or variably modified types with automatic
storage duration.

4 If the size is not present, the array type is an incomplete type. If the size is * instead of
being an expression, the array type is a variable length array type of unspecified size,
which can only be used in declarations or type names with function prototype scope; 146)
such arrays are nonetheless complete types. If the size is an integer constant expression
and the element type has a known constant size, the array type is not a variable length
array type; otherwise, the array type is a variable length array type. (Variable length arrays
with automatic storage duration are a conditional feature that implementations need not
support; see 6.10.8.3.)

Acknowledgements: Aaron Ballman and Robert Seacord for feedback.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=299175
https://doi.org/10.1007/978-3-540-71316-6_35

