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Abstract

I present a design of parametric polymorphism through which I propose extending C with parametric types
and generic functions. A prototype of this design (for a subset of C) is available.

1 Introduction

It has always been possible to write a “generic function” in C. The typical approaches by which programmers
write a “generic function” in C are the macro approach and the void∗ approach (or a combination of the two);
but both of them suffer from weaknesses:

- The macro approach is unanalyzable and fragile. By non-analyzability, I mean that it is impossible
to syntactically/semantically analyze a macro, as the preprocessor is agnostic to the phrase structure
grammar of C. By fragility, I mean that even a well-analyzed macro expansion is subject to a number of
pitfalls, as the expansion of a macro parameter is a plain text copy of its argument.

- The void∗ approach is nonuniform and ineffective. By nonuniformity, I mean that this approach can
only be realized with types that are pointers. By ineffectiveness, I mean that an object of type void∗
is not dereferenceable: it must be converted “back” so that it can be dereferenced; yet, an incorrect
conversion–in spite of being well-typed–will introduce undefined behaviour to the program.

Since C11, it has also been possible to write a “generic function” by the generic selection approach, i.e.
with the _Generic keyword. Normally, a generic selection is the expansion of a function-like macro (such as
a type-generic macro from the <tgmath.h> header of C99) and indeed appears as a generic function at the
call site. However, programmers must still designate an actual function for each type in the associations of a
generic selection; and hence a generic selection is in reality a (non-generic) type selection dispatcher.

Now, I propose extending C with parametric types and generic functions with a design of parametric polymor-
phism. Parametric types and generic functions, when compared to the macro approach, improve on analyzability
and eliminate fragility; when compared to the void∗ approach, bring uniformity and effectiveness.

2 A Design of Parametric Polymorphism

In this section, I present a design of parametric polymorphism in which parametric polymorphism is accom-
plished via monomorphization. This design does not attempt to be the most expressive design out there, but
to achieve maximum expressiveness in a pluggable and compatible way. I present, in Section 2.1, the syntax of
parametric types; in Section 2.2, the syntax to request their instantiation; in Section 2.3, monomorphization;
and in Section 3, my criterion of pluggability and compatibility.
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Notation

- A term, when introduced, is written with italicized font: e.g. parametric type.
- A term that corresponds to a new grammar nonterminal is written with dark grey slanted font: e.g.

structure type instantiation specifier; the nonterminal corresponding to this term is written hyphenated
(possibility with abbreviations) with green italicized font: struct-type-instantiation-specifier .

2.1 Specifying Parametric Types and Declaring Generic Functions

A type that is specified with a parametric type specifier is a parametric type. This specifier consists of the new
keyword _Any followed by a parenthesized identifier. But a parametric type may only be specified in certain
contexts; one such context is when the parametric type is the type of a function parameter. A function declared
with a parameter of parametric type is a generic function.

Example 1: The figure below shows three generic functions, each one of them with a parametrically typed parameter.

void f(_Any(t) p) {}
void g(_Any(t) p, int q) {}
void h(int∗ p, _Any(t) q, double r) {}

A parametric type may also be specified in the construction of an array, pointer, or function type of a function
parameter; these types, when constructed from a parametric type, become parametric types too. More precisely,
an array type constructed from a parametric type is a parametric array type; a pointer type constructed from
a parametric type is a parametric pointer type; and a function type constructed from a parametric type is a
parametric function type.1 A parametric type that is not a parametric array, pointer, or function type is a plain
parametric type. The parametric function type that is specified by the declarator portion of a generic function
is a bound parametric function type.

Example 2: The figure below shows four generic functions: the parameter of f is of plain parametric type; that of g
is of parametric array type; that of h is of parametric pointer type; and that of i is of parametric function type. The
type of each one of these functions is a bound parametric function type.

void f(_Any(t) p) {}
void g(_Any(t) p[]) {}
void h(_Any(t)∗ p) {}
void i(int (∗p) (_Any(t))) {}

In the parameter list of a generic function, parametric types with equal identifiers are the same type.

Example 3: The figure below shows two generic functions: in f, the parametric type of parameter p, the referenced
parametric type of the type of parameter q, and the parametric type of the parameter in the function type of parameter
r all are the same type; in g, all parametric types are different types.

void f(_Any(t) p, _Any(t)∗ q, int (∗r) (_Any(t))) {}
void g(_Any(t) p, _Any(u)∗ q, int (∗r) (_Any(v))) {}

A parametric type may only be specified as the return type–or in the construction of the return type–of a
generic function when this parametric type also is specified as the type–or in the construction of the type–of
a parameter of this function. (Observe that the notion of a derived type in C encloses parametric array and
pointer types, i.e. a parametric type can, as an element type, derive a parametric array type; and a parametric
type can, as a referenced type, derive a pointer type. However, due to the aforementioned stipulation imposed
on the return type of a parametric function type, the notion of a derived type C does not enclose parametric
function types, i.e. a parametric type cannot, as a return type alone, derive a parametric function type.)

Example 4: The figure below shows three generic functions with a parametrically typed return type.

_Any(t) identity(_Any(t) p) { return p; }
_Any(t) f(_Any(t)∗ p) { return ∗p; }
_Any(t)∗ g(_Any(t)∗ p) { return 0; }

A parametric type may only be specified as the type–or in the construction of the type–of an object declared
in the body of a generic function when this parametric type also is specified as the type–or in the construction
of the type–of a parameter of this function.

1 There is a stipulation imposed on the return type of a parametric function type; I explain it later, still in this section.

2



Example 5: The figure below shows a generic function with a parametrically typed object in its body.

void swap(_Any(t)∗ p, _Any(t)∗ q)
{

_Any(t) v;
v = ∗p;
∗p = ∗q;
∗q = v;

}

A parametric type that is the type of a function parameter, a return type, or the type of a local object may
be qualified.

Example 6: The figure below shows four generic functions with const-qualified parametric types.

void f(const _Any(t) p) {}
const _Any(t) g(const _Any(t) p) { return p; }
void h(const _Any(t)∗ p) {}
void i(_Any(t)∗ const p) { const _Any(t) x; }

A parametric type may also be specified, with the underscore as its identifier, as the type of a structure
member; such a type is a parametric member type. A parametric member type may not be specified in the
construction of an array, pointer, or function type, and may not be qualified.2 A structure type constructed
from one or more parametric member types is a parametric structure type.

Example 7: The figure below shows four parametric structure types with their parametric member types.

struct a { _Any(_) m; };
struct b { _Any(_) m; _Any(_) n; };
struct c { _Any(_) m; _Any(_) n; const int o; };
struct d { _Any(_) m; struct d∗ n; };

A parametric structure type may not be specified, by a structure specifier that declares a new type, as the
type–or in the construction of the type–of a function parameter, a return type, or the type of a local object; but
a parametric structure type may be specified as such types by a structure type instantiation specifier, which I
present in Section 2.2.1.

2.2 Requesting the Instantiation of Parametric Types

A parametric type, like the void type, is an incomplete type that cannot be completed. But the compiler
can instantiate a parametric type upon an instantiation request for it. Instantiating a parametric type consists
in substituting it for a type that is not parametric; such a type is a ground instantiation of this parametric type
and can be a complete type. I present, in Section 2.2.1, the syntax for requesting the instantiation of parametric
structure types; and, in Section 2.2.2, that for requesting the instantiation of bound parametric function types.

2.2.1 Requesting the Instantiation of Parametric Structure Types

The programmer requests the instantiation of a parametric structure type explicitly with a structure type
instantiation specifier, which consists of a type specifier followed by an with selection; which consists of the new
keyword _With followed by a parenthesized member substitution list; which is a comma-separated list where
each element is a member substitution; which is a colon-separated pair of an identifier and a type name. The
type specifier in a structure type instantiation specifier must denote, by either a typedef name or a structure
specifier, a parametric structure type. The identifier in a member substitution must denote a parametrically
typed member of the parametric structure type denoted by its enclosing structure type instantiation specifier.

A parametric structure type may be specified, by a structure type instantiation specifier, as the type–or in
the construction of the type–of a function parameter, a return type, or the type of a local object.

Example 8: The figure below shows a parametric structure type as the type of parameters of generic functions.

struct a { _Any(_) m; };
void f(struct a _With(m:double)∗ p) {}
void g(struct a _With(m:_Any(t)) p) {}

2 I justify these stipulations in Section 2.3.4.
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A request for the instantiation of a parametric structure type is a structure type instantiation request; the
compiler always fulfills it. Yet, when this request occurs outside of a generic function, it is an immediate structure
type instantiation request, that is fulfilled in stage 1 of monomorphization, which I present in Section 2.3.1;
whereas when this request occurs inside a generic function, it is a pending structure type instantiation request
that is pending on the instantiation of the parametric function type that is bound to this function–as I explain in
Section 2.3.2, the compiler does not always fulfill a request for the instantiation of a bound parametric function
type, but, when it does, any structure type instantiation request that was pending on it is indeed requested and
fulfilled in stage 3 of monomorphization, which I present in Section 2.3.3.

Example 9: The figure below shows a program with parametric structure types, a generic function, and a non-generic
function. The structure type instantiation requests inside _ are immediate ones; those inside f are pending ones.

struct a { _Any(_) m; };
struct b { _Any(_) m; _Any(_) n; };
typedef struct a c;
void f(_Any(t) p)
{

struct a _With(m:_Any(t)) x;
struct b _With(m:int, n:double) y;

}
void _()
{

struct a _With(m:int) x;
c _With(m:int const∗) y;
struct b _With(m:double, n:double)∗ z;
const struct b _With(m:double, n:struct a _With(m:int)) w;

}

2.2.2 Requesting the Instantiation of Bound Parametric Function Types

The programmer requests the instantiation of a bound parametric function type implicitly at a principal
instantiation expression, which is an instantiation expression that occurs outside of a generic function; whereas
an instantiation expression that occurs inside a generic function is a subordinate instantiation expression. An
instantiation expression is an expression that consists of an identifier that denotes a generic function as either
the called function within a function call or the operand of a cast. A subordinate instantiation expression is
chained to a principal instantiation expression when the identifier of the function in which it occurs is denoted:

- by said principal instantiation expression; or
- by a subordinate instantiation expression that is chained to said principal instantiation expression.

A request for the instantiation of a bound parametric function type is a function type instantiation request;
the compiler can fulfill it, but it is not obliged to do so, as I explain in Section 2.3.2. When the instantiation
expression of a function type instantiation request is a function call, a function type instantiation request is
a function type instantiation request by function call; whereas when this expression is a cast, a function type
instantiation request is a function type instantiation request by cast.

A function type instantiation request, by function call or by cast, is transitive: it encompasses the parametric
function type that is bound to a principal instantiation expression and all parametric function types that
are bound to subordinate instantiation expressions that are chained to this principal instantiation expression.
Therefore, a single function type instantiation request can instantiate multiple bound parametric function types.

Example 10: Figures 1 and 2 show programs with several generic functions and a non-generic function. In both
programs, the identifiers of all function calls and casts inside _ are principal instantiation expressions. But only in the
program of Figure 1 the function type instantiation requests at these expressions are fulfilled; in the program of Figure 2,
none of them are. I explain the reasoning behind the fulfillment and non-fulfillment of these requests in Section 2.3.2.
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1 struct a { int m; };
2 struct b { _Any(_) m; };
3 void f(_Any(t) p) {}
4 void g(_Any(t)∗ p) { f(∗p); }
5 void h(_Any(t)∗ p) { const _Any(t) x; p = &x; }
6 _Any(t) i(_Any(t) p) { return p + 1.0; }
7 void j(_Any(t)∗ p, _Any(u) q) { ∗p = q; }
8 int k(_Any(t) p) { return p->m; }
9 double l(struct b _With(m:_Any(t))∗ p) { return p->m; }

10 _Any(t) identity(_Any(t) p) { return p; }
11 void _()
12 {
13 int x;
14 f(x);
15 f(&x);
16 (void (∗)(double))f;
17 g(&x);
18 int∗ y;
19 g(y);
20 h(y);
21 i(1);
22 j(y, 1);
23 j(0, 1.0);
24 struct a∗ z;
25 k(z);
26 struct b _With(m:double)∗ w;
27 l(w);
28 identity(identity)(1);
29 }

Figure 1: A program where all of the function type instantiation requests are fulfilled.

1 struct a { int m; };
2 struct b { int∗ n; };
3 struct c { _Any(_) m; };
4 void f(_Any(t)∗ p) {}
5 void g(_Any(t) p) { p + 1.0; }
6 void h(_Any(t)∗ p) { _Any(t) x; ∗p = x; }
7 _Any(t) i(_Any(t) p) { int i = p; return p + 1.0; }
8 void j(_Any(t)∗ p, _Any(u)∗ q) { p = q; }
9 int k(_Any(t) p) { return p->n; }

10 int l(struct b _With(m:_Any(t))∗ p) { return p->m; }
11 void _()
12 {
13 int∗ x;
14 f(∗x);
15 (void(∗)(double))f;
16 g(x);
17 const int∗ y;
18 h(y);
19 i(∗x);
20 struct a∗ z;
21 j(z, x);
22 k(z);
23 struct b∗ w;
24 k(w);
25 struct c _With(m:double)∗ v;
26 l(v);
27 }

Figure 2: A program where none of the function type instantiation requests are fulfilled.
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2.3 Monomorphization

A parametric type can have multiple ground instantiations; each of them reveals a form of this parametric
type. The compiler accomplishes parametric polymorphism via monomorphization, a program transformation
that is composed of the following stages:

1. Structure Types Instantiation - 1st Iteration

2. Function Types Instantiation

3. Structure Types Instantiation - 2nd Iteration

I explain these stages in the upcoming sections. At the end of each one of them, the program in Figure 3 is
shown, in a program representation that is implementation-defined (and internal to a compiler), as transformed
by the stage being explained.

struct a { _Any(_) m; };
struct b { double∗ n; };
_Any(t)∗ f(_Any(t) p) { struct a _With(m:_Any(t)∗)∗ x; return x->m; }
int g(_Any(t)∗ p) { f(p->m); return 1; }
int h(double∗ (∗p) (_Any(t))) { return h(p); }
double∗ i(struct b∗ p) { return p->n; }
void _()
{

double x;
f(x);
struct a _With(m:int) y;
g(&y);
h(i);

}

Figure 3: An illustrative program for the explanation of the stages of monomorphization.

2.3.1 Stage 1: Structure Types Instantiation - 1st Iteration

In this stage, the compiler fulfills immediate structure type instantiation requests. The substitutions with
which the compiler instantiates a parametric structure type are stated by the member substitution lists of
the with selection enclosed by the structure type instantiation specifier that denotes this type. Given these
substitutions, for each structure type instantiation specifier, the compiler:

(a) synthesizes a structure specialization of the denoted parametric structure type; and
(b) patches said specifier with a reference to the synthesized structure specialization.

Example 11: The figure below shows the program from Figure 3 transformed by stage Structure Types Instantiation
- 1st Iteration. [[@spec_struct !id:1 !tag:a !subs:tyof(m)->int]] represents a structure specialization and
[[@spec !id:1]] represents a reference to this specialization.

struct a { _Any(_) m; };
[[@spec_struct !id:1 !tag:a !subs:tyof(m)->int]]
struct b { double∗ n; };
_Any(t)∗ f(_Any(t) p) { struct a _With(m:_Any(t)∗)∗ x; return x->m; }
int g(_Any(t)∗ p) { f(p->m); return 1; }
int h(double∗ (∗p) (_Any(t))) { return h(p); }
double∗ i(struct b∗ p) { return p->n; }
void _()
{

double x;
f(x);
[[@spec !id:1]] y;
g(&y);
h(i);

}
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2.3.2 Stage 2: Function Types Instantiation

In this stage, the compiler attempts to fulfill function type instantiation requests. The substitutions with
which the compiler instantiates a parametric function type are computed by type inference in an implementation-
defined manner–in Section 4.2, I recommend an algorithm for this computation. If and only if there exist
substitutions such that the semantics of the principal instantiation expression to which a parametric function
type is bound is not violated, is a function type instantiation request fulfilled. Given these substitutions, for
each principal instantiation expression, the compiler:

(a) synthesizes a function specialization of the denoted function;
(b) patches said expression with a reference to the synthesized function specialization; and
(c) repeats (a) and (b) for each subordinate instantiation expression that is chained to said expression.

Below, I explain the reasoning for the fulfillment of the function type instantiation requests of Figure 1.

• The type of f is void(∗)(_Any(t)). In line 14 at f(x), f is instantiated as void(∗)(int): parameter
p constrains _Any(t) as an arbitrary parametric type; argument x constrains _Any(t) as an integer
type that is compatible with int. In line 15 at f(&x), f is instantiated as void(∗)(int∗): parameter
p constrains _Any(t) as it does in f(x), but argument &x constrains _Any(t) as int∗. In line 16 at
(void(∗)(double))f, f is instantiated as void (∗)(double). (Observe that f(∗p) in line 4 occurs
inside a generic function and is subordinate instantiation expression.)

• The type of g is void(∗)(_Any(t)∗). In lines 17 and 19 at g(&x) and g(y), g is instantiated twice as
void(∗)(int∗): parameter p constrains _Any(t)∗ as a parametric pointer type; arguments &x and y

constrain _Any(t)∗ as int∗; ∗p reinforces this constraint and further constrains _Any(t) as a type that
can represent lvalues (i.e. a type other than void). Due to the transitivity of an instantiation request,
in lines 17 and 19 at g(&x) and g(y), f also is instantiated twice as void (∗)(int).

• The type of h is void(∗)(_Any(t)∗), the same as that of g. In line 20 at h(y), h is instantiated as
void(∗)(int const∗) rather than as void(∗)(int∗), which is how g is instantiated in line 18 at g(y):
in both h and g, parameter p, together with argument y, constrain _Any(t)∗ as a pointer to an integer
type that is compatible with int; but in h, p = &x strengthens the constraint over _Any(t) to a pointer
to const-qualified int.

• The type of i is _Any(t)(∗)(_Any(t)). In line 21 at i(1), i is instantiated as double(∗) (double):
parameter p, together with argument 1, constrain _Any(t) as int; the return type of i also is _Any(t)
and hence p + 1.0 constrains _Any(t), but as double; since the int constraint over _Any(t) is not
strict, the double constraint over it is allowed to subsume the int one–the usual arithmetic conversions
are performed on 1.

• The type of j is void(∗)(_Any(t)∗, _Any(u)). In line 22 at j(y, 1), j is instantiated as void(∗)(int∗,
int): parameter p, together with argument y, constrain _Any(t)∗ as int∗; parameter q, together with
argument 1, constrain _Any(u) as int; ∗p = x constrains _Any(t) and _Any(u) as compatible types
and _Any(t) as a type that can represent modifiable lvalues. In line 23 at j(0, 1.0), j is instantiated
as void (∗)(double∗, double): although 0 is of type int, it also is the null pointer constant, which
weakens the constraint over p; still, argument 1.0 and ∗p = x are sufficient to constrain _Any(t)∗ as
double∗ and _Any(u) as double.

• The type of k is int(∗)(_Any(t)). In line 25 at k(z), k is instantiated as int(∗)(struct a∗):
parameter p, together with argument z, constrain _Any(t) as struct a∗; p->m constrains struct
a to contain a member named m; the return type of k constrains the type of this member as int.

• The type of l is double(∗)(struct b _With(m:_Any(t))∗). In line 27 at l(w), it is instantiated
as double(∗)(struct b _With(m:double)∗): parameter p, together with argument w, constraint
_Any(_) of member m of struct b as double.

• The type of identity is _Any(t)(∗)(_Any(t)). In line 28 at identity(identity)(1), it is instanti-
ated twice, once as int(∗)(int) and once in delay as int(∗(∗)(int (∗)(int)))(int).

Below, I explain the reasoning for the non-fulfillment of the function type instantiation requests of Figure 2.

◦ The type of f is void(∗)(_Any(t)∗). In line 14 at f(∗x), f is not instantiated: parameter p constrains
_Any(t)∗ as a parametric pointer type; however, argument ∗x constrains _Any(t)∗ as an integer type,
which is not compatible to a pointer type. In line 15 at (void (∗)(double))f, f is not instantiated:
double constrains _Any(t)∗ as a floating type, which is not compatible to a pointer type either.

◦ The type of g is void(∗)(_Any(t)). In line 16 at g(x), g is not instantiated: parameter p, together
with argument x, constrain _Any(t) as int∗; however, p + 1.0 constrains _Any(t) as an arithmetic
type–given that one operand of the addition is a value of floating type–, whereas int∗ is a pointer type.
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◦ The type of h is void(∗)(_Any(t)∗). In line 18 at h(y), h is not instantiated: parameter p, together
with argument y, constrain _Any(t)∗ as const int∗; however, ∗p = x constrains _Any(t) as a type
that can represent modifiable lvalues, whereas const int is not such a type.

◦ The type of i is _Any(t)(∗)(_Any(t)). In line 19 at i(∗x), i is not instantiated: parameter p,
together with argument ∗x, constrain _Any(t) as int; i = p reinforces this constraint as strict; the
return type of i also is _Any(t) and hence p + 1.0 constrains _Any(t), but as double; however, since
the int constraint of _Any(t) is strict, the double constraint over it is disallowed to subsume the int
one–otherwise, a value of floating type could be truncated toward zero on i = p.

◦ The type of j is void(∗)(_Any(t)∗, _Any(u)∗). In line 21 at j(z, x), j is not instantiated: parameter
p, together with argument z, constrain _Any(t)∗ as struct a∗; parameter q, together with argument
x, constrain _Any(u)∗ as int∗; however, p = q constrains _Any(t)∗ and _Any(u)∗ as compatible types,
whereas struct a∗ and int∗ are not compatible. (Observe that it would be possible to instantiate j as
void(∗)(void∗, void∗) in line 21 at j(z, x), but, from a principle standpoint, that would defeat the
intent of making j a generic function.)

◦ The type of k is int(∗)(_Any(t)). In line 22 at k(z), k is not instantiated: p->n constrains _Any(t)
as a structure type that contains a member named n; the return type of k constrains this member as
int; however, argument z constrains _Any(t) as struct a, which does not contain such a member. In
line 24 at k(w), k is not instantiated: p->n and the return type of k constrain _Any(t) as they do in
k(z); however, argument w constrains _Any(t) as struct b, whose member named n is of type int∗.

◦ The type of l is int(∗)(struct c _With(m:_Any(t))∗). In line 26 at l(v), l is not instantiated: p->n
constrains _Any(t) as a structure type that contains a member named m; parameter p constrains this
structure type as struct b _With(m:_Any(t))∗; the return type of l constrains _Any(_) of member
m of struct b as int; however, argument v constraints _Any(_) of member m of struct b as double.

Example 12: The figure below shows the program from Figure 3 transformed by stages Structure Types Instantiation -
1st Iteration and Function Types Instantiation. [[@spec_func !id:2 !name:f !subs:t->double]] (and similar)
represents a function specialization, and [[@spec !id:2]] (and similar) represents a reference to this specialization.

struct a { _Any(_) m; };
[[@spec_struct !id:1 !tag:a !subs:tyof(m)->int]]
struct b { double∗ n; };
_Any(t)∗ f(_Any(t) p) { struct a _With(m:_Any(t)∗)∗ x; return x->m; }
[[@spec_func !id:2 !name:f !subs:t->double]]
[[@spec_func !id:3 !name:f !subs:t->int]]
int g(_Any(t)∗ p) { f(p->m); return 1; }
[[@spec_func !id:4 !name:g !subs:t->[[@spec !id:1]] !chains:[[@spec !id:3]]]]
int h(double∗ (∗p) (_Any(t))) { return h(p); }
[[@spec_func !id:5 !name:h !subs:t->struct b∗ !chains:[[@spec !id:5]]]]
double∗ i(struct b∗ p) { return p->n; }
void _()
{

double x;
[[@spec !id:2]](x);
[[@spec !id:1]] y;
[[@spec !id:4]](&y);
[[@spec !id:5]](i);

}

2.3.3 Stage 3: Structure Types Instantiation - 2nd Iteration

In this stage, the compiler fulfills structure type instantiation requests in the same way that it fulfills type
instantiation requests in the stage Type Instantiation and Specialization - 1nd Iteration, but in this 2nd iteration
the compiler fulfills pending–instead of immediate–structure type instantiation requests.

Example 13: The figure below shows the program from Figure 3 transformed by stages Structure Types Instanti-
ation - 1st Iteration, Function Types Instantiation, and Structure Types Instantiation - 2nd Iteration. The structure
specialization represented by [[@spec_struct !id:6 !tag:a !subs:tyof(m)->double∗]] was pending on the
function specialization represented by [[@spec_func !id:2 !name:f !subs:t->double]]; the structure special-
ization represented by [[@spec_struct !id:7 !tag:a !subs:tyof(m)->int∗]] was pending on the function
specialization represented by [[@spec_func !id:3 !name:f !subs:t->int]].
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struct a { _Any(_) m; };
[[@spec_struct !id:1 !tag:a !subs:tyof(m)->int]]
[[@spec_struct !id:6 !tag:a !subs:tyof(m)->double∗]]
[[@spec_struct !id:7 !tag:a !subs:tyof(m)->int∗]]
struct b { double∗ n; };
_Any(t)∗ f(_Any(t) p) { struct a _With(m:_Any(t)∗)∗ x; return x->m; }
[[@spec_func !id:2 !name:f !subs:t->double !pends:[[@spec !id:6]]]]
[[@spec_func !id:3 !name:f !subs:t->int !pends:[[@spec !id:7]]]]
int g(_Any(t)∗ p) { f(p->m); return 1; }
[[@spec_func !id:4 !name:g !subs:t->[[@spec !id:1]] !chains:[[@spec !id:3]]]]
int h(double∗ (∗p) (_Any(t))) { return h(p); }
[[@spec_func !id:5 !name:h !subs:t->struct b∗ !chains:[[@spec !id:5]]]]
double∗ i(struct b∗ p) { return p->n; }
void _()
{

double x;
[[@spec !id:2]](x);
[[@spec !id:1]] y;
[[@spec !id:4]](&y);
[[@spec !id:5]](i);

}

2.3.4 Parametrically Member Types: Generality, Expressiveness, and Complexity

In this section, I justify why a parametric member type may not be specified in the construction of an
array, pointer, or function type, and my not be qualified. I also justify the reason for the underscore as the
identifier of parametric member type. My justifications take into account the generality of parametric types,
the expressiveness of generic functions, and the complexity of type inference.

Generality of Parametric Types The stipulations above do not interfere with the generality of para-
metrically member types: despite the brevity of _Any(_), they are as general as any parametric type.

Expressiveness of Generic Functions I believe that the stipulations above do not harm the expressive-
ness of generic functions; to the contrary: without them, I believe that such expressiveness could be harmed.
To justify this belief, let me consider parametric types that are the type of a function parameter, a return
type, or the type of a local object. These parametric types, which are not subject to the stipulations in ques-
tion, can, in my opinion, enhance the expressiveness of a generic function when specified in the construction
of an array, pointer, or function type, when qualified, or when correlated through their identifiers. I accredit
this enhancement in expressiveness to the fact that function parameters, return types, and local objects occur
in the same context, with type specifier close to their use; for instance, the figure below shows two generic
functions that are equally general, but I find g more expressive than f. On the other hand, generic functions
and parametric structure types do not occur in the same context, and the specifiers of parametrically member
types are distant from their use; on top of that, a member substitution is intended as an explicit (and exact)
type substitution–it could be unintuitive/surprising to explicitly request a structure type instantiation such as
struct a _With(m:int) but obtain a specialization of struct a where m is not of type int.

int f(_Any(t) p, _Any(u) q) { return q(p); }
int g(_Any(t) p, int (∗q) (_Any(t))) { return q(p); }

Complexity of Type Inference The stipulations above ensure that the constraint arising for the com-
putation of substitutions is confined to a function; without them, this constraint would stretch over to the
specifier of any parametric structure type with a type instantiation request inside a function. Dealing with such
a stretched constraint would only be worth it when paired with a gain in generality and/or expressiveness.
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3 Pluggability and Compatibility of the Design

My design of parametric polymorphism revolves around pluggability and compatibility. My criterion of plug-
gability is straightforward; I explain it in Section 3.1. My criterion of compatibility relies on two perspectives:
one that is objective–which is about program translation–, and another that is subjective–which is about lan-
guage look-and-feel–; I explain the former in Section 3.2 and the latter in Section 3.3; in these sections, I refer
to an extension of C that is extended with my design of parametric polymorphism (and nothing else) as Cα.

3.1 A Criterion of Pluggability

I state the pluggability of parametric polymorphism as the possibility of implementing it through a plugin,
without changing the component of a compiler that is responsible for program translation. (Despite this
possibility, a compiler may nevertheless opt to implement parametric polymorphism intrinsically by changing
such component.) The motivation for a pluggable design of parametric polymorphism is to enable the sharing
of a plugin by multiple compilers; the “interface” for such sharing is syntax rewriting. Therefore, the program
representation that a plugin uses for monomorphization must be rewritable to C syntax as described below.

Rewriting Structure Specializations
The representation of a structure specialization must be rewritten as a new structure specifier whose
syntax is almost identical to that of the parametric structure specifier that it specializes, except that the
identifier of the new specifier is replaced by a unique identifier that is customized by the compiler and
the parametric member types of the parametric structure identifier are substituted, in the new structure
specifier, by their ground instantiations. A reference to a structure specialization must be rewritten as a
structure specifier whose identifier is the one customized by the compiler for this specialization.

Rewriting Function Specializations
The representation of a function specialization must be rewritten as a new function whose syntax is almost
identical to that of the generic function that it specializes, except that the identifier of new function
is replaced by a unique identifier that is customized by the compiler, the bound parametric function
type of the generic function is substituted, in the new function, by its ground instantiation, and the
parametric types in the body of the generic function are substituted, in the new function, by their ground
instantiations. A reference to a function specialization must be rewritten as the identifier customized by
the compiler for this specialization.

Example 14: The figure below shows the program from Example 13 rewritten to C syntax.

struct a__struct_spec_id1__ { int m; };
struct a__struct_spec_id6__ { double∗ m; };
struct a__struct_spec_id7__ { int∗ m; };
struct b { double∗ n; };
double∗ f__func_spec_id2__(double p)
{

struct a__struct_spec_id6__∗ x;
return x->m;

}
int∗ f__func_spec_id3__(int p)
{

struct a__struct_spec_id7__∗ x;
return x->m;

}
int g__func_spec_id4__(struct a__struct_spec_id1__∗ p)
{

f__func_spec_id3__(p->m);
return 1;

}
int h__func_spec_id5__(double∗ (∗p) (struct b∗)) { return h__func_spec_id5__(p); }
double∗ i(struct b∗ p) { return p->n; }
void _()
{

double x;
f__func_spec_id2__(x);
struct a__struct_spec_id1__ y;
g__func_spec_id4__(&y);
h__func_spec_id5__(i);

}
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3.2 An Objective Perspective of Compatibility of Program Translation

I state the compatibility of program translation of Cα with C under a backward and a forward basis: under
a backward basis, I state it as the ability of a Cα compiler to correctly translate C source code; under a forward
basis, I state it as the ability of a C compiler to correctly translate Cα source code. Backward compatibility is
relevant for programmers in general, as it allows them to gradually upgrade their C source code to Cα source
code; forward compatibility is mostly relevant for library programmers, as it allows them to write Cα source
code that can be included–not only in Cα source code but also–in C source code.

In regards to backward compatibility, Cα is almost fully compatible with C; full compatibility is prevented
because of the new Cα keywords _Any and _With, which can be regular identifiers in C source code. But if
these keywords are put aside, then C source code also is Cα source code. Moreover, since these keywords, in
Cα source code, follow and are followed by specific syntax–and in fact can be made contextual keywords–a Cα

compiler can, with great accuracy, distinguish eventual uses of _Any and _With as regular identifiers in C source
code. Therefore, I consider that, in practice, Cα is fully compatible with C.

In regards to forward compatibility, Cα is restrictedly compatible with C by parametric type erasure. What
I suggest with the erasure of a parametric type is that it is preprocessed as void∗ by a preprocessor macro. Of
course, an object with type void∗ is restricted in how it is used, e.g. it cannot be dereferenced; and hence Cα

source code that aims to be included in C source code must restrict the use of objects of “parametric type”. In
effect, parametric type erasure falls back to the void∗ approach of Section 1. However, actual parametric types
still are advantageous in a scenario of forward compatibility because, in Cα source code, they can emphasize
typing violations in a program; I illustrate parametric type erasure and this advantage in the following example.

Example 15: Figure 4 shows how parametric types can be erased with a preprocessor macro; assume that the source
code in this figure is that of lib.h. Figure 5 shows a client of lib.h; when compiled in “forward compatibility mode”
by a C compiler, this program will contain a (silent) undefined behaviour; but when compiled by a Cα compiler, a typing
error will be diagnosed during translation.

#if __STDC_VERSION__ <= 201710L
#define _Any(whatever) void∗
#endif

struct a { _Any(_) m; };
int f(_Any(t) p, void (∗q) (_Any(t))) { return q(p); }

Figure 4: C or Cα source code of a library lib.h.

#include "lib.h"

void g(void∗ p) { int∗ x; x = p; }
void _()
{
double∗ y;
f(y, g);

}

Figure 5: C or Cα source code of a client of the lib.h library. When compiled by: a C compiler, the program
will contain a (silent) undefined behaviour; a Cα compiler, a typing error will be diagnosed during translation.

3.3 A Subjective Perspective of Compatibility of Language Look-and-feel

I do not state what the look-and-feel compatibility of a language is. Instead, I gather the aspects of C that
I believe contribute to its look-and-feel and either point out that a given aspect is not at all affected in Cα or
that it is not meaningfully affected in Cα. In conclusion, I claim that Cα is look-and-feel compatible with C.
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Programming Style/Paradigm Features of languages often are connected with a programming style/-
paradigm. For instance, type inheritance and subtype polymorphism often are connected with object-oriented
programming, while first-class functions and function composability often are connected with functional pro-
gramming. I do not perceive these connections with purism, as I believe that a style/paradigm can still be
programmed with a language that lacks the features to which it often is connected. That being said, the style/-
paradigm to which generic functions and parametric types often are connected is generic programming; and
since generic programming already constitutes the style/paradigm of C due to the macro and void∗ approaches
of Section 1, I argue that the programming style/paradigm of C is not meaningfully affected in Cα.

Runtime and Interoperability Runtime and interoperability of C are not at all affected in Cα.

Elementary Semantics Aspects of the semantics of C like the storage duration of objects, linkage and
scope of identifiers, evaluation of expressions, visibility of declarations, and execution of statements remain
intact in Cα. I refer to the semantics concerning these aspects as the elementary semantics of C, which is not
at all affected in Cα. The typing semantics of C is affected in Cα though; I address it in the next paragraph.

Typing Semantics Although parametric polymorphism enriches the “surface” typing semantics of Cα,
the “core” typing semantics of C remains intact in Cα. More precisely, Cα does not modify the representation
or compatibility of types in C, and does not introduce new built-in types, type constructors, or type relations.
Therefore, the core typing semantics of C is not at all affected in Cα. Yet, the surface typing semantics of Cα

is influenced by type inference. In this regard, as an attempt to preserve, in Cα, the “look” of C, I appeal
to the implicitness of function type instantiation requests; and as an attempt to preserve, in Cα, the “feel”
of C, I appeal to the notion of quasi types. Together with parametric polymorphism being accomplished via
monomorphization, I argue that the overall typing semantics of C is not meaningfully affected in Cα. (Observe
that a compiler can output monomorphised syntax–just as it outputs preprocessed syntax–as an aid to the
programmer to inspect/verify type inference and to assimilate the look-and-feel of Cα.)

Syntax The syntax of lexical elements, expressions, and statements of C remain intact in Cα; that of
declarations is extended, but I argue that not meaningfully affected in Cα. Cα introduces, as a type-specifier :

- a parametric-type-specifier , whose production is _Any ( identifier ) and resembles that of a C atomic-
type-specifier, _Atomic ( type-name ).

- a struct-type-instantiation-specifier , which is produced by a typedef name or structure specifier followed
by the new with-selection, whose production is _With ( member-substitution-list ) and resembles that of a
C generic selection, _Generic ( ... , generic-assoc-list ); while the production of a member-substitution,
identifier : type-name, resembles that of a generic-association, type-name : assignment-expression.

4 A Prototype of the Design (for a Subset of C)

I have built a prototype of the design that I present and have made it available at http://www.genericsinc.
info. This prototype does not cover the entire Cα language, but a language that I refer to as Bα; the analogy
between Cα and Bα is as follows: just as Cα extends C with my design of generic functions and parametric
types, Bα extends a (hypothetical) subset of C that I refer to as B. Although B is just a subset of C, it attempts
to be comprehensive about the typing semantics of C. Therefore, I believe that Bα is sufficient to demonstrate
both the design that I present and its feasibility.

4.1 The Bα Language and its Implementation

The lexical grammar of Bα borrows from the grammar of C: lexical elements identifier and constant ; keywords
void, int, double, const, struct, typedef, and return; and punctuators [, ], (, ), {, }, ->, &, ∗, +, , and =.
The phrase structure grammar of Bα borrows from the grammar of C several nonterminals, but with only a few
of their productions and with simplifications in them; to emphasize such variations, I suffix the nonterminals
in the phrase structure grammar of Bα with -Bα. Moreover, Bα does not recognize every sentence that belongs
to its grammar; while this is true for C as well, I bring this fact to attention because there are sentences that
belong to the grammars of both C and Bα but which are recognized in C and not in Bα; for instance, a coupled
“type and object declaration” such as struct a { int m; } x; is recognized in C but not in Bα: in Bα, the
declarations would need to be decoupled into struct a { int m; }; and struct a x;. I do not provide
a specification for Bα; after all, the non-parametric language within Bα, B, is a subset of C; and the phrase
structure grammar of Bα, which lays below, is extracted from that of C. In the sequence, I highlight what I
assess to be, in Bα, subtle deviations from C that are not perceptible by the grammar of Bα.
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Expressions

primary-expression-Bα:
identifier
constant

postfix-expression-Bα:
primary-expression-Bα

postfix-expression-Bα ( argument-expression-list-Bα )
postfix-expression-Bα -> identifier

argument-expression-list-Bα:
assignment-expression-Bα

argument-expression-list-Bα , assignment-expression-Bα

unary-expression-Bα:
postfix-expression-Bα

& unary-expression-Bα

∗ unary-expression-Bα

additive-expression-Bα:
additive-expression-Bα + unary-expression-Bα

assignment-expression-Bα:
additive-expression-Bα

unary-expression-Bα = assignment-expression-Bα

expression-Bα:
assignment-expression-Bα

Declarations

declaration-Bα:
declaration-specifiers-Bα declarator-Bα ;

declaration-specifiers-Bα:
storage-class-specifier-Bα declaration-specifiers-Bαopt

specifier-qualifier-list-Bα declaration-specifiers-Bαopt

storage-class-specifier-Bα

typedef

type-specifier-Bα:
void
int
double
parametric-type-specifier-Bα

struct-specifier-Bα

struct-type-instantiation-specifier-Bα

typedef-name-Bα

specifier-qualifier-list-Bα:
type-specifier-Bα specifier-qualifier-list-Bαopt

type-qualifier-Bα specifier-qualifier-list-Bαopt

type-qualifier-list-Bα:
type-qualifier-Bα

type-qualifier-list type-qualifier-Bα

type-qualifier-Bα:
const

struct-specifier-Bα:
struct identifier { struct-declaration-list-Bα }
struct identifier

struct-declaration-list-Bα:
struct-declaration-Bα

struct-declaration-list-Bα struct-declaration-Bα

struct-declaration-Bα:
specifier-qualifier-list-Bα struct-declarator-Bα ;

struct-declarator-Bα:
declarator-Bα

struct-type-instantiation-specifier-Bα:
struct-specifier-Bα with-selection-Bα

parametric-type-specifier-Bα:
_Any ( identifier )

with-selection-Bα:
_With ( member-substitution-list-Bα )
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member-substitution-list-Bα:
member-substitution-Bα

member-substitution-list , member-substitution-Bα

member-substitution-Bα:
identifier : type-name-Bα

declarator-Bα:
pointer-Bαopt direct-declarator-Bα

pointer-Bα:
∗ type-qualifier-list-Bαopt

∗ type-qualifier-list-Bαopt pointer-Bα

direct-declarator-Bα:
identifier
direct-declarator-Bα ( parameter-list-Bα )

parameter-list-Bα:
parameter-declaration-Bα

parameter-list-Bα , parameter-declaration-Bα

parameter-declaration-Bα:
specifier-qualifier-list-Bα declarator-Bα

specifier-qualifier-list-Bα abstract-declarator-Bαopt

abstract-declarator-Bα:
pointer-Bα

pointer-Bαopt direct-abstract-declarator-Bα

direct-abstract-declarator-Bα:
( direct-abstract-declarator-Bα )
direct-abstract-declarator-Bα ( parameter-list-Bα )

type-name-Bα:
specifier-qualifier-list-Bα abstract-declarator-Bαopt

typedef-name-Bα:
identifier-Bα

type-and-type-synonym-declaration-list-Bα:
declaration-Bα

type-and-type-synonym-declaration-list-Bα declaration-Bα

Statements

statement-Bα:
expression-statement-Bα

return-statement-Bα

compound-statement-Bα:
{ block-item-list-Bα }

block-item-list-Bα:
block-item-Bα

block-item-list-Bα block-item-Bα

block-item-Bα:
declaration-Bα

statement-Bα

expression-statement-Bα:
expresssion-Bα ;

return-statement-Bα:
return expression-Bα ;

External definitions

base-translation-unit-Bα:
type-and-type-synonym-declaration-list-Bα

function-definition-list-Bα

function-definition-list-Bα:
function-definition-Bα

function-definition-list-Bα function-definition-Bα

function-definition-Bα:

specifier-qualifier-list-Bα declarator-Bα compound-statement-Bα

As I mention in the previous paragraph, there are, in Bα, subtle deviations from C that are not perceptible
by the grammar above. Let me highlight them. In Bα:
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struct a { int m; };
int f(_Any(t) p) { return 1; }
int g(_Any(t)∗ p) { f(∗p); return 1; }
int h(_Any(t)∗ p) { const _Any(t) x; p = &x; return 1;}
_Any(t) i(_Any(t) p) { return p + 1.0; }
int j(_Any(t)∗ p, _Any(u) q) { ∗p = q; return 1; }
int k(_Any(t) p) { return p->m; }
_Any(t) identity(_Any(t) p) { return p; }
int _()
{

int x;
f(x);
f(&x);
f(1.0);
g(&x);
int∗ y;
g(y);
h(y);
i(1);
j(y, 1);
j(0, 1.0);
struct a∗ z;
k(z);
identity(identity)(1);
return 1;

}

Figure 6: The program from Figure 1 adjusted to Bα.

- a type-and-type-synonym-declaration-list-Bα only recognizes a declaration-Bα of a type or of a type syn-
onym; e.g. both the declarations struct a { int m; }; and typedef struct a a_t; are recognized.

- a declaration-Bα is not recognized when it is coupled to a struct-specifier-Bα with a struct-declaration-
list-Bα, i.e. a type declaration; e.g. neither of the declarations typedef struct a { int m; } a_t;

or struct a { int m; } x; are recognized (to be recognized, the type declaration must be decoupled).

- a direct-declarator-Bα ( parameter-list-Bα ) is only recognized in a function-definition-Bα, i.e. function
prototypes are not recognized; e.g. the declaration int f(int p); is not recognized.

- a void type-specifier is not recognized in the specifier-qualifier-list-Bα of a function-definition-Bα, i.e.
functions must have a “valued return”; e.g. the function void f(int p){} is not recognized.

- a compound-statement-Bα is only recognized when its last statement-Bα is a return-statement-Bα (this
item is complementary to the previous one); e.g. the function int f(int p){} is not recognized.

These deviations are not inherent “limitations” of Bα but rather incidental to the brevity and conciseness
of its implementation. Even so, all examples in this proposal are recognized in Bα as long as: array types are
adjusted to pointer types, casts are adjusted to function calls, and void return type of functions are adjusted
to be non-void; for instance, Figure 6 shows the program from Figure 1 with these adjustments.

4.2 An Algorithm for Type Inference

There is a type inference algorithm that can be used to compute–when existing–the substitutions that in-
stantiate a parametric function type. This algorithm, which is implemented for my prototype of Bα, builds on
the techniques presented in the works Inference of Static Semantics for Incomplete C Programs [2] and Type
Inference for C: Applications to the Static analysis of Incomplete Programs [3]; I brief about it below.

Constraint-based Type Inference via Unification In constraint-based type inference via unification,
type inference is reduced to a constraint problem for which a solution is to be discovered via unification. A
solution that fulfills a function type instantiation request are substitutions that unify hinted types, target types,
and implied quasi types that arise as a constraint per pair of instantiation expression and generic function. A
hinted type is the type of an argument of the function call in a function type instantiation request by function
call; and it is a type from the type name of the cast in a function type instantiation request by cast. A target
type is the type of a parametrically typed parameter that corresponds to an argument whose type is a hinted
type. An implied quasi type is a quasi type that, in the body of a generic function, is the type of an expression
that (directly or indirectly) involves either a parametrically typed parameter of this function or a parametrically
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typed object that is local to this function. A quasi type is a parametric type that, despite its parametricity,
can be classified into a type group like that of integer, arithmetic, scalar, or pointer types. If and only if, for
each pair of instantiation expression and generic function in a function type instantiation request, the constraint
arising from hinted, target, and implied quasi types is satisfiable, can the compiler fulfill this request; and types
are instantiated in delay, i.e., a bound parametric function type only is instantiated once every type that is
parametrically typed by this bound parametric function type is instantiated.

5 Related Proposals

- N2632 Type inference for variable definitions and function returns

- N2638 Improve type generic programming

- N2853 The void-which-binds: type-safe parametric polymorphism

- N2953 Type inference for object definitions

6 Normative Changes

The suggested wording is based on ISO-Standard [1].

5.1.1.1 Program structure

At §1.

A C program need not all be translated at the same time. . . After preprocessing, a preprocessing translation
unit is called a translation unit base translation unit . A base translation unit undergoes monomorphization,
a syntactic transformation that eliminates polymorphic syntax. After monomorphization, a base translation
unit is called a translation unit. Previously translated translation units may be preserved individually or in
libraries. . .

5.1.1.2 Translation phases

At §1, phase 7.

White-space characters separating tokens are no longer significant. Each preprocessing token is converted into
a token. The resulting tokens, which comprise a base translation unit, are monomorphized,3 syntactically and
semantically analyzed and translated as a translation unit.

6.2.5 Types

Between §19 and §20.

There is a parametric type, designated as _Any ( identifier ); it is an incomplete type that cannot be completed,
but that can be instantiated as a type that is complete (see 6.11).

At §20, item union type.

A union type describes an overlapping nonempty set of member objects. . . A parametric type may not derive a
union type.

At §20, item function type.

A function type describes a function with specified return type. . . A parametric type may only derive a function
type when at least one parameter of such a function type is of parametric type or of a type derived from a
parametric type.

6.7.2 Type specifiers

At §1.

Syntax
type-specifier:

void
char
short

3 When a base translation unit does not contain polymorphic syntax, monomorphization may be skipped.
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int
long
float
double
signed
unsigned
_Bool
_Complex
atomic-type-specifier

struct-or-union-specifier

enum-specifier

typedef-name

parametric-type-specifier

struct-type-instantiation-specifier

6.7.2.5 Parametric type specifier

Syntax
1 parametric-type-specifier:

_Any ( identifier )

Constraints

Semantics

6.7.11 Structure type instantiation specifier

Syntax
1 struct-type-instantiation-specifier:

struct-or-union-specifier with-selection
typedef-name with-selection

with-selection:
_With ( member-substitution-list )

member-substitution-list:
member-substitution
member-substitution-list , member-substitution

member-substitution:

identifier : type-name

Constraints

Semantics

6.11 Monomorphization

References

[1] ISO-Standard. ISO/IEC 9899:2018 - The C programming language, 2018.

[2] L. T. C. Melo, R. G. Ribeiro, M. R. de Araujo, and F. M. Q. Pereira. Inference of static semantics for
incomplete c programs. Proc. ACM Program. Lang., 2(POPL):29:1–29:28, Dec. 2017. ISSN 2475-1421. doi:
10.1145/3158117. URL http://doi.acm.org/10.1145/3158117.
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