
N1793:
Stability of indeterminate values in C11

Robbert Krebbers and Freek Wiedijk

Radboud University Nijmegen, The Netherlands

Abstract. This paper – document N1793 of WG 14 – proposes and ar-
gues for a specific resolution to the issue addressed in Defect Report 451,
Stability of uninitialized variables.

1 Introduction

This paper focusses on the status according to the C11 standard of uninitial-
ized variables with indeterminate values, to support the discussion about Defect
Report 451. Specifically we address the questions:

– Can uninitialized variables change their value without the program explicitly
changing them?

– Exactly when will operations on indeterminate values lead to undefined be-
havior?

One might think these questions are about the program in Fig. 1, but the issues
are more subtle. We will instead look at the program in Fig. 2.

The behavior of this program that we will be arguing for is:

– The C11 standard should be read and/or made more precise as saying that
the program in Fig. 2 should print the same number twice. This behavior
should hold even if the i = i statement is omitted.

#include <stdio.h>

int main() {

int i;

/* intentionally uninitialized */

printf("%d\n", i);

printf("%d\n", i);

/* does this have to print the same number twice? */

/* and can this have undefined behavior? */

return 0;

}

Fig. 1.

2 Robbert Krebbers and Freek Wiedijk

#include <stdio.h>

int main() {

unsigned char i;

/* i cannot contain a trap value (6.2.6.1/3 + footnote 49) */

&i;

/* i is not in a register (6.3.2.1/2) */

i = i;

/* i ‘retains its [last-stored] value’ (6.2.4/2) from here
because we ‘store’ an (albeit indeterminate) value in it */

printf("%d\n", i);

printf("%d\n", i);

return 0;

}

Fig. 2.

#include <stdio.h>

#include <stdint.h>

#include <inttypes.h>

int main() {

int32_t i;

&i; i = i;

printf("%"PRId32"\n", i);

printf("%"PRId32"\n", i);

return 0;

}

Fig. 3.

– The C11 standard should be read as not allowing the program in Fig. 2 to
exhibit undefined behavior.

Our main reason for this interpretation is that – ignoring for the moment the
decision by the WG 14 committee in DR 260, see Section 2.1 below – there is no
clear quote from the C11 standard that allows one to argue for indeterminate
values changing arbitrarily. A second reason for this interpretation is that it
seems desirable that programs like the example program in Section 3.1 below
work as intended. One might argue that this interpretation too much restricts
what an optimizing compiler can do, but we claim that this is not the case, see
the discussion in Section 3.2.

The type unsigned char has a special status in the C11 standard, as it is the
type of ‘bytes’ that constitute the object representations. It might seem that our
example program somehow relates to this. However, this is not the case: we just
used the unsigned char type because it is guaranteed not to have trap values

N1793: Stability of indeterminate values in C11 3

(6.2.6.1/3). It might be replaced by any other type without trap values. For
example, in a C11 implementation that has the int32_t type, which is another
type without trap values, the exact same questions might be asked about the
program in Fig. 3.

It might seem academic what happens when one uses uninitialized variables
(one should initialize one’s variables!), but indeterminate values occur naturally
in the padding bytes and bits in structures too. In that case it is not natural to
have to initialize these bytes (and it even is difficult to keep them determinate, see
6.2.6.1/6). This means these questions are more than of academic importance.
For an example of how uninitialized bytes and bits in structures are related to
these issues, see Section 3.1 below.

2 Relevant quotes

2.1 Defect Report 260

Our interpretation of the C11 standard is in conflict with the way the WG 14
committee read the C99 standard in DR 260. Although this Defect Report has
been made obsolete by the C11 standard, the decision at that time was that the
standard text did not need to be changed to get this reading, and the wording
of all relevant parts of C99 and C11 are identical.

Here are the relevant quotes from the Defect Report. One of the questions
in the Defect Report was:

If an object holds an indeterminate value, can that value change other
than by an explicit action of the program?

And the Committee Response was (in the final version, date 2004-09-28):

Values may have any bit-pattern that validly represents them and the
implementation is free to move between alternate representations (for
example, it may normalize pointers, floating-point representations etc.).
In the case of an indeterminate value all bit-patterns are valid represen-
tations and the actual bit-pattern may change without direct action of
the program.

Interestingly enough, an older draft of the answer to this question (dated 2003-
03-06) reads:

An object with indeterminate value has a bit pattern representation which
remains constant during its lifetime. In general, debuggers are not con-
forming implementations, though nonetheless valuable. A debugger may
allow a user to change the value of a variable between statements.

Apparently the WG 14 committee changed its mind about this back then, which
makes the question whether the standard does need to be clarified about this
more salient.

4 Robbert Krebbers and Freek Wiedijk

2.2 The C11 standard

For convenience here are some relevant quotes from the C11 standard:

3.19.1:

indeterminate value
either an unspecified value or a trap representation

3.19.2:

unspecified value
valid value of the relevant type where this International Standard im-
poses no requirements on which value is chosen in any instance

NOTE An unspecified value cannot be a trap representation.

3.19.3

trap representation
an object representation that need not represent a value of the object
type

6.2.4/1

An object has a storage duration that determines its lifetime. [. . .]

6.2.4/2

The lifetime of an object is the portion of program execution during
which storage is guaranteed to be reserved for it. An object exists, has
a constant address,33) and retains its last-stored value throughout its
lifetime.34) If an object is referred to outside of its lifetime, the behavior
is undefined. The value of a pointer becomes indeterminate when the
object it points to (or just past) reaches the end of its lifetime.

[. . .]

34) In the case of a volatile object, the last store need not be explicit in the
program.

6.2.4/5

An object whose identifier is declared with no linkage and without the
storage-class specifier static has automatic storage duration, [. . .]

6.2.4/6

For such an object that does not have a variable length array type, its
lifetime extends from entry into the block with which it is associated
until execution of that block ends in any way. [. . .]

6.2.6.1/3

N1793: Stability of indeterminate values in C11 5

Values stored in unsigned bit-fields and objects of type unsigned char
shall be represented using a pure binary notation.49)

49) A positional representation for integers that uses the binary digits 0 and
1, in which the values represented by successive bits are additive, begin with
1, and are multiplied by successive integral powers of 2, except perhaps the bit
with the highest position. (Adapted from the American National Dictionary
for Information Processing Systems.) A byte contains CHAR_BIT bits, and the
values of type unsigned char range from 0 to 2CHAR BIT − 1.

6.2.6.1/6

When a value is stored in an object of structure or union type, including
in a member object, the bytes of the object representation that corre-
spond to any padding bytes take unspecified values. [. . .]

6.3.2.1/2 (cf. DR 338):

Except when it is the operand of the sizeof operator, the unary &

operator, the ++ operator, the -- operator, or the left operand of the .

operator or an assignment operator, an lvalue that does not have array
type is converted to the value stored in the designated object (and is no
longer an lvalue); this is called lvalue conversion. [. . .]
If the lvalue designates an object of automatic storage duration that
could have been declared with the register storage class (never had its
address taken), and that object is uninitialized (not declared with an
initializer and no assignment to it has been performed prior to use), the
behavior is undefined.

6.7.9/10

If an object that has automatic storage duration is not initialized explic-
itly, its value is indeterminate. [. . .]

3 Motivating examples

We now present two programs to shed light on why one might like to interpret
the C11 standard as implying that indeterminate values should be allowed to
change arbitrarily or not.

3.1 Why indeterminate values should not be allowed to change

First, consider a program that wants to put data from its memory in, say, a
blob in an XML file. For this it might like to use a hexadecimal or base64 repre-
sentation. The data it converts like this very well could consist of C structures,
and these have by nature ‘indeterminate’ bytes in their padding (6.2.6.1/6). An
example of such a program is shown in Fig. 4.

6 Robbert Krebbers and Freek Wiedijk

#include <stdio.h>

/* code to dump memory data to stdout */

void printhexdigit(int d) {

static int col = 0;

if (col++ >= 40) { putchar(’\n’); col = 1; }

putchar(d < 10 ? ’0’ + d : ’A’ + d - 10);

}

void dumphex(void *b, size_t n) {

unsigned char *p = b, *lim = p + n, i;

while (p < lim) { i = *p++;

printhexdigit(i>>4); printhexdigit(i&0xf); }

}

/* specialize to a struct */

struct foo { short x1; int x2, x3:31; };

void dumpfoo(struct foo *b, int n) {

dumphex(b, n*sizeof(struct foo));

}

/* use this on actual data */

int main() {

int i; struct foo a[10];

for (i = 0; i < 10; i++) a[i].x1 = a[i].x2 = a[i].x3 = 1;

dumpfoo(a, 10); putchar(’\n’);

return 0;

}

Fig. 4.

We claim that this program should not exhibit undefined behavior. But if an
uninitialized variable with an indeterminate value could change arbitrarily, this
program would not function correctly. When trying to print a hexadecimal digit
in printhexdigit, the value of d would change arbitrarily it is trying to print
a padding byte, and the value of ’0’ + d would for example not necessarily be
a digit character.

The output of a trial run of this program is:

010073B701000000010000800100000001000000

01000000010073B7010000000100008001005FB7

01000000010000800100D1BF0100000001000000

0100D1BF0100000001000000010072B701000000

010000800100040801000000010000800100D1BF

0100000001000080010072B70100000001000080

The string 010073B70100000001000080 at the start of this output represents
the first 12 bytes of the array a, which is the first struct foo. In this the

N1793: Stability of indeterminate values in C11 7

#include <stdio.h>

int main() {

unsigned char i, j;

&j; j = j;

i = 42; printf("i=%d j=%d, ", i, j);

i = 43; printf("i=%d j=%d, ", i, j);

/* i will not be used after this point while
j only becomes live after this point: so
is a compiler allowed to have i and j share a memory location? */

j = 44; printf("j=%d\n", j);

return 0;

}

/* so is this allowed to print ‘i=42 j=42, i=43 j=43, j=44’? */

Fig. 5.

bytes 73B7 and the most significant bit of the 8 are padding. We argue that
having a program like this show undefined behavior when trying to print these
bytes/this bit would not be a good thing. Structures like foo are ubiquitous
(think for example of IP headers), and having code that touch ‘unused bits’ in
these structures behave in weird ways would be very undesirable.

3.2 Why one might think indeterminate values should be allowed
to change

Now, consider the program in Fig. 5. If a compiler would do a liveness analysis
on this program, if could recognize that i and j are never life simultaneously,
and decide to use the same memory location for them. But then, j would change
whenever i would be modified, and we would get the behavior of a uninitialized
variable changing arbitrarily without explicit action from the program.

However, this is not a very strong argument: the liveness analysis easily could
take an lvalue conversion of j to mean that the variable is live from there on.
In other words, even though this is an argument for allowing an uninitialized
variable to change arbitrarily, it is not a very strong one.

4 Conclusion

A question is whether the standard text needs to be modified for the issues
addressed in DR 451, or whether it can remain as it is. If DR 260 had not ex-
isted, we would agree that the resolution proposed in this paper can be accepted
without modifying the standard text. However, DR 260 clearly shows that at
a certain time the current standard text was taken by the committee to have
a very different interpretation. Therefore, we argue that at least it should been

8 Robbert Krebbers and Freek Wiedijk

made explicit in the standard text that an indeterminate value cannot arbitrarily
change without direct action by the program.

A related question is exactly what parts of memory can be changed according
to the statement from 6.2.4/2:

The value of a pointer becomes indeterminate when the object it points
to (or just past) reaches the end of its lifetime.

This certainly should not hold for bytes from the object representation of that
pointer that have been copied elsewhere.

If the committee decides not to follow the proposal from this paper, then a
clearer distinction should be made between the notions of indeterminate value
and unspecified value. Currently, if one believes 3.19.1

indeterminate value = either an unspecified value or a trap representa-
tion

then for a type that has no trap representations these two notions coincide. If
an indeterminate value can change arbitrarily (is taken to be ‘unstable’), clearly
that should then not be the case.

But it will be clear from this paper that we recommend strongly against
going that way, and making such a distinction.

