
N1326

Adding TR 19769 to the C Standard Library
Date: 2008-08-01

Document: N1326

6.4.4.4 Character constants Syntax add the u’ c-char-sequence ‘ after ‘ c-char-sequence ‘

6.4.4.4 Character constants Syntax add the U’ c-char-sequence ‘ after L‘ c-char-sequence ‘

 character-constant:
 'c-char-sequence '
 u’ c-char-sequence ‘

 L'c-char-sequence '
 U’ c-char-sequence ‘

Also add the above to annex A, A.1.5 Constants

6.4.4.4 change the second sentence in the first paragraph in the Description to:

 A wide character constant is the same, except prefixed by the letter u, L, or U respectively.

6.4.5 String literals Syntax add u” s-char-sequence ” after “ s-char-sequence ”

6.4.5 String literals Syntax add U” s-char-sequence” after L“ s-char-sequence ”
 string-literal:
 “ s-char-sequenceopt “
 u” s-char-sequenceopt “
 L“ s-char-sequence opt “
 U” s-char-sequence opt “

Also add the above to annex A, A.1.6 String Literals

Change the last sentence to the first paragraph on 6.4.5 Description to:

 A wide string literal is the same, except prefixed by the letter u, L, or U respectively.

Add a paragraph to 6.5.4 Description:

String literals with the u or U format can be concatenated. If both strings have the same
format, the resulting concatenated string has that format. If one string has no prefix, it is
treated as a string of the same format as the other operand. (u"str" and U"str") Any other
concatenations are implementation-defined. Here are some examples of valid
concatenations:

u"a" u"b" u"ab" U"a" U"b" U"ab" L"a" L"b" L"ab"
u"a" "b" u"ab" U"a" "b" U"ab" L"a" "b" L"ab"
 "a" u"b" u"ab" "a" U"b" U"ab" "a" L"b" L"ab"

N1326

-2-

Add to 7.2 paragraph #2 the header <uchar.h> between <time.h> and <wchar.h>

Replace 7.24 with 7.24 Unicode utilities <uchar.h>

Renumber 7.24 through 7.26

Add the following text to the new 7.24

The following two new typedefs, char16_t and char32_t

typedef T1 char16_t;
typedef T2 char32_t;

where T1 has the same type as uint_least16_t and T2 has the same type as uint_least32_t.

The macro
 _ _STDC_UTF_16_ _

is defined if the values of the type char16_t are to be UTF-16 encoded. This allows the use of
UTF-16 in char16_t even when wchar_t uses a non-Unicode encoding. In certain cases the
compile-time conversion to UTF-16 may be restricted to members of the basic character set and
universal character names (\Unnnnnnnn and \unnnn) because for these the conversion to UTF-16 is
defined unambiguously.

The macro
 _ _STDC_UTF_32_ _
is defined if the values of the char32_t are to be UTD-32 encoded.

If the macro _ _STDC_UTF_16_ _ is not defined, the encoding of char16_t is implementation
defined. Similarly, if the macro _ _STDC_UTF_32_ _ is not defined, the encoding of char32_t is
implementation defined.

7.24.1 The mbrtoc16 function

Synopsis

#include <uchar.h>
size_t mbrtoc16(char16_t * restrict pc16,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

If s is a null pointer, the mbrtoc16 function is equivalent to the call:

N1326

mbrtoc16(NULL, "", 1, ps)

In this case, the values of the parameters pc16 and n are ignored.

If s is not a null pointer, the mbrtoc16 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pc16
is not a null pointer, stores that value in the object pointed to by pc16. If the corresponding wide
character is the null wide character, the resulting state described is the initial conversion state.

Returns

The mbrtoc16 function returns the first of the following that applies (given the current
conversion state):
0 if the next n or fewer bytes complete the multibyte character that corresponds to

the null wide character (which is the value stored).
between 1 and n inclusive

if the next n or fewer bytes complete a valid multibyte character (which is the
value stored); the value returned is the number of bytes that complete the
multibyte character.

(size_t)(-3) if the multibyte sequence converted more than one corresponding char16_t
character and not all these characters have yet been stored; the next character in
the sequence has now been stored and no bytes from the input have been
consumed by this call.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).1

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid multibyte character (no value is stored); the
value of the macro EILSEQ is stored in errno, and the conversion state is
unspecified.

7.24.2 The c16rtomb function

Synopsis

#include <uchar.h>
size_t c16rtomb(char * restrict s,

char16_t c16,
mbstate_t * restrict ps);

Description

1 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent encodings).

N1326

-4-

If s is a null pointer, the c16rtomb function is equivalent to the call c16rtomb(buf, L'\0',
ps) where buf is an internal buffer. If s is not a null pointer, the c16rtomb function
determines the number of bytes needed to represent the multibyte character that corresponds to the
wide character given by c16 (including any shift sequences), and stores the multibyte character
representation in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are
stored. If c16 is a null wide character, a null byte is stored, preceded by any shift sequence needed
to restore the initial shift state; the resulting state described is the initial conversion state.

Returns

The c16rtomb function returns the number of bytes stored in the array object; this may be 0
(including any shift sequences). When c16 is not a valid wide character, an encoding error occurs:
the function stores the value of the macro EILSEQ in errno and returns (size_t)(-1); the
conversion state is unspecified.

7.24.3 The mbrtoc32 function

Synopsis

#include <uchar.h>
size_t mbrtoc32(char32_t * restrict pc32,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

If s is a null pointer, the mbrtoc32 function is equivalent to the call:

mbrtoc32(NULL, "", 1, ps)

In this case, the values of the parameters pc32 and n are ignored.

If s is not a null pointer, the mbrtoc32 function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pc32
is not a null pointer, stores that value in the object pointed to by pc32. If the corresponding wide
character is the null wide character, the resulting state described is the initial conversion state.

Returns

The mbrtoc32 function returns the first of the following that applies (given the current
conversion state):

N1326

0 if the next n or fewer bytes complete the multibyte character that corresponds to
the null wide character (which is the value stored).

between 1 and n inclusive
if the next n or fewer bytes complete a valid multibyte character (which is the
value stored); the value returned is the number of bytes that complete the
multibyte character.

(size_t)(-3) if the multibyte sequence converted more than one corresponding char32_t
character and not all these characters have yet been stored; the next character in
the sequence has now been stored and no bytes from the input have been
consumed by this call.

(size_t)(-2) if the next n bytes contribute to an incomplete (but potentially valid) multibyte
character, and all n bytes have been processed (no value is stored).2

(size_t)(-1) if an encoding error occurs, in which case the next n or fewer bytes do not
contribute to a complete and valid multibyte character (no value is stored); the
value of the macro EILSEQ is stored in errno, and the conversion state is
unspecified.

7.24.4 The c32rtomb function

Synopsis

#include <uchar.h>
size_t c32rtomb(char * restrict s,

char32_t c32,
mbstate_t * restrict ps);

Description

If s is a null pointer, the c32rtomb function is equivalent to the call c32rtomb(buf, L'\0',
ps) where buf is an internal buffer. If s is not a null pointer, the c32rtomb function determines
the number of bytes needed to represent the multibyte character that corresponds to the wide
character given by c32 (including any shift sequences), and stores the multibyte character
representation in the array whose first element is pointed to by s. At most MB_CUR_MAX bytes are
stored. If c32 is a null wide character, a null byte is stored, preceded by any shift sequence needed
to restore the initial shift state; the resulting state described is the initial conversion state.

Returns

The c32rtomb function returns the number of bytes stored in the array object; this may be 0
(including any shift sequences). When c32 is not a valid wide character, an encoding error occurs: the
function stores the value of the macro EILSEQ in errno and returns (size_t)(-1); the conversion
state is unspecified.

2 When n has at least the value of the MB_CUR_MAX macro, this case can only occur if s points at a sequence of
redundant shift sequences (for implementations with state-dependent encodings).

