© ISO 2007 — All rights reserved

ISO/IEC JTC1 SC22 WG14 N1290

Date: 2008-03-10

Reference number of documel80O/IEC TR 24732

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —
Programming languages, their environments and syste software interfaces —

Extension for the programming language C to supportlecimal floating-point arithmetic —

Warning

This document is an ISO/IEC draft Technical Repibit not an ISO/IEC International Technica
Report. It is distributed for review and commenisisubject to change without notice and sha
not be referred to as an International Technicgd®eor International Standard.

Recipients of this draft are invited to submit,iwtheir comments, notification of any relevant
patent rights of which they are aware and to p@wdpporting documentation.

Document type: Technical Report Type 2

Document subtype: n/a

Document stage: (3) Proposed Draft Technical Report
Document language: E

ISO/IEC DTR 24732

WG14 N1290

This ISO document is a working draft or committeaftdand is copyright-protected by I1SO.

Requests for permission to reproduce this docufoerthe purpose of selling it should be
addressed as shown below or to ISO’s member botheigountry of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20

Tel. +41 22 74901 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Webwww.iso.org

Reproduction for sales purposes may be subjecytty payments or a licensing agreement.

Violators may be prosecuted.

Copyright notice

ISO/IEC DTR 24732 WG14 N1290

Contents
N |11 70T 0o o o PP 1
1.1 [T Tod (o [£ 0101 T H PSPPI 1
1.2 The Arithmetic MOdElo e 2
I T 0T 0 1T 2
2 GBNEIAL ..ot ———— e 3
21 Y oT0] o[PS PT PP 3
2.2 Sy (= (=] o = PP 4
3 Predefined MaCIO NAIMEiiii i et e e e e e e e et e e et e eae e e e ean e e eanaas 5
4 Decimal floating LYPES .. ceuiieeii e e 5
5 Characteristics of decimal floating types <float.h>..............cooiiiiiiii 6
I 001 01 V7=T 6] (o] 1S SR 9
6.1 Conversions between decimal floating and iImMege...........ccoovviiiiiiiiiiinieeii s 9
6.2 Conversions among decimal floating types, ativéen decimal floating types and
0ENETNIC fIOALING LYPES ..evnieeiii et ettt et e et e e e et e e eaa e e e et eaeet e eeeanaaeees 10
6.3 Conversions between decimal floating and corple..........ccccoooviiiiiiiiiiiiiinnecee. 11
6.4 Usual arithmetiC CONVEISIONScouiicceco e e e eaas 11
6.5 Default argument PromMOtiONiiiuie i ee e 12
A O 0 15 = U g | PP 12
8 ArthMEtiC OPEIAtiONScieeeiiieiiii e e et et ae e e et e e e eaa e eeees 13
8.1 L@ 01T =1 (0] £ TP UPPPUPPRRPIN 13
8.2 LT T 10 PP 14
8.3 L7011 17T £ (0 1P 14
S T I o] o PP 14
9.1 Standard NEAUEIS. ... oo e 14
9.2 Floating-point environment <fenV.N>......o oo 15
9.3 Decimal mathematics <math.h>...........ooc i 16
9.4 New <math.n> fUNCLIONS..........oi e 25
9.5 Formatted input/OUtPUL SPECITIEIS cceeei e 26
9.6 strtod32, strtod64, and strtod128 functionslfsh>..........ccoooiiiiiiii e 28
9.7 wecstod32, westod64, and westod128 functionshamb>............ooooii 2.3
9.8 Type-generic macros <tgmath.n>..........ccccoiiii e, 34
15T L= PP PP 35

ISO/IEC DTR 24732 WG14 N1290

1 Introduction
1.1 Background

Most of today's general purpose computing architestprovide binary floating-point arithmetic

in hardware. Binary floating-point is an efficiafpresentation which minimizes memory use, and
is simpler to implement than floating-point arithroaising other bases. It has therefore become
the norm for scientific computations, with almobtmplementations following the IEEE 754
standard for binary floating-point arithmetic.

However, human computation and communication ofencrvalues almost always uses decimal
arithmetic and decimal notations. Laboratory nosegntific papers, legal documents, business
reports and financial statements all record numeziges in decimal form. When numeric data are
given to a program or are displayed to a userpitteand-from decimal conversion is required.
There are inherent rounding errors involved in stmiversions; decimal fractions cannot, in
general, be represented exactly by binary floapomi values. These errors often cause usability
and efficiency problems, depending on the appbeati

These problems are minor when the application domecepts, or requires results to have,
associated error estimates (as is the case wehtga applications). However, in business and
financial applications, computations are eitheunesg to be exact (with no rounding errors)
unless explicitly rounded, or be supported by diedaanalyses that are auditable to be correct.
Such applications therefore have to take specral icahandling any rounding errors introduced by
the computations.

The most efficient way to avoid conversion erraoisise decimal arithmetic. Currently, the IBM
zArchitecture (and its predecessors since Systéi8& widely used system that supports built-
in decimal arithmetic. This, however, provides gaearithmetic only, meaning that every number
and computation has to have separate scale infamateserved and computed in order to
maintain the required precision and value rangehSaaling is difficult to code and is error-
prone; it affects execution time significantly, ahe resulting program is often difficult to
maintain and enhance.

Even though the hardware may not provide decimtdraetic operations, the support can still be
emulated by software. Programming languages usduli&iness applications either have native
decimal types (such as PL/I, COBOL, C#, or VisuasiB) or provide decimal arithmetic libraries
(such as the BigDecimal class in Java). The aritltnobsed in business applications, nowadays, is
almost invariably decimal floating-point; the COBQQR02 1SO standard, for example, requires
that all standard decimal arithmetic calculatioss @2-digit decimal floating-point.

Arguably, the C language hits a sweet spot withenwide range of programming languages
available today — it strikes an optimal balancevieen usability and performance. Its simple and
expressive syntax makes it easy to program; ardoige-to-the-hardware semantics makes it
efficient. Despite the advent of newer programniangguages, C is still often used together with
other languages to code the computationally intengart of an application. In many cases, entire

ISO/IEC DTR 24732 WG14 N1290

business applications are written in C/C++. To namthe vitality of C, the need for decimal
arithmetic by the business and financial commucatynot be ignored.

The importance of this has been recognized byEBR#&I| The IEEE 754 standard is currently being
revised, and the major change in that revisiohasaddition of decimal floating-point formats and
arithmetic.

Historically there has been a close tie betweerElE&4 and C with respect to floating-point
specification. This Technical Report proposes t @ecimal floating types and arithmetic to the C
programming language specification.

1.2 The Arithmetic Model

This Technical Report proposes to add supportiferdecimal formats for floating-point data
specified in IEEE 754-2007, with operations andawars consistent with that specification. IEEE
754-2007 provides a unified specification for flogtpoint arithmetic using both binary radix and
decimal radix representations. For binary radispiecifies upwardly-compatible extensions to the
previous version, IEEE 754-1985 (equivalently IEI559:1989, which is already supported by
C99 implementations that define the macr&STDC | EC_559__). Those extensions are not
considered in this proposal. Instead, this proposafines itself to supporting the decimal radix
formats, which are new in this revision of IEEE 754

The model of floating-point arithmetic used in IEE&4-2007 has three components:

e data- numbers and NaNs, which can be manipulated blyeahe results of, the operations
it specifies

e oOperations- (addition, multiplication, conversions, etc) whican be carried out on data

e context- the status of operations (namely, exceptiorgsjlaand controls to govern the
results of operations (for example, rounding mod@gEE 754-2007 does not use a single
term to refer to these collectively.)

The model defines these components in the absttagither defines the way in which operations
are expressed (which might vary depending on tingpaber language or other interface being
used), nor does it define the concrete representé&pecific layout in storage, or in a processor's
register, for example) of data or context, exchpt it does define specific encodings that aresto b
used for data that may be exchanged between differgplementations that conform to the
specification.

From the perspective of the C languadga are represented by data typaserationsare defined

within expressions, antbntextis the floating environment specified<fenv. h>. This
Technical Report specifies how the C language implgs these components.

1.3 The Formats

ISO/IEC DTR 24732 WG14 N1290

IEEE 754-2007 specifigf®rmats in terms of their radix, exponent range, and igien
(significand length), to support general purposardal floating-point arithmetic. It specifies
operation semantics in terms of values and absteacesentations of data (format members). It
also specifies bit-level encodings for formats mated for data interchange.

C99 specifies floating-point arithmetic using a tlager organization. The first layer provides a
specification using an abstract model. The reptasien of a floating-point number is specified in
an abstract form where the constituent componditteaepresentation are defined (sign,
exponent, significand) but not the internals ostheomponents. In particular, the exponent range,
significand size, and the base (or radix) are imeletation defined. This allows flexibility for an
implementation to take advantage of its underlyiagdware architecture. Furthermore, certain
behaviors of operations are also implementatiomddf for example in the area of handling of
special numbers and in exceptions.

The reason for this approach is historical. Atttiree when C was first standardized, there were

already various hardware implementations of flaggpoint arithmetic in common use. Specifying
the exact details of a representation would makst withe existing implementations at the time
not conforming.

C99 provides a binding to IEEE 754 by specifyingfammex F,IEC 60559 floating point
arithmetic and adopting that standard by reference. An implgation may choose not to
conform to IEEE 754 and indicates that by not defjrthe macro _ STDC _IEC_559 .This
means not all implementations need to support IE&E and the floating-point arithmetic need
not be binary.

This Technical Report specifies decimal floatingap@rithmetic according to IEEE 754-2007,
with the constituent components of the represematefined. This is more stringent than the
existing C99 approach for the floating types. Sihdg expected that all decimal floating-point
hardware implementations will conform to the regi$€EE 754, binding to this standard directly
benefits both implementers and programmers.

2 General
2.1 Scope

This Technical Report specifies an extension tgtiogramming language C, specified by the
international standard ISO/IEC 9899:1999. The esitanprovides support for decimal floating-
point arithmetic that is intended to be consisteith the specification in IEEE 754-2007.
However, as of the October 4, 2006 IEEE draft rdferenced standard is still in draft review
stage. Any conflict between the requirements desdrhere and the referenced standard is
unintentional. This Technical Report defers to IEEH-2007.

The binary floating-point arithmetic as specifiedEEE 754-2007 is not considered in this
Technical Report.

ISO/IEC DTR 24732 WG14 N1290

2.2 References

The following standards contain provisions whidtrptigh reference in this text, constitute
provisions of this Technical Report. For dated nie&fiees, subsequent amendment to, or revisions
of, any of these publications do not apply. Howeyarties to agreements based on this Technical
Report are encouraged to investigate the posgibiliapplying the most recent editions of the
normative documents indicated below. For undatéteaces, the latest edition of the normative
document referred applies. Members of IEC and |Shtain registers of current valid
International Standards.

ISO/IEC 9899:1999nformation technology - Programming languagesijrteavironments and
system software interfaces - Programming Language C

ISO/IEC 9899:1999/Cor 1:200Mformation technology - Programming languagesijrthe
environments and system software interfaces - Rrgring Language C — Technical
Corrigendum 1

ISO/IEC 9899:1999/Cor 2:200formation technology - Programming languagesjrthe
environments and system software interfaces - Rrgring Language C — Technical
Corrigendum 2

ISO/IEC TR 18037Information technology - Programming languagesijrteavironments and
system software interfaces — Extensions for thgraraming language C to support embedded
processors.

ISO/IEC 1989:2002nformation technology - Programming languages -BTib.

IEC 60559:1989Binary floating-point arithmetic for microprocessosystemgpreviously
designated IEC 559:1989).

ANSI X3.274,Information Technology - Programming Language REXX.

ANSI/IEEE 754-1985 IEEE Standard for Binary Floating-Point Arithmeti€he Institute of
Electrical and Electronic Engineers, Inc., New Y,dR85.

ANSI/IEEE 854-1987 IEEE Standard for Radix-Independent Floating-Pd&nthmetic The
Institute of Electrical and Electronic Engineers;.| New York, 1987.

The IEEE 754 revision working group is currentlyising the specification for floating-point
arithmetic:

ANSI/IEEE 754-2007 {EEE Standard for Floating-Point Arithmeti€he Institute of Electrical
and Electronic Engineers, Inc. Dratft.

A Decimal Floating-Point Specificatipchwarz, Cowlishaw, Smith, and Webb, in the
Proceedings of the 15th IEEE Symposium on Computttrmetic (Arith 15) |JEEE, June 2001.

ISO/IEC DTR 24732 WG14 N1290

Note: Reference materials relating to IEEE 754-2€87 be found in
http://grouper.ieee.org/groups/7sHdhttp://www.validlab.com/754R/

3 Predefined macro name

The following macro name is conditionally definedthe implementation:

__STDC DEC FP__ The integer consta@00803L, intended to indicate conformance to
this technical report.

4 Decimal floating types

This Technical Report introduces three decimaltitaptypes, designated a®eci mal 32,

_Deci mal 64 and_Deci mal 128. The set of values of typeDeci mal 32 is a subset of the set
of values of the typeDeci nal 64; the set of values of the typ®eci mal 64 is a subset of the
set of values of the typeDeci mal 128.

Within the type hierarchy, decimal floating types &ase types, real types and arithmetic types.

The typed | oat , doubl e, andl ong doubl e are also called generic floating types for the
purpose of this Technical Report.

Note: C does not specify a radix for oat , doubl e andl ong doubl e. An implementation
can choose the representatiori bbat , doubl e andl ong doubl e to be the same as the
decimal floating types. In any case, the decinwtihg types are distinct frofrl oat , doubl e
andl ong doubl e regardless of the representation.

Note: This Technical Report does not define decroahplex types or decimal imaginary types.
The three complex types remainfdsoat _Conpl ex, doubl e _Conpl ex andl ong

doubl e _Conpl ex, and the three imaginary types remairfi beat | magi nary, doubl e
_lI magi nary andl ong doubl e _Inagi nary.

Suggested changes to C99:

Change the first sentence of 6.2.5#10:

[10] There are thregeneric floating typesdesignated asl oat , doubl e andl ong doubl e.

Add the following paragraphs after 6.2.5#10:

ISO/IEC DTR 24732 WG14 N1290

[10a] There are thregecimal floating typesdesignated asDeci mal 32, Deci mal 64 and
_Deci mal 128. The set of values of the typ®eci mal 32! is a subset of the set of values of
the type_Deci mal 64; the set of values of the typ®eci mal 64 is a subset of the set of values
of the type_Deci mal 128. Decimal floating types are real floating types.

[10b] Together, the generic floating types anddeeimal floating types comprise theal floating
types

Add the following to 6.7.2 Type specifiers:
type-specifier
_Deci mal 32
_Deci nmal 64
_Decinmal 128
Add the following paragraph after 6.5#8:
[8a] Expressions involving decimal floating-poimeyands are evaluated according to the

semantics of IEEE 754-2007, including productiomesiults with the preferred exponent as
specified in IEEE 754-2007.

5 Characteristics of decimal floating types <float.k

The characteristics of decimal floating types aBn@d in terms of a model specifying general
decimal arithmeticX.2). The formats are specified in IEEE 754-20038)

The three decimal formats defined in IEEE 754-200fespond to the three decimal floating
types as follows:

e Deci mal 32 is adecimal32number, which is encoded in four consecutive s({&?

bits)

e Deci nmal 64 is adecimal64number, which is encoded in eight consecutivetse ¢}
bits)

e Decimal 128 is adecimall28umber, which is encoded in 16 consecutive o¢i&i8
bits)

The value of a finite number is given by €%)x coefficient x 16**°"" Refer to IEEE 754-2007
for details of the format.

These formats are characterized by the lengtheottefficient, and the maximum and minimum
exponent. The coefficient is not normalized, sditig zeros are significant; i.e., 1.0 is equabtd
can be distinguished from 1.00. The table belownshitvese characteristics by format:

! The 32-bit format is a storage only format in IEE&-2007.

ISO/IEC DTR 24732 WG14 N1290

Format _Deci mal 32 _Deci mal 64 _Decimal 128
Coefficient length in digits 7 16 34
Maximum Exponent () 97 385 6145
Minimum Exponent (&in) -94 -382 -6142

If the macro__ STDC_WANT_DEC FP__ is defined at the point in the source file whére t
headexf | oat . h> is included, the headef | oat . h> shall define several macros that expand
to various limits and parameters of the decimadtilay types. The names and meaning of these
macros are similar to the corresponding macrogdoeric floating types.

Suggested change to C99:
Add the following after 5.2.4.2.2:
5.2.4.2.2a Characteristics of decimal floating type<f | oat . h>

[1] Macros in<f | oat . h> provide characteristics of floating types in termishe model
presented in 5.2.4.2.2. The prefiX@sC32_, DEC64_, andDEC128__ denote the types
_Decimal 32, Deci mal 64, and_Deci mal 128 respectively.

[2] For decimal floating-point, it is often convent to consider an alternate equivalent model
where the significand is represented with integénar than fraction digits: a floating-point
number X) is defined by the model

= Sb(ep)kzp:l f kb(p—k)

wheres, b, e, p, andfy are as defined in 5.2.4.2.2, dmet 10.

[3] The termquantum exponemefers toq = e - p andcoefficientto ¢ = fif»...f,, an integer between
0 andb® - 1 inclusive. Thusx =s* ¢ * b is represented by the triple of integ&ssc, q)

[4] For binary floating-point following IEC 6055%d IEEE 754-2007), representations in the
model described in 5.2.4.2.2 that have the sameenaah value are indistinguishable in the
arithmetic. However, for decimal floating-pointpresentations that have the same numerical
value but different quantum exponents, e.g., (1;10representing 1.0 and (1, 100, -2)
representing 1.00, are distinguishable. To fatdiexact fixed-point calculation, standard decimal
floating-point operations and functions havereferred quantum exponermtetermined by the
guantum exponents of the operands, and they praadvesult with that preferred quantum
exponent, or as close to it as possible withinithéations of the type. For example, the preferred
guantum exponent for addition is the minimum of ga@ntum exponents of the operands. Hence
(1, 123, - 2) + (1, 4000, -3) = (1, 5230, -3) 23+ 4.000 = 5.230.

ISO/IEC DTR 24732 WG14 N1290

[5] Except for assignment and casts, the valuegpefations with decimal floating operands and
values subject to the usual arithmetic conversantsof decimal floating constants are evaluated
to a format whose range and precision may be grdae required by the type. The use of
evaluation formats is characterized by the impletietgon-defined value dDEC_EVAL_METHOD:

-1 indeterminable;

0 evaluate all operations and constants just taahge and precision of the type;

1 evaluate operations and constants of typeci mal 32 and_Deci nal 64 to the
range and precision of thédeci mal 64 type, evaluate Deci mal 128 operations
and constants to the range and precision of eci mal 128 type;

2 evaluate all operations and constants to the rangeprecision of theDeci mal 128

type.

[6] The integer values given in the following lisisall be replaced by constant expressions
suitable for use i#i f preprocessing directives:

e number of digits in the coefficient

DEC32_MANT DI G 7
DEC64_MANT DI G 16
DEC128 MANT DI G 34

e minimum exponent

DEC32_M N_EXP - 94
DEC64_M N_EXP - 382
DEC128 M N_EXP -6142

e maximum exponent

DEC32_MAX_EXP 97
DEC64_MAX_EXP 385
DEC128 MAX_EXP 6145

e maximum representable finite decimal floating num{bleere are 6, 15 and 33 9's after the
decimal points respectively)

DEC32_MAX 9. 999999E96DF
DEC64_MAX 9. 999999999999999E384DD
DEC128_MAX 9. 999999999999999999999999999999999E6144DL

¢ the difference between 1 and the least value gréada 1 that is representable in the given
floating point type

DEC32_EPSI LON 1E- 6DF
DEC64_EPSI LON 1E-15DD

ISO/IEC DTR 24732 WG14 N1290

DEC128_EPSI LON 1E- 33DL

e minimum normalized positive decimal floating number

DEC32_M N 1E- 95DF
DEC64_M N 1E- 383DD
DEC128 M N 1E- 6143DL

e minimum positive subnormal decimal floating number

DEC32_SUBNORVAL_M N 0. O0O0001E- 95DF
DEC62_SUBNORVAL_M N 0. 000000000000001E- 383DD
DEC128_SUBNORVAL_M N

0. 000000000000000000000000000000001 E-

6143DL

[7] An implementation shall define the following omas if and only if it supporfssubnormal (also
known as denormal) numbers of the respective typlesir value is the minimum positive
subnormal floating-point number:

FLT_SUBNORMAL_M N
DBL_SUBNORMAL_M N
LDBL_SUBNORMAL_M N

Their values are typically, but not alwayd,T_ M N * FLT_EPSI LON,DBL_M N *
DBL_EPSI LON, LDBL_M N* LDBL_EPSI LON, respectively.

[8] The number of base 10 digits required to enshaé floating-point numbers wighradixb
digits which differ by only one unit in the lastagke (ulp) are always differentiated,

plog.b if bis powerof 10
[1+ plogwb] otherwise

FLT_MAXDI GLO
DBL_MAXDI GL0
LDBL_MAXDI G10

6 Conversions
6.1 Conversions between decimal floating and integer

For conversions between real floating and integees, C99 6.3.1.4 leaves the behavior undefined
if the conversion result cannot be represented ¢&rin4 tightened up the behavior.) To help

2 Support means that they are not flushed to zeenwised as operands, nor, when an arithmetic apegroduces
them.

ISO/IEC DTR 24732 WG14 N1290

writing portable code, this Technical Report pr@adiefined behavior for decimal floating type.
Furthermore, it is useful to allow program execatio continue without interruption unless the
program needs to check the condition.

Suggested changes to C99:

Change the first sentence of 6.3.1.4 paragraph 1:

[1] When a finite value of generic floating typecisnverted to an integer type ...

Add the follow paragraph after 6.3.1.4 paragraph 1:

[1a] When a finite value of decimal floating tyedonverted to an integer type other th&ool ,
the fractional part is discarded (i.e., the vakiuncated toward zero). If the value of the inhég
part cannot be represented by the integer typéjrihalid” floating-point exception shall be raised
and the result of the conversion is unspecified.

Change the first sentence of 6.3.1.4 paragraph 2:

[2] When a value of integer type is converted tgeaeric floating type, ...

Add the following paragraph after 6.3.1.4 paragraph

[2a] When a value of integer type is converted tie@imal floating type, if the value being
converted can be represented exactly in the neg tys unchanged. If the value being converted

is in the range of values that can be representedamnot be represented exactly, the result shall
be correctly rounded with exceptions raised asiBpdan IEEE 754-2007.

6.2 Conversions among decimal floating types, and betwa
decimal floating types and generic floating types

The specification is similar to the existing onesffl oat , doubl e andl ong doubl e, except
that when the result cannot be represented exal#yehavior is tightened to become correctly
rounded.

Suggested change to C99:
Add after 6.3.1.5#2.
[3] When a_Deci nal 32 is promoted to Deci mal 64 or_Deci mal 128, or a_Deci mal 64

is promoted to Deci mal 128, the value is converted to the type being promadedll extra
precision and/or range (for the converted to tygre)removed.

10

ISO/IEC DTR 24732 WG14 N1290

[4] When a_Deci mal 64 is demoted to Deci mal 32, a_Deci mal 128 is demoted to

_Deci mal 64 or_Deci mal 32, or conversion is performed among decimal and gefleating
types other than the above, if the value being eded can be represented exactly in the new type,
it is unchanged. If the value being converted harange of values that can be represented but
cannot be represented exactly, the result is cityneminded with exceptions raised as specified in
IEEE 754-2007.

6.3 Conversions between decimal floating and complex

This is covered by C99 6.3.1.7.

6.4 Usual arithmetic conversions

In an application that is written using decimatlametic, mixed operations between decimal and
other real types are likely to occur only when ifgeing with other languages, calling existing
libraries written for binary floating point arithme, or accessing existing data. Determining the
common type for mixed operations is difficult besawanges overlap; therefore, mixed mode
operations are not allowed and the programmer maesexplicit casts. Implicit conversions are
allowed only for simple assignmenmtgt ur n statement, and in argument passing involving
prototyped functions.

Following are suggested changes to C99:
Insert the following to 6.3.1.8#1, after "This patt is called the@sual arithmetic conversior's
6.3.1.8[1]

... This pattern is called thesual arithmetic conversions

If one operand is a decimal floating type, all otbperands shall not be generic floating type,
complex type, or imaginary type:

First if either operand isDeci mal 128, the other operand is converted to
_Deci mal 128.

Otherwise, if either operand ieci mal 64, the other operand is converted to
_Deci nmal 64.

Otherwise, if either operand ieci mal 32, the other operand is converted to
_Deci mal 32.

11

ISO/IEC DTR 24732 WG14 N1290

If there are no decimal floating types in the opesa

First, if the corresponding real type of either igoel isl ong doubl e, the other operand
is converted, without ... <the rest of 6.3.1.8#haes the same>

6.5 Default argument promotion
There is no default argument promotion specifieditie decimal floating types. Default argument

promotion covered in C99 6.5.2.2 [6] and [7] remsaumchanged, and applies to generic floating
types only.

7/ Constants

New suffixes are added to denote decimal floatmgstantsDF for _Deci nal 32, DD for
_Deci mal 64, andDL for _Deci mal 128.

Suggested changes to C99:
Changefloating-suffixin 6.4.4.2 to:

floating-suffix one of
f dl FDL df dd dl DF DD DL

Add the following paragraph after 6.4.4.2#2:
6.4.4.2
[2a] Constraints

Thefloating-suffixdf , dd, dl , DF, DD andDL shall not be used inteexadecimal-floating-
constant

Change 6.4.4.2#4 to:

[4] An unsuffixed floating constant has tygeubl e. If suffixed by the lettef orF, it has type
f | oat . If suffixed by the letted or D, it has typedoubl e. If suffixed by the lettel orL, it has
typel ong doubl e.

Add the following paragraph after 6.4.4.2#4:

6.4.4.2

12

ISO/IEC DTR 24732 WG14 N1290

[4a] If a floating constant is suffixed loif or DF, it has type Deci mal 32. If suffixed bydd or
DD, it has type Deci mal 64. If suffixed bydl orDL, it has type Deci mal 128.

Add the following paragraph after 6.4.4.2#5:
[5a] For decimal floating-point constants, repréagons that have the same numerical value but

different quantum exponents have distinguishallermal formats. The quantum exponent is
specified to be the same as strtodxx for the s@meesentation string.

8 Arithmetic Operations
8.1 Operators

The operatoradd (C99 6.5.6) Subtract(C99 6.5.6) Multiply (C99 6.5.5)Divide (C99 6.5.5),
Relational operatorgC99 6.5.8)Equality operatordC99 6.5.9)Unary Arithmetic operators
(C99 6.5.3.3), an@ompound Assignment operat@@99 6.5.16.2) when applied to decimal
floating type operands shall follow the semantgslafined in IEEE 754-2007.

Suggested changes to C99:

Add the following after 6.5.5 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, nor imaginary type.

Add the following after 6.5.6 paragraph 3:

[3a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, nor imaginary type.

Add the following after 6.5.8 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type.

Add the following after 6.5.9 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, nor imaginary type.

Add the following bullet to 6.5.15 paragraph 3:
e one operand has decimal floating type, and ther dthe arithmetic type other than generic

floating type, complex type, or imaginary type;

13

ISO/IEC DTR 24732 WG14 N1290

Add the following after 6.5.16.2 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, nor imaginary type.

8.2 Functions

The headers and library supply a number of funsteomd macros that implement support for
decimal floating point data with the semantics #ptin IEEE 754-2007, including producing
results with the preferred exponent where apprtgriBhat support is provided by the following:

From<mat h. h>, the decimal floating-point type versions of:
sgrt,fma, fabs,fmax,fmn,ceil,floor,trunc,round,rint,|round,
I'l round, | dexp,frexp,il ogb,I| ogb, scal bn, scal bl n,copysi gn,
next after,remai nder,isnan,isinf,isfinite,isnormal,signbit,
fpclassify,isunordered,isgreater,isgreaterequal,isless,
i sl essequal , quanti ze, andsanequant um

From<f env. h>, facilities dealing with decimal context:
f erai seexcept, fecl earexcept,fetestexcept,fesetexceptflag,
feget exceptfl ag,fe_dec_getround, andf e_dec_set round.

From<st di 0. h>, decimal floating-point modified format specifidos:
Thepri nt f/scanf family of functions.

From<st dl i b. h>and<wchar . h>, the decimal floating-point type versions of:
strtod andwcst od.

From<wchar . h>, decimal floating-point modified format specifidos:
The widepr i nt f /scanf family of functions.

8.3 Conversions

Conversions between different formats and to/frotager formats are coveredsaction 6

9 Library
9.1 Standard headers

14

ISO/IEC DTR 24732 WG14 N1290

The functions, macros, and types declared or dg¢fim€lause 9 and its subclauses are only
declared or defined by their respective headdtseiimacro STDC WANT_DEC FP__ is
defined at the point in the source file where thprapriate header is included.

9.2 Floating-point environment <fenv.h-

The floating point environment specified in C99 @plies to both generic floating types and
decimal floating types. This is to implement tantextdefined in IEEE 754-2007. The existing
C99 specification gives flexibility to an implematibn on which part of the environment is
accessible to programs. The decimal floating-parithmetic specifies a more stringent
requirement. All the rounding directions and flags supported.

DEC Macros Existing C99 macros for IEEE 754

generic floating types
FE_DEC TOWARDZERO FE_TOWARDZERO Toward zero
FE_DEC_TONEAREST FE_TONEAREST To nearest, ties even
FE_DEC_UPWARD FE_UPWARD Toward plus infinity
FE_DEC_DOMNWARD FE_DOANWARD Toward minus infinity
FE_DEC_TONEARESTFROWZERO | n/a To nearest, ties away from

zero

Suggested changes to C99:
Add the following after 7.6 paragraph 7:
7.6
[7a] Each of the macros
FE_DEC_DOWNWARD
FE_DEC TONEAREST
FE_DEC TONEARESTFROWZERO
FE_DEC TOWARDZERO
FE_DEC_UPWARD
is defined and used lhye _dec _get r ound andf e_dec_set r ound functions for getting and
setting the rounding direction of decimal floatipgint operations. The default rounding direction
for decimal floating-point operations shall BE_ DEC TONEAREST.
Add the following after 7.6.3.2:
7.6.3.3 The fe_dec_getround function

Synopsis

15

ISO/IEC DTR 24732 WG14 N1290

#define __ STDC_WANT_DEC_FP__
#include <fenv.h>
int fe_dec_getround(void);

Description

Thef e_dec_get r ound function gets the current rounding direction fecinal floating-point
operations.

Returns
Thef e_dec_get r ound function returns the value of the rounding direetmacro representing
the current rounding direction for decimal floatipgint operations, or a negative value if there is
no such rounding macro or the current roundingatiive is not determinable.
7.6.3.4 The fe_dec_setround function
Synopsis

#define __ STDC_WANT_DEC_FP__

#include <fenv.h>

int fe_dec_setround(int round);
Description
Thef e_dec_set r ound function establishes the rounding direction focid®l floating-point
operations represented by its argument roundelatigument is not equal to the value of a

rounding direction macro, the rounding directiomat changed.

If FLT_RADI X is not 10, the rounding direction altered bytset r ound function is
independent of the rounding direction altered ®fté_dec_set r ound function; otherwise if
FLT_RADI Xis 10, whether theeset r ound andf e_dec_set r ound functions alter the
rounding direction of both generic floating typedadecimal floating type operations is
implementation defined.

Returns

Thef e_dec_set r ound function returns a zero value if and only if thigament is equal to a
rounding direction macro (that is, if and onlyhetrequested rounding direction was established).

9.3 Decimal mathematics <math.h>

16

ISO/IEC DTR 24732 WG14 N1290

The list of elementary functions specified in thathematics library is extended to handle decimal
floating-point types. These include functions spediin 7.12.4, 7.12.5, 7.12.6, 7.12.7, 7.12.8,
7.12.9,7.12.10, 7.12.11, 7.12.12, and 7.12.13.m&erosHUGE_VAL_D32, HUGE_VAL D64,
HUGE_VAL_D128, DEC | NFI NI TY andDEC_NAN are defined to help using these functions.
With the exception of the decimal floating-poinhétions listed ir8.2, which have accuracy as
specified in IEEE 754-2007, the accuracy of decifioalting-point results is implementation-
defined. The implementation may state that the r@oguis unknown. All classification macros
specified in C99 7.12.3 are also extended to hasheldémal floating-point types. The same applies
to all comparison macros specified in 7.12.14.

The names of the functions are derived by addirfigxes d32, d64 and d128 to tkhdeubl e
version of the function name.

Suggested changes to C99:
Add after 7.12 paragraph 2.
7.12

[2a] The types

_Deci mal 32_t
_Decinmal 64_t

are decimal floating types at least as widelesci mal 32 and_Deci mal 64, respectively,
and such thatDeci mal 64_t is at least as wide a®eci nmal 32_t. If DEC_EVAL_METHOD
equals 0, Deci mal 32_t and_Deci mal 64 _t are Deci mal 32 and _Deci nal 64,
respectively; iDEC EVAL_NMETHCD equals 1, they are botlbeci mal 64; if

DEC _EVAL_METHOD equals 2, they are bothDeci mal 128; and for other values of
DEC_EVAL_METHQOD, they are otherwise implementation-defined.

Add at the end of 7.12 paragraph 3 the followingros.
7.12
[3] The macro
HUGE_VAL_D64
expands to a constant expression of typeci mal 64 representing infinity. The macros

HUGE_VAL_D32
HUGE_VAL_ D128

17

ISO/IEC DTR 24732 WG14 N1290

are respectively Deci mal 32 and_Deci mal 128 analogs oHUGE_VAL _D64.
Add at the end of 7.12 paragraph 4 the followingma
7.12
[4] The macro
DEC | NFI NI TY
expands to a constant expression of typeci mal 32 representing infinity.
Add at the end of 7.12 paragraph 5 the followingma
7.12
[5] The macro
DEC_NAN
expands to quiet decimal floating NaN for the tyjizeci mal 32.
Add at the end of 7.12 paragraph 7 the followingma
7.12
[7] The macro
FP_FAST_FMAD32
FP_FAST_FMADG64

FP_FAST FMAD128

are, respectively, Deci mal 32, Deci mal 64 and_Deci mal 128 analogs oFP_FAST_FNA.

Suggested changes to C99:
Add the following list of function prototypes todlsynopsis of the respective subclauses:
7.12.4 Trigonometric functions
_Decimal64 acosd64(_Decimal64 x);
_Decimal32 acosd32(_Decimal32 x);

_Decimall28 acosd128(_Decimall28 x);

_Decimal64 asind64(_Decimal64 x);

18

ISO/IEC DTR 24732 WG14 N1290

_Decimal32 asind32(_Decimal32 x);
_Decimall28 asind128(_Decimall28 x);

_Decimal64 atand64(_Decimal64 x);
_Decimal32 atand32(_Decimal32 x);
_Decimall28 atand128(_Decimall28 x);

_Decimal64 atan2d64(_Decimal64 yecihal64 x);
_Decimal32 atan2d32(_Decimal32 yecihal32 x);
_Decimall28 atan2d128(_Decimall1283gcimall28 x);

_Decimal64 cosd64(_Decimal64 x);
_Decimal32 cosd32(_Decimal32 x);
_Decimall128 cosd128(_Decimall28 x);

_Decimal64 sind64(_Decimal64 x);
_Decimal32 sind32(_Decimal32 x);
_Decimall28 sind128(_Decimall28 x);

_Decimal64 tand64(_Decimal64 x);
_Decimal32 tand32(_Decimal32 x);
_Decimall28 tand128(_Decimall28 x);

7.12.5 Hyperbolic functions

_Decimal64 acoshd64(_Decimal64 x);
_Decimal32 acoshd32(_Decimal32 x);
_Decimal128 acoshd128(_Decimall28 x)

_Decimal64 asinhd64(_Decimal64 x);
_Decimal32 asinhd32(_Decimal32 x);
_Decimall28 asinhd128(_Decimall28 x)

_Decimal64 atanhd64(_Decimal64 x);
_Decimal32 atanhd32(_Decimal32 x);
_Decimall128 atanhd128(_Decimall28 x)

_Decimal64 coshd64(_Decimal64 x);
_Decimal32 coshd32(_Decimal32 x);
_Decimall28 coshd128(_Decimall28 x);
_Decimal64 sinhd64(_Decimal64 x);
_Decimal32 sinhd32(_Decimal32 x);
_Decimall28 sinhd128(_Decimall28 x);

_Decimal64 tanhd64(_Decimal64 x);

19

ISO/IEC DTR 24732 WG14 N1290

_Decimal32 tanhd32(_Decimal32 x);
_Decimal128 tanhd128(_Decimall28 x);

7.12.6 Exponential and logarithmicdtions

_Decimal64 expd64(_Decimal64 x);
_Decimal32 expd32(_Decimal32 x);
_Decimal128 expd128(_Decimall28 x);

_Decimal64 exp2d64(_Decimal64 x);
_Decimal32 exp2d32(_Decimal32 x);
_Decimall28 exp2d128(_Decimall28 x);

_Decimal64 expm1d64(_Decimal64 x);
_Decimal32 expm1d32(_Decimal32 x);
_Decimall28 expm1d128(_Decimall28 x)

_Decimal64 frexpd64(_Decimal64 valine *exp)?>
_Decimal32 frexpd32(_Decimal32 valu *exp);
_Decimall28 frexpd128(_Decimall28ieaint *exp);

int iloghd64(_Decimal64 x);
int iloghd32(_Decimal32 x);
int iloghd128(_Decimall28 x);

_Decimal64 Idexpd64(_Decimal64 x,6rp)#
_Decimal32 ldexpd32(_Decimal32 x,arp);
_Decimall28 ldexpd128(_Decimall2&kexp);

_Decimal64 logd64(_Decimal64 x);
_Decimal32 logd32(_Decimal32 x);
_Decimall28 logd128(_Decimall28 x);

_Decimal64 log10d64(_Decimal64 x);
_Decimal32 log10d32(_Decimal32 x);
_Decimal128 log10d128(_Decimall28 x)

_Decimal64 loglpd64(_Decimal64 x);
_Decimal32 log1pd32(_Decimal32 x);
_Decimall28 log1lpd128(_Decimall28 x)

_Decimal64 log2d64(_Decimal64 x);
_Decimal32 log2d32(_Decimal32 x);
_Decimall28 log2d128(_Decimall28 x);

% See suggested changes to the frexp function gésarbelow.
* See suggested changes to the Idexp function gésarbelow.

20

ISO/IEC DTR 24732 WG14 N1290

_Decimal64 loghd64(_Decimal64 x);
_Decimal32 loghd32(_Decimal32 x);
_Decimal128 loghd128(_Decimall28 x);

_Decimal64 modd64(_Decimal64 valueecimal64 *iptr);
_Decimal32 modfd32(_Decimal32 valuBecimal32 *iptr);
_Decimall128 modfd128(_Decimall28seal Decimall28 *iptr);

_Decimal64 scalbnd64(_Decimal64nk,ni;
_Decimal32 scalbnd32(_Decimal32k,ni);
_Decimall28 scalbnd128(_Decimall2Bixn);

_Decimal64 scalblnd64(_Decimal64oxg int n);
_Decimal32 scalblnd32(_Decimal3Zxg int n);
_Decimall128 scalblnd128(_Decimalk2®ng int n);

7.12.7 Power and absolute-value fonsti

_Decimal64 cbrtd64(_Decimal64 x);
_Decimal32 cbrtd32(_Decimal32 x);
_Decimal128 cbrtd128(_Decimall28 x);

_Decimal64 fabsd64(_Decimal64 x);
_Decimal32 fabsd32(_Decimal32 x);
_Decimall28 fabsd128(_Decimall28 x);

_Decimal64 hypotd64(_Decimal64 x.ecibnalé4 vy);
_Decimal32 hypotd32(_Decimal32 x.ecinal32 y);
_Decimall28 hypotd128(_Decimall28 Recimall28 vy);

_Decimal64 powd64(_Decimal64 x, Ded64 y);
_Decimal32 powd32(_Decimal32 x, Ded32 y);
_Decimal128 powd128(_Decimall128 Recimall28 vy);
_Decimal64 sqrtd64(_Decimal64 x);
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal128 sqrtd128(_Decimall28 x);

7.12.8 Error and gamma functions
_Decimal64 erfd64(_Decimal64 x);
_Decimal32 erfd32(_Decimal32 x);
_Decimall28 erfd128(_Decimall28 x);

_Decimal64 erfcd64(_Decimal64 x);

21

ISO/IEC DTR 24732 WG14 N1290

_Decimal32 erfcd32(_Decimal32 x);
_Decimall28 erfcd128(_Decimall28 x);

_Decimal64 lgammad64(_Decimal64 x);
_Decimal32 lgammad32(_Decimal32 x);
_Decimal128 Igammad128(_Decimalll8 x

_Decimal64 tgammad64(_Decimal64 x);
_Decimal32 tgammad32(_Decimal32 x);
_Decimal128 tgammad128(_Decimallp8 x

7.12.9 Nearest integer functions

_Decimal64 ceild64(_Decimal64 x);
_Decimal32 ceild32(_Decimal32 x);
_Decimall128 ceild128(_Decimall28 x);

_Decimal64 floord64(_Decimal64 x);
_Decimal32 floord32(_Decimal32 x);
_Decimal128 floord128(_Decimall128 x)

_Decimal64 nearbyintd64(_Decimal§s x
_Decimal32 nearbyintd32(_Decimal32 x
_Decimal128 nearbyintd128(_Decima&li},

_Decimal64 rintd64(_Decimal64 x);
_Decimal32 rintd32(_Decimal32 x);
_Decimall28 rintd128(_Decimall28 x);

long int Irintd64(_Decimal64 x);
long int Irintd32(_Decimal32 x);
long int Irintd128(_Decimall28 x);

long long int lirintd64(_Decimal64;x
long long int lirintd32(_Decimal32;x
long long int lirintd128(_Decimall®,

_Decimal64 roundd64(_Decimal64 x);
_Decimal32 roundd32(_Decimal32 x);
_Decimall128 roundd128(_Decimall28 x)
long int Iroundd64(_Decimal64 x);

long int Iroundd32(_Decimal32 x);

long int Iroundd128(_Decimall128 x);

long long int llroundd64(_Decimalgy

22

ISO/IEC DTR 24732 WG14 N1290

long long int llroundd32(_Decimalgp.
long long int llroundd128(_Decimagl®);

_Decimal64 truncd64(_Decimal64 x);
_Decimal32 truncd32(_Decimal32 x);
_Decimal128 truncd128(_Decimall28 x)

7.12.10 Remainder functidns

_Decimal64 fmodd64(_Decimal64 x, cbeal64 vy);
_Decimal32 fmodd32(_Decimal32 x, cb@al32 y);
_Decimall28 fmodd128(_Decimall28 Recimall28 y);

_Decimal64 remainderd64(_Decimal64Recimal64 vy);
_Decimal32 remainderd32(_Decimal32BRecimal32 y);
_Decimall128 remainderd128(_Decimalt2 Decimall28 y);

7.12.11 Manipulation functions

_Decimal64 copysignd64(_Decimal64 Recimal64 vy);
_Decimal32 copysignd32(_Decimal32 Recimal32 vy);
_Decimall28 copysignd128(_Decimal¥28Decimall28 vy);

_Decimal64 nand64(const char *tagp);
_Decimal32 nand32(const char *tagp);
_Decimall28 nand128(const char *Jagp

_Decimal64 nextafterd64(_Decimal64 Recimal64 vy);
_Decimal32 nextafterd32(_Decimal32 Recimal32 y);
_Decimall28 nextafterd128(_Decim@8l¥2 Decimall28y);

_Decimal64 nexttowardd64(_Decimatt4 Decimall28 vy);
_Decimal32 nexttowardd32(_Decimat32 Decimall28 vy);
_Decimall28 nexttowardd128(_Decir28lk, Decimall28 vy);

7.12.12 Maximum, minimum, and positdiference functions

_Decimal64 fdimd64(_Decimal64 x, civeal64 y);
_Decimal32 fdimd32(_Decimal32 x, civeal32 y);
_Decimal128 fdimd128(_Decimall28 Becimall28 y);

_Decimal64 fmaxd64(_Decimal64 x, cb@al64 y);
_Decimal32 fmaxd32(_Decimal32 x, cib@al32 y);
_Decimall28 fmaxd128(_Decimall28 Recimall28 y);

® There is no decimal floating-point type versiofith@ remquo function.

23

ISO/IEC DTR 24732 WG14 N1290

_Decimal64 fmind64(_Decimal64 x, civeal64 y);

_Decimal32 fmind32(_Decimal32 x, civeal32 y);

_Decimall128 fmind128(_Decimall28 Becimall28 y);

7.12.13 Floating multiply-add

_Decimal64 fmad64(_Decimal64 x, D64 y, Decimal64 z);

_Decimal32 fmad32(_Decimal32 x, Ded32 y, Decimal32 z);

_Decimall28 fmad128(_Decimall28Recimall28 y, Decimall28 z);
Add to the end of 7.12.14 paragraph 1:

[1] ... If either argument has decimal floating typee other argument shall have decimal floating
type as well.

Replace 7.12.6.4 paragraphs 2 and 3 with the fatigw

[2] Thef r exp functions break a floating-point number into amalized fraction and an integer
exponent. They store the integer in th@ object pointed to bgxp. If val ue is a decimal
floating-point number, the exponent is an integaler of 10; otherwise it is an integral power of
2.

[3] If val ue is not a floating-point number, the results arspatified. Otherwise, ther exp
functions return the value, such thak has a magnitude in the interval [1/10, 1) or zara

val ue equalsx * 10°®*P whenval ue is a decimal floating-point number, wthas a magnitude
in the interval [1/2, 1) or zero, an@l ue equals< * 2°*P whenval ue is a generic floating-
point number. Ival ue is zero, both parts of the result are zero.

Replace 7.12.6.6 paragraphs 2 and 3 with the fatigw

[2] Thel dexp functions multiply a decimal floating-point numb®y an integral power of 10, or
a generic floating-point number by an integral ppef2. A range error may occur.

[3] If x is a decimal floating-point number, thdexp functions returrx * 10°*P; otherwise they
returnx * 2°%P,

Replace 7.12.6.11 paragraph 2 with the following:

Thel ogb functions extract the exponentxafas a signed integer value in floating-point fotniia
X is subnormal it is treated as though it were ndimed; thus, for positive finite,

1<x *p'°®® <p

whereb = 10 ifx is a decimal floating-point number; otherwise FLT_RADI X.

24

ISO/IEC DTR 24732 WG14 N1290

A domain error or range error may occur if the anguat is zero.
Replace 7.12.6.13 paragraphs 2 and 3 with theviolig:

[2] Thescal bn andscal bl n functions compute * b" (whereb = 10 ifx is a decimal floating-
point number; otherwisle = FLT_RADI X) efficiently, not normally by computing® explicitly. A
range error may occur.

[3] Thescal bn andscal bl n functions returrx * b".

9.4 New <math.h> functions

The following are new functions added<oat h. h>.

Suggested addition to C99:
7.12.11.5 The quantize functions
Synopsis

#define __ STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 quantized32 (_Decimal32 x, _Decimalg2
_Decimal64 quantized64 (_Decimal64 x, _Decima/g4
_Decimall28 quantized128(_Decimall28 x, _Decimah)28

Description

Thequant i ze functions set the exponent of argumertb the exponent of argument while
attempting to keep the value the sathéhe exponent is being increased, the value d=ll
correctly rounded according to the current roundanuyle; if the result does not have the same
value as, the “inexact” floating-point exception shall keaged. If the exponent is being
decreased and the significand of the result hag migits than the type would allow, the result is

NaN and the “invalid” floating-point exception shbé raised. If one or both operands are NaN the

result is NaN. Otherwise if only one operand isnity, the result is NaN and the “invalid”
floating-point exception shall be raised. If bogpecands are infinity, the result is

DEC | NFI NI TY and the sign is the samexasThequant i ze functions do not signal
underflow.

Returns

Thequant i ze functions return the number which is equal in ealexcept for any rounding) and
sign tox, and which has an exponent set to be equal texghenent of .

25

ISO/IEC DTR 24732 WG14 N1290

7.12.11.6 The samequantum functions
Synopsis
#define __ STDC_WANT_DEC_FP__
#include <math.h>
_Bool samequantumd32 (_Decimal32 x, _Decima)32 y
_Bool samequantumd64 (_Decimal64 x, _Decima)64 y
_Bool samequantumd128 (_Decimall28 x, _Decimai)28
Description

Thesamequant umfunctions determine if the quantum exponents ektlandy are the same. If
bothx andy are NaN, or infinity, they have the same quantupoeents; if exactly one operand
is infinity or exactly one operand is NaN, theymd have the same quantum exponents. The
samequant umfunctions raise no exception.

Returns

Thesamequant umfunctions returrt r ue whenx andy have the same quantum exponents,
f al se otherwise.

7.12.11.7 The quantexp functions
Synopsis
#define _ STDC_WANT_DEC _FP__
#include <math.h>
int quantexpd32 (_Decimal32 x);
int quantexpd64 (_Decimal64 x);
int quantexpd128 (_Decimall28 x);

Description

Thequant exp functions compute the quantum exponent of a fimggument. I is infinite or
NaN, they computé NT_M N and a domain error occurs.

Returns

Thequant exp functions return the quantum exponenkof

9.5 Formatted input/output specifiers

Suggested changes to C99:

26

ISO/IEC DTR 24732 WG14 N1290

Add the following to 7.19.6.1 paragraph 7, to 761®.paragraph 11, to 7.24.2.1 paragraph 7, and
to 7.24.2.2 paragraph 11:

H Specifies that a following e, E, f, F, g, or G eersion specifier applies to &eci mal 32
argument.

D Specifies that a following e, E, f, F, g, or G eersion specifier applies to &eci nal 64
argument.

DD Specifies that a following e, E, f, F, g, or G ¢ersion specifier applies to a
_Deci mal 128 argument.

Change all occurrences of:
A doubl e argument representing ...

in the descriptions for the, E, f , F, g, andG conversion specifiers in 7.19.6.1 paragraph 8 and
7.24.2.1 paragraph 8 to:

A doubl e or decimal floating type argument representing ...

Add the following to 7.19.6.1 paragraph 8 and 224paragraph 8, undatA conversion
specifiers:

If anH, D, or DD modifier is present and the precision is missihgntfor a decimal floating type
argument represented by a triple of integers,(q), wheren is the number of digits in the
coefficientc,

e if 0 >=q>=-(n+5), use stylé formatting with formatting precision equal tg, -

e otherwise, use style formatting with formatting precision equalno 1, with the
exceptions that i€ = 0 then thaligit-sequencén theexponent-parshall have the valug
(rather than 0), and that the exponent is alwapsessed with the minimum number of
digits required to represent its value (the expbnerer contains a leading zero).

If the precision modifier is present and at leaslaage as the precisign(5.2.4.2.2) of the decimal
floating type, the conversion is as if the precismodifier were missing. If the precision modifier
is present and less than the precigiarf the decimal floating type, the conversion fistinds the
input, in the type, according to the current rongdiirection for decimal floating-point operations,
to the number of digits specified by the preciswodifier, then converts the result as if the
precision modifier were missing.

Examples:

27

ISO/IEC DTR 24732

WG14 N1290

Following are representations obeci mal 64 arguments as triples,(c, g) and the
corresponding character sequengesnt f produces wita:

123 9)

, 0, 0)
, 0,0)
, 0, -6)
, 0, -7)
, 0, 2)
, 5, -6)
, 50, -7)

(
(-
(
(
(-
(
(
(
(
(
(
(
(
(-
(
(
(
(
(
(1,5,-7)

1

1,

1,

1

1,

1,

1,

1, 1234567890123456, 0)
1, 1234567890123456, 1)
1, 1234567890123456, -1) 123456789012345.6

1, 1234567890123456, -21) 0.00000123456789012345
1

1

1

1

1

1

1

1

1

123

-123

1.23

1.23e+3

-1.23e+3

0.00000123

1.23e-7
1234567890123456
1.234567890123456e+16

, 1234567890123456, -22) 1.234567890123456e-7

0

-0
0.000000
Oe-7

Oe+2
0.000005
0.0000050
5e-7

To illustrate the effects of a precision modifigre sequence:

_Decimal32 x = 6543.00DF; // represented by timet(1, 654300, -2)

printf(*%Ha\n”, x);

printf(“%.6Ha\n”, x);
printf(“%.5Ha\n”, x);
printf(“%.4Ha\n”, x);
printf(“%.3Ha\n”, x);
printf(“%.2Ha\n”, x);
printf(“%.1Ha\n", x);

results in:

6543.00
6543.00
6543.0
6543
6.54e+3
6.5e+3
7e+3

9.6 strtod32, strtod64, and strtod128 functions <stdlith>

28

ISO/IEC DTR 24732 WG14 N1290

The specifications of these functions are simiethibse oSt rt od, strtof ,andstrtol d as
defined in C99 7.20.1.3. These functions are dedlar<st dl i b. h>.

Suggested addition to C99:

7.20.1.5 The strtod32, strtod64, and strtod128 futions
Synopsis

[1] #define _ STDC_WANT_DEC_FP__
#include <stdlib.h>
_Decimal32 strtod32 (const char * restrict npharc** restrict endptr);
_Decimal64 strtod64 (const char * restrict nphrarc** restrict endptr);
_Decimall28 strtod128(const char * restrict nptigrc** restrict endptr);

Description

[2] Thestrt 0od32, strt od64, andst rt 0d128 functions convert the initial portion of the
string pointed to byipt r to_Deci mal 32, _Deci mal 64, and_Deci mal 128 representation,
respectively. First, they decompose the input gtimmo three parts: an initial, possibly empty,
sequence of white-space characters (as specifititelbys space function), a subject sequence
resembling a floating-point constant or represgnéin infinity or NaN; and a final string of one or
more unrecognized characters, including the termmganull character of the input string. Then,
they attempt to convert the subject sequence ltmatirig-point number, and return the result.

[3] The expected form of the subject sequence pional plus or minus sign, then one of the
following:

e anonempty sequence of decimal digits optionallytaiming a decimal-point character,
then an optional exponent part as defined in 24.4.

e | NForl NFI NI TY, ignoring case

¢ NAN or NAN(d-char-sequenggy), ignoring case in thiAN part, where:

d-char-sequence
digit
d-char-sequence digit

The subject sequence is defined as the longegtl imitbsequence of the input string, starting with
the first non-white-space character, that is ofakgected form. The subject sequence contains no
characters if the input string is not of the expddorm.

[4] If the subject sequence has the expected forma floating-point number, the sequence of
characters starting with the first digit or the idegl-point character (whichever occurs first) is
interpreted as a floating constant according tatikes of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-poldracter is used in place of a period, and that

29

ISO/IEC DTR 24732 WG14 N1290

if neither an exponent part nor a decimal-pointrabger appears in a decimal floating point
number, an exponent part of the appropriate type value zero is assumed to follow the last digit
in the string. If the subject sequence begins withinus sign, the sequence is interpreted as
negated. A character sequemndd~ or | NFI NI TY is interpreted as an infinity. A character
sequenc®AN or NAN(d-char-sequenggy), is interpreted as a quiet NaN; the meaning efdithar
sequences is implementation-defiffetl pointer to the final string is stored in the edj pointed to
by endpt r, provided thaendpt r is not a null pointer.

[5] If the sequence is negated, the sgm set to -1, elseis set to 1.

[6] If the subject sequence has the expected forma floating-point number, then the result shall
be correctly rounded as specified in IEEE 754-2007.

[7] The coefficientc and the quantum exponembf a finite converted floating-point number are
determined from the subject sequence as follows:

e Thefractional-constanbr digit-sequencend theexponent-par{if any) are extracted from
the subject sequence. If there isexponent-partthenq is set to the value sign,: digit-
sequencén theexponent-patrtlf there is neexponent-partq is set to 0.

e Ifthere is dractional-constantq is decreased by the number of digits to the rifhhe
decimal point and the decimal point is removedtonfadigit-sequence

e cis set to the value of tliigit-sequencéafter any decimal point has been removed).

¢ Rounding required because of insufficient precigionange in the type of the result will
roundc to the full precision available in the type, anfl adjust g accordingly within the
limits of the type, provided the rounding does yietd an infinity (in which case an
appropriately signed internal representation ahityf is returned). If the full precision of
the type would requirg to be smaller than the minimum for the type, thesipinned at
the minimum anda is adjusted through the subnormal range accorgipgirhaps to zero.

Examples:

Following are subject sequences of the decimal fandhthe resulting triples,(c, g) produced by
st rt 0d64. Note that for Deci mal 64, the precision (maximum coefficient length) isdr&l
the quantum exponent range is -398g<<= 369.

"0" (1,0,0)
"0.00" (1,0,-2)
"123" (1,123,0)
"123" (-1,123,0)

"1.23E3" (1,123,1)
"1.23E+3" (1,123,1)
"12.3E+7" (1,123,6)
"12.0" (1,120,-1)

® An implementation may use the d-char sequencetermine extra information to be represented ir\thN's
significand.

30

ISO/IEC DTR 24732 WG14 N1290
"12.3" (1,123,-1)
"0.00123" (1,123,-5)
"-1.23E-12" (-1,123,-14)
"1234.5E-4" (1,12345,-5)
"-Q" (-1,0,0)
"-0.00" (-1,0,-2)
"OE+7" (1,0,7)
"QE-7" (-1,0,-7)
"12345678901234567890" (1, 12345678901234571 #)1p1234567890123456, 4)

depending on rounding mode
"1234E-400" (1, 12,-398) or (1, 13, -398) daping on rounding mode
"1234E-402" (1,0, -398) or (1, 1, -398) dependam roundingmode

"1000." (1,1000,0)
*.0001" (1,1,-4)
"1000.0" (1,1000,0)
".0001e0" (1,1,-4)
"1000.0" (1,10000,-1)
"0.0001" (1,1,-4)
"1000.00" (1,100000,-2)
"00.0001" (1,1,-4)
"001000." (1,1000,0)
"001000.0" (1,10000,-1)
"001000.00" (1,100000,-2)
"00.00" (1,0,-2)

“00." (1,0,0)

*.00" (1,0,-2)
"00.00e-5" (1,0,-7)
"00.e-5" (1,0,-5)
".00e-5" (1,0,-7)

[8] In other than thé C' locale, additional locale-specific subject seqeeiocms may be
accepted.

[9] If the subject sequence is empty or does noe ke expected form, no conversion is
performed; the value aipt r is stored in the object pointed to égdpt r , provided that
endpt r is not a null pointer.

Returns

[10] The functions return the converted valugny. If no conversion could be performed, the
value +0.E0dd is returned. If the correct valueusside the range of representable values, plus or
minusHUGE_VAL_ D64, HUGE_VAL_D32, orHUGE_VAL_D128 is returned (according to the

return type and sign of the value), and the vafud® macroERANGE is stored irer r no. If the
result underflows (7.12.1), the functions retuvalue whose magnitude is no greater than the
smallest normalized positive number in the retypet whetheer r no acquires the value
ERANGE is implementation-defined.

31

ISO/IEC DTR 24732 WG14 N1290

9.7 wcstod32, westod64, and westod128 functions <wchhp.

The specifications of these functions are simathbse ofacst od, west of , andwest ol d as
defined in C99 7.24.4.1.1. They are declaredvinhar . h>.

Suggested addition to C99:

7.24.4.1.3 The wcstod32, westod64, and wcstod128dtions
Synopsis

[1] #define _ STDC_WANT_DEC_FP__
#include <wchar.h>
_Decimal32 wcstod32 (const wchar_t * restrict ppichar_t ** restrict endptr);
_Decimal64 wcstod64 (const wchar_t * restrict ppichar_t ** restrict endptr);
_Decimall28 wcstod128(const wchar_t * restrict npirhar_t ** restrict endptr);

Description

[2] Thewcst 0d32, west 0d64, andwest 0d128 functions convert the initial portion of the
wide string pointed to bgpt r to_Deci mal 32, _Deci mal 64, and_Deci mal 128
representation, respectively. First, they decomplosenput string into three parts: an initial,
possibly empty, sequence of white-space wide chemraas specified by theswspace

function), a subject sequence resembling a flgabioint constant or representing an infinity or
NaN; and a final wide string of one or more unreungd wide characters, including the
terminating null wide character of the input wideng). Then, they attempt to convert the subject
sequence to a floating-point number, and returniebkalt.

[3] The expected form of the subject sequence pional plus or minus sign, then one of the
following:

e anonempty sequence of decimal digits optionallytaming a decimal-point wide
character, then an optional exponent part as d&fmé.4.4.2;

e | NForl NFI NI TY, ignoring case

¢ NAN or NAN(d-wchar-sequengg), ignoring case in thB®AN part, where:

d-wchar-sequence
digit
d-wchar-sequence digit

32

ISO/IEC DTR 24732 WG14 N1290

The subject sequence is defined as the longegtl mitbsequence of the input wide string, starting
with the first non-white-space wide character, thatf the expected form. The subject sequence
contains no wide characters if the input wide gtiginot of the expected form.

[4] If the subject sequence has the expected form floating-point number, the sequence of wide
characters starting with the first digit or the ideal-point wide character (whichever occurs first)

is interpreted as a floating constant accordindp¢orules of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-puwiicte character is used in place of a period,
and that if neither an exponent part nor a decipaatt wide character appears in a decimal
floating point number, an exponent part of the appate type with value zero is assumed to
follow the last digit in the string. If the subjesquence begins with a minus sign, the sequence is
interpreted as negated. A wide character sequelNEer | NFI NI TY is interpreted as an infinity.

A wide character sequenBN or NAN(d-wchar-sequenggy), is interpreted as a quiet NaN; the
meaning of the d-wchar sequences is implementatigimed’ A pointer to the final wide string is
stored in the object pointed to bydpt r, provided thaendpt r is not a null pointer.

[5] If the sequence is negated, the sgmset to -1, elseis set to 1.

[6] If the subject sequence has the expected forma floating-point number, then the result shall
be correctly rounded as specified in IEEE 754-2007.

[7] The coefficientc and the quantum exponembf a finite converted floating-point number are
determined from the subject sequence as follows:

e Thefractional-constanbr digit-sequencend theexponent-par{if any) are extracted from
the subject sequence. If there isexponent-partthenq is set to the value sign,: digit-
sequencén theexponent-partlf there is neexponent-partq is set to 0.

e Ifthere is dractional-constantq is decreased by the number of digits to the rigtihe
decimal point and the decimal point is removedtonfadigit-sequence

e cis set to the value of thiigit-sequencgafter any decimal point has been removed).

¢ Rounding required because of insufficient precigionange in the type of the result will
roundc to the full precision available in the type, anfl adjust g accordingly within the
limits of the type, provided the rounding does yietd an infinity (in which case an
appropriately signed internal representation ahityf is returned). If the full precision of
the type would requirg to be smaller than the minimum for the type, thesipinned at
the minimum anda is adjusted through the subnormal range accorgipgirhaps to zero.

[8] In other than thé C' locale, additional locale-specific subject seqeeiscms may be
accepted.

[9] If the subject sequence is empty or does noe ke expected form, no conversion is
performed; the value aipt r is stored in the object pointed to égdpt r , provided that
endpt r is not a null pointer.

" An implementation may use the d-char sequencetermine extra information to be represented irthN's
significand.

33

ISO/IEC DTR 24732 WG14 N1290

Returns

[10] The functions return the converted valugny. If no conversion could be performed, the
value +0.E0dd is returned. If the correct valueusside the range of representable values, plus or
minusHUGE_VAL_ D64, HUGE_VAL_D32, orHUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the vafud® macroERANGE is stored irer r no. If the

result underflows (7.12.1), the functions retuvalue whose magnitude is no greater than the
smallest normalized positive number in the retypet whetheer r no acquires the value

ERANGE is implementation-defined.

9.8 Type-generic macros <tgmath.h>

All new functions added tgmat h. h> are subjected to the same requirement as spetifi€d9
7.22 to provide support fdype-generianacro expansion. When one of the arguments isiandé
floating type, use of the type-generic macro inwadunction whose parameters have the types
determined as follows:

If there is more than one real floating type argotseusual arithmetic conversions are applied to
the real floating type arguments so that they lerapatible types. Then,

e Ifany argument has typeDeci mal 128, the type determined isDeci mal 128.

e Otherwise, if any argument has typBeci mal 64, the type determined isDeci nmal 64.
e Otherwise, if any argument has typBeci mal 32, the type determined isDeci mal 32.
e Otherwise, the specification in C99 7.22 parag@gipplies.

EXAMPLE
pow(2,3.0) // expands to the double version of pow
I pow((double)2, (double)3.0)

pow(2,3.DD) // expands to the _Decimal64 versibpaw:
Il powd64((_Decimal64)2, (_Decimal64)3.DD)

34

ISO/IEC DTR 24732 WG14 N1290

Index
__STDC_DEC_FP__ macro, 5 DEC64_MAX macro, 8
_ STDC_WANT_DEC_FP__ macro, 7, 15 DEC64_MAX_EXP macro, 8
_Decimal128 type specifier, 6 DEC64_MIN macro, 9
_Decimal32 type specifier, 6 DEC64_MIN_EXP macro, 8
_Decimal32_t type, 17 default argument promotion, 12
_Decimal64 type specifier, 6 error and gamma functions, 21
_Decimal64_t type, 17 exponential and logarithmic functions, 20
<fenv.h> header, 15 FE_DEC_DOWNWARD macro, 15
<float.h> header, 6 fe_dec_getround function, 15
<math.h> header, 17 fe_dec_setround function, 16
<tgmath.h> header, 34 FE_DEC_TONEAREST macro, 15
arithmetic operations, 13 FE_DEC _TONEARESTFROMZERO macro, 15
constants, 12 FE_DEC_TOWARDZERO macro, 15
suffixed, 12 FE_DEC_UPWARD macro, 15
conversions, 9 floating multiply-add functions, 24
decimal and generic floating, 10 FLT_MAXDIG10 macro, 9
decimal floating and integer, 9 FLT_SUBNORMAL_MIN macro, 9
usual arithmetic conversions, 11 formatted I/O specifiers, 26
DBL_MAXDIG10 macro, 9 FP_FAST_FMAD128 macro, 18
DBL_SUBNORMAL_MIN macro, 9 FP_FAST_FMAD32 macro, 18
DEC_EVAL_METHOD, 8 FP_FAST_FMAD64 macro, 18
DEC_INFINITY macro, 18 HUGE_VAL_D128 macro, 17
DEC_NAN macro, 18 HUGE_VAL_D32 macro, 17
DEC128 EPSILON macro, 9 HUGE_VAL_D64 macro, 17
DEC128 MANT_DIG macro, 8 hyperbolic functions, 19
DEC128 MAX macro, 8 LDBL_MAXDIG10 macro, 9
DEC128_ MAX_EXP macro, 8 LDBL_SUBNORMAL_MIN macro, 9
DEC128 MIN macro, 9 manipulation functions, 23
DEC128 MIN_EXP macro, 8 maximum, minimum, and positive difference
DEC128 SUBNORMAL_MIN macro, 9 functions, 23
DEC32_EPSILON macro, 8 nearest integer functions, 22
DEC32_MANT_DIG macro, 8 power and absolute-value functions, 21
DEC32_MAX macro, 8 guantexp functions, 26
DEC32_MAX_EXP macro, 8 guantize functions, 25
DEC32_MIN macro, 9 remainder functions, 23
DEC32_MIN_EXP macro, 8 samequantum functions, 26
DEC32_SUBNORMAL_MIN macro, 9 strto* functions, 29
DEC62_SUBNORMAL_MIN macro, 9 trigonometric functions, 18
DEC64_EPSILON macro, 8 type-generic macros, 34
DEC64_MANT _DIG macro, 8 wcsto* functions, 32

35

