Doc. No.: WG14/N1227

Date: 2007-03-20
Project: Programming Language C (TR 24732)
Subject: Comments on N1201

The following is a collection of comments on the Decimal TR document N1201.

Misc. edits:

8.1 (pg 16 & 17): Perhaps "or imaginary" should be "nor imaginary"
in five places.

8.1 (pg 16 & 17): The constraint for C99 6.5.8p2 can be
simplified. Remove ", complex type, or imaginary type". It is
already covered by the 1lst existing C99 constraint: -- both
operands have real type;

9.3 (pg 25) Should there be a footnote attached to 7.12.10
Remainder functions that remquo is missing and why?

9.3 (pg 26) The description is wrong. The interval is [1/10,1) for
DFP, and is [1/2,1) for generic FP types.

9.6 (pg 30) strtod*, [#5] "denormalized" seems wrong. Perhaps
"subnormal" or "subnormalized" is meant.

9.7 (pg 32) wcstod*, [#5] "denormalized" seems wrong. Perhaps
"subnormal" or "subnormalized" is meant.

Comments requiring further committee discussions:

1.

I believe, that at the Portland meeting, we agreed that if frexp
will be base-10 for DFP arguments, then ldexp should also be base-
10 for DFP arguments. I do not see that in the paper.

I have a question/issue.
Given vars:

_Decimal32 dfp R
float bfp Ce e

It is clear to me that
if(dfp * bfp)

is a constraint violation by DFP TR 8.1

As I read the DFP TR
if(expl() ? dfp : bfp)

is undefined behaviour, not a constraint violation. Seems unusual
to me that this operator does not have a constraint violation on
mixing DFP with binary FP. Was this done on purpose, or was this
something overlooked?

Since DEC_INFINITY is of type _Decimal32, quantizedé64 and
quantizedl28 cannot return DEC_INFINITY. Perhaps, "If both
operands are infinity, the result is DEC INFINITY and the sign is
the same as x." should be "If both operands are infinity, the
result is x."

4.

I do not see how gquantize() can overflow. Hence, I do not
understand why the spec for quantize mentions overflow.

When Decimal FP constants are converted into internal format, are
there any constraints on the conversion process? Consider these
equivalent values:

le6DF
10e5DF
100e4DF
1000e3DF
10000e2DF
100000elDF
1000000e0DF

Do they all convert to the same internal format? Or, do they
convert into 7 different formats? Implementation defined?

What about the value zero:
0e-95DF

0eODF

0e+95DF

Same or different internal formats?

fp classify macro issue (see WG14/N???? by Raymond Mak describing
the problem)

