

ISO/IEC JTC1 SC22 WG14 N1150

Date: 2005-10-25

Reference number of document: ISO/IEC TR 24732

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software interfaces —

Extension for the programming language C to support decimal floating-point arithmetic —

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical
Report. It is distributed for review and comment. It is subject to change without notice and shall
not be referred to as an International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (3) Proposed Draft Technical Report
Document language: E

© ISO/IEC WG14 N1150

 ii

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO.

Requests for permission to reproduce this document for the purpose of selling it should be
addressed as shown below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
E-mail copyright@iso.org

 Web www.iso.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

© ISO/IEC WG14 N1150

iii

Contents

1 Introduction... 1

1.1 Background.. 1
1.2 The Arithmetic Model.. 2
1.3 The Encodings ... 3

2 General... 3
2.1 Scope.. 3
2.2 References.. 4

3 Decimal floating types... 4
4 Characteristics of decimal floating types <decfloat.h>.. 5
5 Conversions ... 8

5.1 Conversions between decimal floating and integer ... 8
5.2 Conversions among decimal floating types, and between decimal floating types and generic
floating types.. 9
5.3 Conversions between decimal floating and complex... 10
5.4 Usual arithmetic conversions... 10
5.5 Default argument promotion.. 11

6 Constants ... 11
6.1 Unsuffixed decimal floating constant .. 12

6.1.1 Translation time data type... 13
7 Floating-point environment <fenv.h> ... 15

7.1 The DFP_MAX_PRECISION pragma.. 15
8 Arithmetic Operations.. 16

8.1 Operators.. 16
8.2 Functions.. 16
8.3 Conversions.. 16

9 Library ... 17
9.1 Decimal mathematics <math.h> .. 17
9.2 New functions .. 18
9.3 Formatted input/output specifiers .. 19
9.4 strtod32, strtod64, and strtod128 functions <stdlib.h> .. 19
9.5 wcstod32, wcstod64, and wcstod128 functions <wchar.h>... 19
9.6 Type-generic macros <tgmath.h> .. 20

Annex A... 20
Annex B... 22
Annex C... 22

© ISO/IEC WG14 N1150

1

1 Introduction

1.1 Background
Most of today's general purpose computing architectures provide binary floating-point arithmetic
in hardware. Binary floating-point is an efficient representation which minimizes memory use, and
is simpler to implement than floating-point arithmetic using other bases. It has therefore become
the norm for scientific computations, with almost all implementations following the IEEE-754
standard for binary floating-point arithmetic.

However, human computation and communication of numeric values almost always uses decimal
arithmetic and decimal notations. Laboratory notes, scientific papers, legal documents, business
reports and financial statements all record numeric values in decimal form. When numeric data are
given to a program or are displayed to a user, binary to-and-from decimal conversion is required.
There are inherent rounding errors involved in such conversions; decimal fractions cannot, in
general, be represented exactly by binary floating-point values. These errors often cause usability
and efficiency problems, depending on the application.

These problems are minor when the application domain accepts, or requires results to have,
associated error estimates (as is the case with scientific applications). However, in business and
financial applications, computations are either required to be exact (with no rounding errors)
unless explicitly rounded, or be supported by detailed analyses that are auditable to be correct.
Such applications therefore have to take special care in handling any rounding errors introduced by
the computations.

The most efficient way to avoid conversion error is to use decimal arithmetic. Currently, the IBM
zArchitecture (and its predecessors since System/360) is a widely used system that supports built-
in decimal arithmetic. This, however, provides integer arithmetic only, meaning that every number
and computation has to have separate scale information preserved and computed in order to
maintain the required precision and value range. Such scaling is difficult to code and is error-
prone; it affects execution time significantly, and the resulting program is often difficult to
maintain and enhance.

Even though the hardware may not provide decimal arithmetic operations, the support can still be
emulated by software. Programming languages used for business applications either have native
decimal types (such as PL/I, COBOL, C#, or Visual Basic) or provide decimal arithmetic libraries
(such as the BigDecimal class in Java). The arithmetic used, nowadays, is almost invariably
decimal floating-point; the COBOL 2002 ISO standard, for example, requires that all standard
decimal arithmetic calculations use 32-digit decimal floating-point.

At present, all languages use software for decimal arithmetic. Even the best packages are slow, and
can be 100 times slower than a corresponding hardware implementation, and in some cases much
slower. At least one processor manufacturer, therefore, is adding decimal floating-point in
hardware.

© ISO/IEC WG14 N1150

2

Arguably, the C language hits a sweet spot within the wide range of programming languages
available today – it strikes an optimal balance between usability and performance. Its simple and
expressive syntax makes it easy to program; and its close-to-the-hardware semantics makes it
efficient. Despite the advent of newer programming languages, C is still often used together with
other languages to code the computationally intensive part of an application. In many cases, entire
business applications are written in C/C++. To maintain the vitality of C, the need for decimal
arithmetic by the business and financial community cannot be ignored.

The importance of this has been recognized by the IEEE. The IEEE 754 standard is currently being
revised, and the major change in that revision is the addition of decimal floating-point formats and
arithmetic. These decimal data types are almost as efficient as the binary types, and are especially
suitable for hardware implementation; it is possible that they will become the most widely used
primitive data types once hardware implementations are available.

Historically there has been a close tie between IEEE-754 and C with respect to floating-point
specification. With the revised IEEE-754 nearing the final approval stage, it is now the appropriate
time for C to consider adding decimal types and arithmetic to its specification.

1.2 The Arithmetic Model
The proposal of this Technical Report is based on a model of decimal arithmetic1 which is a
formalization of the decimal system of numeration (Algorism) as further defined and constrained
by the relevant standards, IEEE-854, ANSI X3-274, and the proposed revision of IEEE-754. The
latter is also known as IEEE-754R.

There are three components to the model:

• numbers - which represent the values which can be manipulated by, or be the results of, the
core operations defined in the model

• operations - the core operations (such as addition, multiplication, etc.) which can be carried
out on numbers

• context - which represents the user-selectable parameters and rules which govern the results
of arithmetic operations (for example, the rounding mode to be used)

The model defines these components in the abstract. It neither defines the way in which operations
are expressed (which might vary depending on the computer language or other interface being
used), nor does it define the concrete representation (specific layout in storage, or in a processor's
register, for example) of numbers or context.

From the perspective of the C language, numbers are represented by data types, operations are
defined within expressions, and context is the floating environment specified in fenv.h. This
Technical Report specifies how the C language implements these components.

1 A description of the arithmetic model can be found in http://www2.hursley.ibm.com/decimal/decarith.html.

© ISO/IEC WG14 N1150

3

1.3 The Encodings
Based on the arithmetic model, encodings have been proposed to support the general purpose
floating-point decimal arithmetic described in the Decimal Arithmetic Specification2. The
encodings are the product of discussions by a subcommittee of the IEEE committee IEEE-754R
which is currently revising the IEEE 754-1985 and IEEE 854-1987 standards.

C99 specifies floating-point arithmetic using a two-layer organization. The first layer provides a
specification using an abstract model. The representation of floating-point number is specified in
an abstract form where the constituent components of the representation is defined (sign, exponent,
significand) but not the internals of these components. In particular, the exponent range,
significand size and the base (or radix), are implementation defined. This allows flexibility for an
implementation to take advantage of its underlying hardware architecture. Furthermore, certain
behaviors of operations are also implementation defined, for example in the area of handling of
special numbers and in exceptions.

The reason for this approach is historical. At the time when C was first standardized, there were
already various hardware implementations of floating-point arithmetic in common use. Specifying
the exact details of a representation would make most of the existing implementations at the time
not conforming.

C99 provides a binding to IEEE-754 by specifying an annex F and adopting that standard by
reference. An implementation not conforming to IEEE-754 can choose to do so by not defining the
macro __STDC_IEC_559__. This means not all implementations need to support IEEE-754, and
the floating-point arithmetic need not be binary.

This Technical Report specifies decimal floating-point arithmetic according to the IEEE-754R,
with the constituent components of the representation defined. This is more stringent than the
existing C99 approach for the floating types. Since it is expected that all decimal floating-point
hardware implementations will conform to the revised IEEE 754, binding to this standard directly
benefits both implementers and programmers.

2 General

2.1 Scope
This Technical Report specifies an extension to the programming language C, specified by the
international standard ISO/IEC 9899:1999. The extension provides support for decimal floating-
point arithmetic that is consistent with the specification in IEEE-754R.

This Technical Report does not specify binary floating-point arithmetic.

2 A description of the encodings can be found in http://www2.hursley.ibm.com/decimal/decbits.html.

© ISO/IEC WG14 N1150

4

2.2 References
The following standards contain provisions which, through reference in this text, constitute
provisions of this Technical Report. For dated references, subsequent amendment to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this Technical
Report are encouraged to investigate the possibility of applying the most recent editions of the
normative documents indicated below. For undated references, the latest edition of the normative
document referred applies. Members of IEC and ISO maintain registers of current valid
International Standards.

ISO/IEC 9899:1999, Information technology - Programming languages, their environments and
system software interfaces - Programming Language C.

ISO/IEC 9899:1999, Technical Corrigendum 1 to Programming Language C.

ANSI/IEEE 754-1985 - IEEE Standard for Binary Floating-Point Arithmetic. The Institute of
Electrical and Electronic Engineers, Inc., New York, 1985.

The IEEE 754 revision working group is currently revising the specification for floating-point
arithmetic:

ANSI/IEEE 754R - IEEE Standard for Floating-Point Arithmetic. The Institute of Electrical and
Electronic Engineers, Inc. Draft.

ANSI/IEEE 854-1987 - IEEE Standard for Radix-Independent Floating-Point Arithmetic. The
Institute of Electrical and Electronic Engineers, Inc., New York, 1987.

A Decimal Floating-Point Specification, Schwarz, Cowlishaw, Smith, and Webb, in the
Proceedings of the 15th IEEE Symposium on Computer Arithmetic (Arith 15), IEEE, June 2001.

Note: Reference materials relating to IEEE-754R can be found in
http://grouper.ieee.org/groups/754/ and http://www.validlab.com/754R/.

3 Decimal floating types

This Technical Report introduces three decimal floating types, designated as _Decimal32,
_Decimal64 and _Decimal128. The set of values of type _Decimal32 is a subset of the set of
values of the type _Decimal64; the set of values of the type _Decimal64 is a subset of the set of
values of the type _Decimal128. Support for _Decimal128 is optional.

Note that the names chosen for this TR are in line with the ones used in the IEEE-754R
specification. There have been suggestions for a naming convention that reflects the characteristics
of the type; for example: decfp7, decfp16, and decfp34, which indicate decimal representation
(dec), floating point type (fp), with the specified number of coefficient digits (7, 16, or 34).

© ISO/IEC WG14 N1150

5

A single token is used as a type name to make it easy for C++ to implement the types as classes.

Within the type hierarchy, decimal floating types are base types, real types and arithmetic types.

The types float, double and long double are also called generic floating types for the purpose of
this Technical Report.

Note: C does not specify a radix for float, double and long double. An implementation can choose
the representation of float, double and long double to be the same as the decimal floating types. In
any case, the decimal floating types are distinct from float, double and long double regardless of
the representation.

Note: This Technical Report does not define decimal complex types or decimal imaginary types.
The three complex types remain to be float _Complex, double _Complex and long double
_Complex, and the three imaginary types remain to be float _Imaginary, double _Imaginary and
long double _Imaginary.

Following are suggested changes to the C99:

Change the first sentence of 6.2.5#10.

[10] There are three generic floating types, designated as float, double and long double.

Add the following paragraphs after 6.2.5#10.

[10a] There are three decimal floating types, designated as _Decimal32, _Decimal64 and
_Decimal128. The set of values of the type _Decimal32 is a subset of the set of values of the type
_Decimal64; the set of values of the type _Decimal64 is a subset of the set of values of the type
_Decimal128. Support for _Decimal128 is optional. Decimal floating types are real floating types.

[10b] The generic floating types and decimal floating types are real floating types.

Add the following to 6.7.2 Type specifiers:

type-specifier:
_Decimal32
_Decimal64
_Decimal128

4 Characteristics of decimal floating types <decfloat.h>

The header <float.h> defines characteristics of non-decimal floating types. The contents remain
unchanged by this Technical Report.

© ISO/IEC WG14 N1150

6

The characteristics of decimal floating types are defined in terms of a model specifying general
decimal arithmetic (1.2). The encodings are specified in IEEE-754R (1.3).

The three decimal encoding formats defined in IEEE-754R correspond to the three decimal
floating types as follows:

• _Decimal32 is a decimal32 number, which is encoded in four consecutive octets (32 bits)
• _Decimal64 is a decimal64 number, which is encoded in eight consecutive octets (64 bits)
• _Decimal128 is a decimal128 number, which is encoded in 16 consecutive octets (128 bits)

The finite numbers are defined by a sign, an exponent (which is a power of ten), and a decimal
integer coefficient. The value of a finite number is given by (-1)sign x coefficient x 10exponent. Refer
to IEEE-754R for details of the format.

These formats are characterized by the length of the coefficient, and the maximum and minimum
exponent. The table below shows these characteristics by format:

Format _Decimal32 _Decimal64 _Decimal128
Coefficient length in digits 7 16 34
Maximum Exponent (Emax) 96 384 6144
Minimum Exponent (Emin) -95 -383 -6143

The new header <decfloat.h> defines several macros that expand to various limits and parameters
of the decimal floating-types. These macros have the similar names and meaning as to the
corresponding ones in <float.h>.

Suggested change to C99:

Add the following after 5.2.4.2.2:

5.2.4.2.2a Characteristics of decimal floating types <decfloat.h>

[1] The characteristics of decimal floating types are defined in terms of the format described in
IEEE-754R. The finite numbers are defined by a sign, an exponent (which is a power of ten), and a
decimal integer coefficient. The value of a finite number is given by (-1)sign x coefficient x
10exponent. The macros defined in decfloat.h provide the characteristics of these representations,
which is defined in the Decimal Arithmetic Encoding. The prefixes DEC32_, DEC64_, and
DEC128_ are used to denote the types _Decimal32, _Decimal64, and _Decimal128 respectively.

[2] Except for assignment and casts, the values of operations with decimal floating operands and
values subject to the usual arithmetic conversions and of decimal floating constants are evaluated
to a format whose range and precision may be greater than required by the type. The use of
evaluation formats is characterized by the implementation-defined value of
DEC_EVAL_METHOD:

© ISO/IEC WG14 N1150

7

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;
1 evaluate operations and constants of type _Decimal32 and _Decimal64 to the range

and precision of the _Decimal64 type, evaluate _Decimal128 operations and constants
to the range and precision of the _Decimal128 type;

2 evaluate all operations and constants to the range and precision of the _Decimal128
type.

All other negative values for DEC_EVAL_METHOD characterize implementation-defined
behavior.

[3] The values given in the following list shall be replaced by constant expressions suitable for use
in #if preprocessing directives:

• number of digits in the coefficient

DEC32_MANT_DIG 7
DEC64_MANT_DIG 16
DEC128_MANT_DIG 34

• minimum exponent

DEC32_MIN_EXP -95
DEC64_MIN_EXP -383
DEC128_MIN_EXP -6143

• maximum exponent

DEC32_MAX_EXP 96
DEC64_MAX_EXP 384
DEC128_MAX_EXP 6144

• maximum representable finite decimal floating number (there are 6, 15 and 33 9's after the

decimal points respectively)

DEC32_MAX 9.999999E96DF
DEC64_MAX 9.999999999999999E384DD
DEC128_MAX 9.999999999999999999999999999999999E6144DL

• the difference between 1 and the least value greater than 1 that is representable in the given

floating point type

DEC32_EPSILON 1E-6DF
DEC64_EPSILON 1E-15DD
DEC128_EPSILON 1E-33DL

© ISO/IEC WG14 N1150

8

• minimum normalized positive decimal floating number

DEC32_MIN 1E-95DF
DEC64_MIN 1E-383DD
DEC128_MIN 1E-6143DL

• minimum denormalized positive decimal floating number

DEC32_DEN 0.000001E-95DF
DEC62_DEN 0.000000000000001E-383DD
DEC128_DEN 0.000000000000000000000000000000001E-6143DL

5 Conversions

5.1 Conversions between decimal floating and integer
For conversions between real floating and integer types, C99 6.3.1.4 leaves the behavior undefined
if the conversion result cannot be represented (Annex F.4 tightened up the behavior.) To help
writing portable code, this Technical Report provides defined behavior for decimal floating type.
Furthermore, it is useful to allow program execution to continue without interruption unless the
program needs to check the condition.

When the new type is a decimal floating type, we have these choices: the most positive/negative
number representable, positive/negative infinity, and quiet NaN. The first provides no indication to
the program that something exceptional has happened. The second provides indication, and since
other operations that produce infinity also raise exception, an exception would be raised here for
consistency. The third allows the program to detect the condition and provides a way for the
implementation to encode the condition (for example, where it occurs).

When the new type is an unsigned integral type, the values that create problems are those less than
0 and those greater than Utype_MAX. There is no overflow/under-flow processing for unsigned
arithmetic. A possible choice for the result would be Utype_MAX. Also, common existing
implementations do not raise signals for signed integer arithmetic. When the new type is a signed
integral type, the values that create problems are those less than type_MIN and those greater than
type_MAX. The result here could be type_MIN or type_MAX depending on whether the original
value is negative or positive.

Suggested changes to C99:

Change the first sentence of 6.3.1.4 paragraph 1:

[1] When a finite value of generic floating type is converted to an integer type …

© ISO/IEC WG14 N1150

9

Add the follow paragraph after 6.3.1.4 paragraph 1:

[1a] When a finite value of decimal floating type is converted to an integer type other than _Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of the integral
part cannot be represented by the integer type, the result is the largest representable number if the
type is unsigned, and the most negative or positive number according to the sign of the floating
point number if the type is signed.

Change the first sentence of 6.3.1.4 paragraph 2:

[2] When a value of integer type is converted to a generic floating type, …

Add the following paragraph after 6.3.1.4 paragraph 2:

[2a] When a value of integer type is converted to a decimal floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being converted
is in the range of values that can be represented but cannot be represented exactly, the result is
either the nearest higher or nearest lower representable value, chosen in an implementation-defined
manner. If the value being converted is outside the range of values that can be represented, the
result is an infinity and the “overflow” floating-point exception is raised.

5.2 Conversions among decimal floating types, and between
decimal floating types and generic floating types
The specification is similar to the existing ones for float, double and long double, except that when
the result cannot be represented exactly, the behavior is tightened to become correctly rounded.

Suggested change to C99:

Add after 6.3.1.5#2.

[3] When a _Decimal32 is promoted to _Decimal64 or _Decimal128, or a _Decimal64 is
promoted to _Decimal128, the value is converted to the type being promoted to. All extra
precision and/or range (for the new type) is removed.

[4] When a _Decimal64 is demoted to _Decimal32, a _Decimal128 is demoted to _Decimal64 or
_Decimal32, or conversion is performed among decimal and generic floating types other than the
above, if the value being converted can be represented exactly in the new type, it is unchanged. If
the value being converted is in the range of values that can be represented but cannot be
represented exactly, the result is correctly rounded. If the value being converted is outside the
range of values that can be represented, the result is dependent on the rounding mode. If the
rounding mode is:

© ISO/IEC WG14 N1150

10

near, if the value being converted is less than the maximum representable value of a
hypothetical representation having one more digit in the mantissa of the target type, the
result is the maximum value of the target type3; otherwise the absolute value of the result is
one of HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D64,
HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type and the sign is the
same as the value being converted.

zero, the value is the most positive representable if the value being converted is positive,
and the most negative number representable otherwise.

positive infinity, the value is same as zero if the value being converted is negative, and is
same as near otherwise.

negative infinity, the value is same as near if the value being converted is negative, and is
same as zero otherwise.

5.3 Conversions between decimal floating and complex
When a value of decimal floating type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion in 5.2 and the imaginary part of the complex
result value is zero.

This is covered by C99 6.3.1.7.

5.4 Usual arithmetic conversions
In a business application that is written using decimal arithmetic, mixed operations between
decimal and other real types might not occur frequently. Situations where this might occur are
when interfacing with other languages, calling an existing library written in binary floating-point
arithmetic, or accessing existing data. The programmer may want to use an explicit cast to control
the behavior in such cases to make the code maximally portable. One way to handle usual
arithmetic conversion is therefore to disallow mixed operations. The disadvantage of this approach
is usability - for example, it could be tedious to add explicit casts in assignments and in function
calls when the compiler can correctly handle such situations. A variation of this is to allow it only
in simple assignments and in argument passing.

One major difficulty of allowing mixed operation is in the determination of the common type. C99
does not specify exactly the range and precision of the generic real types. The pecking order
between them and the decimal types is therefore unspecified. Given two (or more) mixed type
operands, there is no simple rule to define a common type that would guarantee portability in
general.

3 That is, the values that are between MAX and MAX*(1+ulp/10)

© ISO/IEC WG14 N1150

11

For example, we can define the common type to be the one with greater range. But since a double
type may have different range under different implementations, a program cannot assume the
resulting type of an addition, say, involving both _Decimal64 and double. This imposes limitations
on how to write portable programs.

If the generic real type is a type defined in IEEE-754R, and if we use the greater-range rule, the
common type is easily determined. When mixing decimal and binary types of the same type size,
decimal type is the common type. When mixing types of different sizes, the common type is the
one with larger size. The suggested change in Annex C uses this approach but does not assume the
generic real type to follow IEEE-754R. This guarantees consistent behaviors among
implementation that uses IEEE-754 in their binary floating-point arithmetic, and at the same time
provides reasonable behavior for those that don't.

Following are suggested changes to C99:

Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:"

6.3.1.8[1]

... This pattern is called the usual arithmetic conversions:

If one operand is a decimal floating type, all other operands shall not be generic floating type,
complex type or imaginary type:

First if either operand is _Decimal128, the other operand is converted to _Decimal128.

Otherwise, if either operand is _Decimal64, the other operand is converted to _Decimal64.

Otherwise, if either operand is _Decimal32, the other operand is converted to _Decimal32.

If there are no decimal floating type in the operands:

First, if the corresponding real type of either operand is long double, the other operand is
converted, without ... <the rest of 6.3.1.8#1 remains the same>

5.5 Default argument promotion
There is no default argument promotion for the decimal floating types.

6 Constants

© ISO/IEC WG14 N1150

12

New suffixes are added to denote decimal floating constants: DF for _Decimal32, DD for
_Decimal64, and DL for _Decimal128.

Suggested changes to C99:

Add the following to 6.4.4.2 floating-suffix.

floating-suffix: one of
f d l F D L df dd dl DF DD DL

Add the following paragraph after 6.4.4.2#2:

6.4.4.2
...
[2a] Constraints

The df, dd, dl, DF, DD and DL shall not be used in a hexadecimal-floating-constant.

Add the following paragraph after 6.4.4.2#4:

6.4.4.2
...
[4a] If a floating constant is suffixed by df or DF, it has type _Decimal32. If suffixed by dd or
DD, it has type _Decimal64. If suffixed by dl or DL, it has type _Decimal128.

6.1 Unsuffixed decimal floating constant
The above introduces new suffixes for the decimal floating constants. It would help usability if
unsuffixed floating constant can be used. The issue can be illustrated by the following example:

_Decimal64 rate = 0.1;

The constant 0.1 has type double. In an implementation where binary representation is used for the
floating types, and FLT_EVAL_METHOD is not -1, the internal representation of 0.1 cannot be
exact. The variable rate will get a value slightly different from 0.1. This defeated the purpose of
decimal floating types. On the other hand, requiring programmers to write:

_Decimal64 rate = 0.1dd;

can be inconvenient and affect readability of the program.

© ISO/IEC WG14 N1150

13

6.1.1 Translation time data type

The main idea is to introduce a translation time data type (TTDT) which the translator uses as the
type for unsuffixed floating constants. A floating constant is kept in this type and representation
until an operation requires it to be converted to an actual type. The value of the constant remains
exact for as long as possible during the translation process. The concept can be summarized as
follows:

1. The implementation is allowed to use a type different from double and long double as the type

of unsuffixed floating constant. This is an implementation defined type. The intention is that
this type can represent the constant extactly if the number of decimal digits is within an
implementation specified limit. For an implementation that supports decimal floating pointing,
a possible choice is the widest decimal floating type.

2. The range and precision of this type are implementation defined and are fixed throughout the
program.

3. TTDT is an arithmetic type. All arithmetic operations are defined for this type.
4. Usual arithmetic conversion is extended to handle mixed operations between TTDT and other

types. If an operation involves both TTDT and an actual type, the TTDT is converted to an
actual type before the operation. There is no "top-down" parsing context information required
to process unsuffixed floating constants. Technically speaking, there is no deferring in
determining the type of the constant.

Examples:

double f;
f = 0.1;

Suppose the implementation uses _Decimal128 as the TTDT. 0.1 is represented exactly after the
constant is scanned. It is then converted to double in the assignment operator.

f = 0.1 * 0.3;

Here, both 0.1 and 0.3 are represented in TTDT. If the compiler evaluates the expression during
translation time, it would be done using TTDT, and the result would be TTDT. This is then
converted to double before the assignment. If the compiler generates code to evaluate the
expression during execution time, both 0.1 and 0.3 would be converted to double before the
multiply. The result of the former would be different but more precise than the latter.

float g = 0.3f;
f = 0.1 * g;

When one operand is a TTDT and the other is one of float/double/long double, the TTDT is
converted to double with an internal representation following the specification of
FLT_EVAL_METHOD for constant of type double. Usual arithmetic conversion is then applied to
the resulting operands.

© ISO/IEC WG14 N1150

14

_Decimal32 h = 0.1;

If one operand is a TTDT and the other a decimal floating type, the TTDT is converted to
_Decimal64 with an internal representation specified by DEC_EVAL_METHOD. Usual
arithmetic conversion is then applied.

If one operand is a TTDT and the other a fixed point type, the TTDT is converted to the fixed point
type. If the implementation supports fixed point type, it is a recommended practice that the
implementation chooses a representation for TTDT that can represent floating and fixed point
constants exactly, subjected to a predefined limit on the number of decimal digits.

Suggested changes to C99:

Below are suggested changes to C99. Fixed point types are not considered in these changes.

In 6.2.5 after paragraph 28, add a paragraph:

[28a] There is an implementation defined data type called the translation time data type, or TTDT.
TTDT is an arithmetic type and is used as the type for unsuffixed floating constants. There is no
type specifier for TTDT.

Replace 6.4.4.2 paragraph 4 with the following:

[4] An unsuffixed floating constant has type TTDT. If suffixed by the letter f or F, it has type
float. If suffixed by the letter l or L, it has type long double.

Add the following paragraphs after 6.3.1.7:

6.3.1.7a Translation Time Data Type

When a TTDT is converted to double, it is converted to the internal representation specified by
FLT_EVAL_METHOD.

Recommended practice

The conversion of TTDT to double should match the execution-time conversion of character
strings by library functions, such as strtod, given matching inputs suitable for both conversions,
the same format and default execution-time rounding.

6.3.1.7b

Before the usual arithmetic conversions are carried out, if one operand is TTDT and the other is
not, and is not a decimal floating type, the TTDT operand is converted to double. Otherwise, the
behavior is implementation defined.

© ISO/IEC WG14 N1150

15

7 Floating-point environment <fenv.h>

The floating point environment specified in C99 7.6 applies to decimal floating types. This is to
implement the context defined in IEEE 754R. The existing C99 specification gives flexibility to
implementation on which part of the environment is accessible to programs. The decimal floating-
point arithmetic specifies a more stringent requirement. All the rounding modes and flags are
supported.

Suggested changes to C99:

Add the following after 7.6#7:

7.6
...
[7a] Each of the macros

FE_DEC_DOWNWARD
FE_DEC_TONEAREST
FE_DEC_TONEARESTFROMZERO
FE_DEC_TOWARDZERO
FE_DEC_UPWARD

is defined and used by fegetround and fesetround functions for getting and setting the rounding
mode of decimal floating-point operations.

7.1 The DFP_MAX_PRECISION pragma
Certain algorithms or legal requirements may stipulate a precision on the result of an operation;
and this precision could be different from those of the three standard types. A mechanism for the
programmer to specify a precision is needed. However, using a library function to control the
precision dynamically during execution-time is not efficient. This technical report proposes a
translation time control using a pragma directive.

Suggested changes to C99:

Add the following after 7.6.4

7.6.5 The DFP_PRECISION pragma

Synopsis

#include <fenv.h>

© ISO/IEC WG14 N1150

16

#pragma STDC DFP_PRECISION integer | default

Constraints

integer, if specified, must be 6 or larger.

Description

The DFP_PRECISION pragma informs the implementation that all decimal floating point
operations, after usual arithmetic conversions, involving operands with coefficient length greater
than or equal to integer will deliver the results in a precision of integer, correctly rounded if
necessary. It has no effects on operations that involve operands with coefficient length less than
integer.

If default is specified, the effect on precision is as though there is no DFP_PRECISION pragma in
the translation unit.

The pragma shall occur either outside external declarations or preceding all explicit declarations
and statements inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until another DFP_PRECISION pragma is encountered, or until the
end of the translation unit. When inside a compound statement, the pragma takes effect from its
occurrence until another DFP_PRECISION pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a compound
statement the state of the pragma is restored to its condition just before the compound statement. If
this pragma is used in any other context, the behavior is undefined. The default state for the
pragma is default.

8 Arithmetic Operations

8.1 Operators
The operators Add (C99 6.5.6), Subtract (C99 6.5.6), Multiply (C99 6.5.5), Divide (C99 6.5.5),
Relational operators (C99 6.5.8), Equality operators (C99 6.5.9), and Unary Arithmetic operators
(C99 6.5.3.3) when applied to decimal floating type operands shall follow the semantics as defined
in IEEE 754R.

8.2 Functions
Square root, min, max, fused multiply-add and remainder are implemented as library functions.

8.3 Conversions

© ISO/IEC WG14 N1150

17

Conversions between different formats and to integer formats are covered in section 5.

9 Library

9.1 Decimal mathematics <math.h>
The elementary functions specified in the mathematics library are extended to handle decimal
floating-point types. These include functions specified in 7.12.4, 7.12.5, 7.12.6, 7.12.7, 7.12.8,
7.12.9, 7.12.10, 7.12.11, 7.12.12, and 7.12.13. The macros HUGE_VAL_D32, HUGE_VAL_D64,
HUGE_VAL_D128, DEC_INFINITY and DEC_NAN are defined to help using these functions.
With the exception of sqrt, max, and min, the accuracy of the decimal floating-point results is
implementation-defined. The implementation may state that the accuracy is unknown. All
classification macros specified in C99 7.12.3 are also extended to handle decimal floating-point
types. The same applies to all comparison macros specified in 7.12.14.

The names of the functions are derived by adding suffixes d32, d64 and d128 to the double version
of the function name.

Suggested changes to C99:

Add at the end of 7.12 paragraph 3 the following macros.

7.12

[3] The macro

HUGE_VAL_D64

expands to a positive _Decimal64 constant expression, not necessarily representable as a
_Decimal32. The macros

HUGE_VAL_D32
HUGE_VAL_D128

are respectively _Decimal32 and _Decimal128 analogs of HUGE_VAL_D64.

Add at the end of 7.12 paragraph 4 the following macro.

7.12

[4] The macro

DEC_INFINITY

© ISO/IEC WG14 N1150

18

expands to a constant expression of type _Decimal32 representing infinity.

Add at the end of 7.12 paragraph 5 the following macro.

7.12

[5] The macro

DEC_NAN

expands to quiet decimal floating NaN for the type _Decimal32.

9.2 New functions
The following are new functions added to math.h.

Suggested addition to C99:

7.12.11.5 The quantize functions

Synopsis

#include <math.h>
_Decimal32 quantized32 (_Decimal32 x, _Decimal32 y);
_Decimal64 quantized64 (_Decimal64 x, _Decimal64 y);
_Decimal128 quantized128(_Decimal128 x, _Decimal128 y);

Description

The quantize functions perform the quantize operation as defined in IEEE 754R.

7.12.11.6 The samequantum functions

Synopsis

#include <math.h>
_Bool samequantumd32 (_Decimal32 x, _Decimal32 y);
_Bool samequantumd64 (_Decimal64 x, _Decimal64 y);
_Bool samequantumd128 (_Decimal128 x, _Decimal128 y);

Description

The samequantum functions perform the samequantum operation as defined in IEEE 754R.

© ISO/IEC WG14 N1150

19

9.3 Formatted input/output specifiers
Suggested changes to C99:

Add the following to 7.19.6.1 paragraph 7 and to 7.19.6.2 paragraph 11:

HD Specifies that a following e, E, f, F, g, or G conversion specifier applies to a _Decimal32

argument.

D Specifies that a following e, E, f, F, g, or G conversion specifier applies to a _Decimal64

argument.

LD Specifies that a following e, E, f, F, g, or G conversion specifier applies to a _Decimal128

argument.

9.4 strtod32, strtod64, and strtod128 functions <stdlib.h>
These functions have the similar specifications as strtod, strtof, and strtold as defined in C99
7.20.1.3; refer to Annex A for suggested description text. These functions are declared in
<stdlib.h> with the following synopsis.

Synopsis

#include <stdlib.h>

_Decimal32 strtod32 (const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64 (const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);

9.5 wcstod32, wcstod64, and wcstod128 functions <wchar.h>
These functions have the similar specifications as wcstod, wcstof, and wcstold as defined in C99
7.24.4.1.1; refer to Annex B for suggested description text. They are declared in <wchar.h> with
the following synopsis.

Synopsis

#include <wchar.h>

_Decimal32 wcstod32 (const char * restrict nptr, char ** restrict endptr);
_Decimal64 wcstod64 (const char * restrict nptr, char ** restrict endptr);
_Decimal128 wcstod128(const char * restrict nptr, char ** restrict endptr);

© ISO/IEC WG14 N1150

20

9.6 Type-generic macros <tgmath.h>
All new functions added to math.h are subjected to the same requirement as specified in C99 7.22
to provide support for type-generic macro expansion. When one of the arguments is a decimal
floating type, use of the type-generic macro invokes a function whose parameters have the types
determined as follows:

If there are more than one real floating type arguments, usual arithmetic conversions are applied to
the real floating type arguments so that they have compatible types. Then,

• If any argument has type _Decimal128, the type determined is _Decimal128.
• Otherwise, if any argument has type _Decimal64, the type determined is _Decimal64
• Otherwise, if any argument has type _Decimal32, the type determined is _Decimal32.
• Otherwise, the specification in C99 7.22 paragraph 3 applies.

Annex A

Below is the suggested text for strtod32, strtod64, and strtod128, copied from C99 7.20.1.3 with
editing. Refer to the handling of Signaling NaNs suggested by WG14 paper N1011.

7.20.1.5 The strtod32, strtod64, and strtod128 functions

Synopsis

[#1] #include <stdlib.h>

_Decimal32 strtod32 (const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64 (const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);

Description

[#2] The strtod32, strtod64, and strtod128 functions convert the initial portion of the string
pointed to by nptr to _Decimal32, _Decimal64, and _Decimal128 representation, respectively.
First, they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence resembling a
floating-point constant or representing an infinity or NaN; and a final string of one or more
unrecognized characters, including the terminating null character of the input string. Then, they
attempt to convert the subject sequence to a floating-point number, and return the result.

[#3] The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a nonempty sequence of decimal digits optionally containing a decimal-point character,
then an optional exponent part as defined in 6.4.4.2;

© ISO/IEC WG14 N1150

21

• one of INF or INFINITY, ignoring case
• one of NAN or NAN(n-char-sequenceopt), or SNAN or SNAN(n-char-sequenceopt),

ignoring case in the NAN or SNAN part, where:

n-char-sequence:
digit
n-char-sequence digit

The subject sequence is defined as the longest initial subsequence of the input string, starting with
the first non-white-space character, that is of the expected form. The subject sequence contains no
characters if the input string is not of the expected form.

[#4] If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs first) is
interpreted as a floating constant according to the rules of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-point character is used in place of a period, and that
if neither an exponent part nor a decimal-point character appears in a decimal floating point
number, an exponent part of the appropriate type with value zero is assumed to follow the last digit
in the string. If the subject sequence begins with a minus sign, the sequence is interpreted as
negated. A character sequence INF or INFINITY is interpreted as an infinity. A character
sequence NAN or NAN(n-char-sequenceopt), or SNAN or SNAN(n-char-sequenceopt), is
interpreted as a quiet NaN or signalling NaN respectively; the meaning of the n-char sequences is
implementation-defined.4 A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

[#5] The value is converted according to F.5. The result from the conversion is correctly rounded.

[#6] In other than the "C" locale, additional locale-specific subject sequence forms may be
accepted.

[#7] If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that endptr is
not a null pointer.

Recommended practice

[#8] If the subject sequence has the decimal form and at most DEC128_COEFF_DIG (defined
in <decfloat.h>) significant digits, the result should be correctly rounded. If the subject sequence
D has more than DEC128_COEFF_DIG significant digits, consider the two bounding, adjacent
decimal strings L and U, both having DEC128_COEFF_DIG significant digits, such that the
values of L, D, and U satisfy L <= D <= U. The result should be one of the (equal or adjacent)
values that would be obtained by correctly rounding L and U according to the current rounding
direction, with the extra stipulation that the error with respect to D should have a correct sign for
the current rounding direction.

4 An implementation may use the n-char sequence to determine extra information to be represented in the NaN's
significand. No signal should be raised at the point of returning the signaling NaN.

© ISO/IEC WG14 N1150

22

Returns

[#9] The functions return the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or minus
HUGE_VAL_D64, HUGE_VAL_D32, or HUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the value of the macro ERANGE is stored in errno. If the
result underflows (7.12.1), the functions return a value whose magnitude is no greater than the
smallest normalized positive number in the return type; whether errno acquires the value
ERANGE is implementation-defined.

Annex B

The suggested text for wcstod64, wcstod32 and wcstod128 are similar to those in Annex A, and is
based on the text in C99 7.24.4.1.1.

7.24.4.1.3 The strtod32, strtod64, and strtod128 functions

Synopsis

[#1] #include <stdlib.h>

_Decimal32 strtod32 (const char * restrict nptr, char ** restrict endptr);
_Decimal64 strtod64 (const char * restrict nptr, char ** restrict endptr);
_Decimal128 strtod128(const char * restrict nptr, char ** restrict endptr);

Description

Similar to 7.20.1.5 in Annex A, replacing references to character with wide character where
appropriate.

Annex C

The following is an alternate suggestion to usual arithmetic conversions using the greater-range
rule.

Insert the following to 6.3.1.8#1, after "This pattern is called the usual arithmetic conversions:"

6.3.1.8[1]

... This pattern is called the usual arithmetic conversions:

If one operand is a decimal floating type and there are no complex types in the operands:

© ISO/IEC WG14 N1150

23

If either operand is _Decimal128 or long double, the other operand is converted to
_Decimal128.

Otherwise, if either operand is _Decimal64 or double, the other operand is converted to
_Decimal64.

Otherwise, if either operand is _Decimal32, the other operand is converted to _Decimal32.

If one operand is a decimal floating type and the other is a complex type, the decimal floating type
is converted to the first type in the following list that can represent the value range: float, double,
long double. It is converted to long double if no type in the list can represent its value range. In
either case, the complex type is converted to a type whose corresponding real type is this converted
type. Usual arithmetic conversions is then applied to the converted operands.

During any of the above conversions, if the value being converted can be represented exactly in the
new type, it is unchanged. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is correctly rounded. If the value being
converted is outside the range of values that can be represented, the result is dependent on the
rounding mode. If the rounding mode is:

near, if the value being converted is less than the maximum representable value of a
hypothetical representation having one more digit in the mantissa of the target type, the
result is the maximum value of the target type5; otherwise the absolute value of the result is
one of HUGE_VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D64,
HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type and the sign is the
same as the value being converted.

zero, the value is the most positive representable if the value being converted is positive,
and the most negative number representable otherwise.

positive infinity, the value is same as zero if the value being converted is negative, and is
same as near otherwise.

negative infinity, the value is same as near if the value being converted is negative, and is
same as zero otherwise.

If there are no decimal floating type in the operands:

First, if the corresponding real type of either operand is long double, the other operand is
converted, without ... <the rest of 6.3.1.8#1 remains the same>

5 That is, the values that are between MAX and MAX*(1+ulp/10)

