
ISO/IEC JTC1 SC22 WG14 WG14/N1126

Date: 2005-5-26

Reference number of document: ISO/IEC WDTR 24731-2

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —

Programming languages, their environments and system software interfaces —

Specification for Safer C Library Functions —

Part II: Dynamic Allocation Functions

Warning

This document is an ISO/IEC draft Technical Report. It is not an ISO/IEC International Technical Report. It is
distributed for review and comment. It is subject to change without notice and shall not be referred to as an
International Technical Report or International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: Technical Report Type 2
Document subtype: n/a
Document stage: (2) Working Draft

Document language: E

Contents

WG14/N1126 Committee Draft — May 10, 2005 ii

Contents

iii Committee Draft — May 10, 2005 WG14/N1126

Contents
Foreword .. 1

Introduction .. 1

1. Scope ... 2

2. References ... 2
2.1 Normative references ... 2
2.2 Relationship to other standards .. 3

3. Terms, definitions, and symbols .. 3

4. Predefined macro names ... 4

5. Library ... 5
5.1 Introduction .. 5

5.1.1 Standard headers .. 5
5.1.2 Reserved identifiers .. 5
5.1.3 Use of errno .. 6

5.2 Input/output <stdio.h> ... 7
5.2.1 Streams ... 7
5.2.2 Operations on buffers ... 7
5.2.3 Formatted input/output functions ... 11
5.2.4 Character input/output functions .. 13

5.3 String handling <string.h> .. 15
5.3.1 Copying functions .. 15

5.4 Extended multibyte and wide character utilities <wchar.h> 17
5.4.1 Formatted wide character input/output functions 17
5.4.2 Wide character input/output functions ... 17

Index ... 19

Contents

WG14/N1126 Committee Draft — May 10, 2005 iv

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective org anization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

2 Technical Reports are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. In the field of information technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft Technical Reports adopted by the joint
technical committee are circulated to national bodies for voting. Publication as a
Technical Report requires approval by at least 75% of the member bodies casting a vote.

3 The main task of technical committees is to prepare International Standards, but in
exceptional circumstances a technical committee may propose the publication of a
Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publication of an
International Standard, despite repeated efforts;

— type 2, when the subject is still under technical development or where for any other
reason there is the future but not immediate possibility of an agreement on an
International Standard;

— type 3, when a technical committee has collected data of a different kind from that
which is normally published as an International Standard ("state of the art", for
example).

4 Technical Reports of types 1 and 2 are subject to review within three years of publication,
to decide whether they can be transformed into International Standards. Technical
Reports of type 3 do not necessarily have to be reviewed until the data they provide are
considered to be no longer valid or useful.

5 ISO/IEC TR 24731, which is a Technical Report of type 2, was prepared by Joint
Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming languages, their environments and system software interfaces.

Foreword

v Committee Draft — May 10, 2005 WG14/N1126

Introduction

1 Traditionally, the C Library has contained many functions that trust the programmer to
provide output character arrays big enough to hold the result being produced. Not only
do these functions not check that the arrays are big enough, they frequently lack the
information needed to perform such checks. While it is possible to write safe, robust, and
error-free code using the existing library, the library tends to promote programming styles
that lead to mysterious failures if a result is too big for the provided array.

2 Perhaps the most common programming style is to declare character arrays large enough
to handle most practical cases. However, if the program encounters strings too large for it
to process, data is written past the end of arrays overwriting other variables in the
program. The program never gets any indication that a problem exists, and so never has a
chance to recover or to fail gracefully.

3 Worse, this style of programming has compromised the security of computers and
networks. Daemons are given carefully prepared data that overflows buffers and tricks
the daemons into granting access that should be denied.

4 If the programmer writes runtime checks to verify lengths before calling library
functions, then those runtime checks frequently duplicate work done inside the library
functions, which discover string lengths as a side effect of doing their job.

5 This technical report provides alternative functions for the C library that promote safer,
more secure programming. Part one provides simple replacement functions for the
library functions of ISO/IEC 9899:1999 that provide bounds checking. Those function
can be used as simple replacements for the original library functions in legacy code. This
part of this technical report presents replacements for many of these functions that use
dynamically allocated memory to ensure that buffer overflow does not occur. Since the
use of such functions requires adding additional calls to free the buffers later, these
functions are better suited to new dev elopments that to retrofiting old code.

6 These functions are drawn from existing implementations that have widespread usage.
Many of these functions are included in ISO/IEC 9945-2003 (POSIX) or ISO/IEC 23360
(Linux Standard Base Core), and as such are aligned with those standards.

Introduction

WG14/N1126 Committee Draft — May 10, 2005 vi

Introduction

1 Committee Draft — May 10, 2005 WG14/N1126

1. Scope
1 This Technical Report specifies a series of extensions of the programming language C,

specified by International Standard ISO/IEC 9899:1999.

2 International Standard ISO/IEC 9899:1999 provides important context and specification
for this Technical Report. Clause 4 of this Technical Report should be read as if it were
merged into Subclause 6.10.8 of ISO/IEC 9899:1999. Clause 5 of this Technical Report
should be read as if it were merged into the parallel structure of named Subclauses of
Clause 7 of ISO/IEC 9899:1999.

2. References
2.1 Normative references

1 The following normative documents contain provisions which, through reference in this
text, constitute provisions of this Technical Report. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. Howev er, parties
to agreements based on this Technical Report are encouraged to investigate the possibility
of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid International Standards.

2 ISO/IEC 9899:1999, Information technology — Programming languages, their
environments and system software interfaces — Programming Language C.

3 ISO/IEC 9899:1999/Cor 1:2001, Information technology — Programming languages,
their environments and system software interfaces — Programming Language C —
Technical Corrigendum 1 .

4 ISO/IEC 9945:2003 (including Technical Corrigendum 1), Information technology —
Programming languages, their environments and system software interfaces — Portable
Operating System Interface (POSIX®).

5 ISO/IEC DIS 23360:2005, Information technology — Programming languages, their
environments and system software interfaces — Linux Standard Base.

6 ISO 31−11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

7 ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange.

8 ISO/IEC 2382−1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

9 ISO 4217, Codes for the representation of currencies and funds.

§1 General §2.1

WG14/N1126 Committee Draft — May 10, 2005 2

10 ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

11 ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

12 IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

2.2 Relationship to other standards
1 Many of the interfaces in this specification are derived from interfaces specified in other

ISO/IEC specifications, and in particular:

— ISO/IEC 9945:2003 (including Technical Corrigendum 1), Information technology
— Pro gramming languages, their environments and system software interfaces —
Portable Operating System Interface (POSIX®).

— ISO/IEC DIS 23360:2005, Information technology — Programming languages, their
environments and system software interfaces — Linux Standard Base.

2 Where an interface is described as being derived from either of these standards, the
functionality described on this reference page is intended to be aligned with that standard.
Any conflict between the requirements described here and the referenced standard is
unintentional. This technical report defers to the underlying standard.

3. Terms, definitions, and symbols
1 Terms are defined where they appear in italic type. Terms explicitly defined in this

Technical Report are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this Technical Report are to be interpreted according to
ISO/IEC 9899:1999 and ISO/IEC 2382−1. Mathematical symbols not defined in this
Technical Report are to be interpreted according to ISO 31−11.

§1 General §3

3 Committee Draft — May 10, 2005 WG14/N1126

4. Predefined macro names
1 The following macro name is conditionally defined by the implementation:

__STDC_ALLOC_LIB_ _ The integer constant 200509L, intended to indicate
conformance to this technical report.1)

1) The intention is that this will remain an integer constant of type long int that is increased with
each revision of this technical report.

§4 General §4

WG14/N1126 Committee Draft — May 10, 2005 4

5. Library

5.1 Introduction
5.1.1 Standard headers

1 The functions, macros, and types defined in Clause 5 and its subclauses are not defined
by their respective headers if __STDC_WANT_ALLOC_LIB_ _ is defined as a macro
which expands to the integer constant 0 or is not defined as a macro at the point in the
source file where the appropriate header is included.

2 The functions, macros, and types defined in Clause 5 and its subclauses are defined by
their respective headers if __STDC_WANT_ALLOC_LIB_ _ is defined as a macro which
expands to the integer constant 1 at the point in the source file where the appropriate
header is included.2)

3 Within a preprocessing translation unit, __STDC_WANT_ALLOC_LIB_ _ shall be
defined identically for all inclusions of any headers from Clause 5. If
__STDC_WANT_ALLOC_LIB_ _ is defined differently for any such inclusion, the
implementation shall issue a diagnostic as if a preprocessor error directive was used.

5.1.2 Reserved identifiers
1 Each macro name in any of the following subclauses is reserved for use as specified if it

is defined by any of its associated headers when included; unless explicitly stated
otherwise (see ISO/IEC 9899:1999 Subclause 7.1.4).

2 All identifiers with external linkage in any of the following subclauses are reserved for
use as identifiers with external linkage if any of them are used by the program. None of
them are reserved if none of them are used.

3 Each identifier with file scope listed in any of the following subclauses is reserved for use
as a macro name and as an identifier with file scope in the same name space if it is
defined by any of its associated headers when included.

2) Future revisions of this technical report may define meanings for other values of
__STDC_WANT_ALLOC_LIB_ _.

§5 Library §5.1.2

5 Committee Draft — May 10, 2005 WG14/N1126

5.1.3 Use of errno
1 An implementation may set errno for the functions defined in this technical report, but

is not required to.

§5.1.3 Library §5.1.3

WG14/N1126 Committee Draft — May 10, 2005 6

5.2 Input/output <stdio.h>
5.2.1 Streams

1 In addition to the requirements of ISO/IEC 9899:1999, clause 7.19.2, streams may be
associated with memory buffers.

2 A stream associated with a memory buffer has the same mapping operations for text files
that a stream associated with an external file would have. In addition, the stream
orientation is determined in exactly the same fashion.

3 Input and output operations on a stream associated with a memory buffer by a call to
fmemopen or open_memstream are constrained to take place within the bounds of
the memory buffer. In the case of a stream opened by open_memstream, the memory
area may grow dynamically to accomodate write operations as necessary. For output, data
are moved from the buffer provided by setvbuf to the memory stream during a flush or
close operation. If there is insufficient memory to grow the memory area, or the
operation requires access outside of the associated memory area, the associated operation
shall fail.

5.2.2 Operations on buffers
5.2.2.1 The fmemopen function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>
FILE *fmemopen(void *restrict buf,

size_t size, const char *restrict mode);

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

3 The fmemopen function shall associate the buffer given by the buf and size
arguments with a stream. The buf argument shall be either a null pointer or point to a
buffer that is at least size bytes long.

4 The mode argument is a character string having one of the following values:

r Open text stream for reading.

w Open text stream for writing.

a Append; open text stream for writing at the first null byte.

r+ Open text stream for update (reading and writing).

§5.2 Library §5.2.2.1

7 Committee Draft — May 10, 2005 WG14/N1126

w+ Open text stream for update (reading and writing). Truncate the
buffer contents.

a+ Append; open text stream for update (reading and writing); the
initial position is at the first null byte.

rb Open binary stream for reading.

wb Open binary stream for writing.

ab Append; open binary stream for writing at the first null byte.

rb+ or r+b Open binary stream for update (reading and writing).

wb+ or w+b Open binary stream for update (reading and writing). Truncate
the buffer contents.

ab+ or a+b Append; open binary stream for update (reading and writing);
the initial position is at the first null byte.

5 If a null pointer is specified as the buf argument, fmemopen shall allocate size bytes
of memory as if by a call to malloc. This buffer shall be automatically freed when the
stream is closed. Because this feature is only useful when the stream is opened for
updating (because there is no way to get a pointer to the buffer) the fmemopen call may
fail if the mode argument does not include a +.

6 The stream maintains a current position in the buffer. This position is initially set to either
the begining of the buffer (for r and w modes) or to the first null byte in the buffer (for a
modes). If no null byte is found in append mode, the initial position is set to one byte
after the end of the buffer.

7 The stream also maintains the size of the current buffer contents. For modes r and r+ the
size is set to the value given by the size argument. For modes w and w+ the initial size
is zero and for modes a and a+ the initial size is either the position of the first null byte in
the buffer or the value of the size argument if no null byte is found.

8 A read operation on the stream cannot advance the current buffer position behind the
current buffer size. Reaching the buffer size in a read operation counts as "end of file".
Null bytes in the buffer have no special meaning for reads. The write operation starts at
the current buffer position of the stream.

9 A write operation starts either at the current position of the stream (if mode has not
specified a as the first character) or at the current size of the stream (if mode had a as the
first character). If the current position at the end of the write is larger than the current
buffer size, the current buffer size is set to the current position. A write operation on the
stream cannot advance the current buffer size behind the size given in the size argument.

10 When a stream open for writing is flushed or closed, a null byte is written at the end of
the buffer if it fits. If a stream open for update is flushed or closed and the last write has
advanced the current buffer size, a null byte is written at the end of the buffer if it fits.

§5.2 Library §5.2.2.1

WG14/N1126 Committee Draft — May 10, 2005 8

11 An attempt to seek a memory buffer stream to a negative position or to a position larger
than the buffer size given in the size argument shall fail.

12 Note that when writing to a text stream, line endings may occupy more than one character
in the buffer.

Returns

13 Upon successful completion, fmemopen shall return a pointer to the object controlling
the stream. Otherwise, a null pointer shall be returned, and an implementation-defined
value shall be stored in errno.

Examples

14 #include <stdio.h>

static char buffer[] = "foobar";

int
main (void)
{

int ch;
FILE *stream;

stream = fmemopen(buffer, strlen (buffer), "r");
if (stream == NULL)

/* handle error */;

while ((ch = fgetc(stream)) != EOF)
printf("Got %c\n", ch);

fclose(stream);
return (0);

}

15 This program produces the following output:

Got f
Got o
Got o
Got b
Got a
Got r

§5.2 Library §5.2.2.1

9 Committee Draft — May 10, 2005 WG14/N1126

5.2.2.2 The open_memstream function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>

FILE *open_memstream(char ** restrict bufp,
size_t * restrict sizep);

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

3 The open_memstream function shall create a stream that is associated with a
dynamically allocated buffer. The buffer is obtained as if by calls to malloc and
realloc and expanded as necessary. The buffer should be freed by the caller after
closing the stream, by means of a call to free. The stream is opened for writing and
shall be seekable.

4 The stream maintains a current position in the allocated buffer and a current buffer length.
The position is initially set to zero (the begin of the buffer). Each write starts at the
current position and moves this position by the number of successfully written bytes. The
length is initially set to zero. If a write moves the position to a value larger than the
current length, the current length is set to this position. In this case a null byte shall be
appended to the current buffer (but not accounted for in the buffer length).

5 The maximum value of the buffer length and position is given by the smaller of
SIZE_MAX and any implementation-defined maximum allowed file offset.

6 After a successful fflush or fclose the locations pointed to by bufp and sizep
contain the address of the buffer and the current buffer length and the buffer is guaranteed
to be terminated by a null byte (which is not accounted for in the length).

7 An attempt to seek a dynamic buffer stream to a negative position or to a position larger
than the minimum of SIZE_MAX and the implementation-defined maximum allowed file
offset shall return an error.

Returns

8 Upon successful completion, open_memstream shall return a pointer to the object
controlling the stream. Otherwise, a null pointer shall be returned, and an
implementation-defined value shall be stored in errno.

Examples

9

§5.2.2.2 Library §5.2.2.2

WG14/N1126 Committee Draft — May 10, 2005 10

#include <stdio.h>
int main (void)
{

FILE *stream;
char *buf;
size_t len;

stream = open_memstream(&buf, &len);

if (stream == NULL)
/* handle error */;

fprintf(stream, "hello my world");
fflush(stream);
printf("buf=%s, len=%zu\n", buf, len);
fseeko(stream, 0, SEEK_SET);
fprintf(stream, "good-bye");
fclose(stream);
printf("buf=%s, len=%zu\n", buf, len);
free(buf);
return 0;

}

10 This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

5.2.3 Formatted input/output functions
5.2.3.1 The asprintf function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _
#include <stdio.h>
int asprintf(char ** restrict ptr,

const char * restrict format, ...);

Description

2 This interface is derived from LSB. Any conflict between the requirements described here
and LSB is unintentional. This technical report defers to LSB.

§5.2.2.2 Library §5.2.3.1

11 Committee Draft — May 10, 2005 WG14/N1126

3 The asprintf function shall behave as sprintf, except that the output string shall be
dynamically allocated space, as if by a call to malloc, of sufficient length to hold the
resulting string. The address of this dynamically allocated string shall be stored in the
location referenced by ptr.

5.2.3.2 The fscanf function
Description

1 This interface is derived from LSB. Any conflict between the requirements described here
and LSB is unintentional. This technical report defers to LSB.

2 In addition to the requirements in ISO/IEC 9899:1999 clause 7.19.6.2, the fscanf
function shall support the following requirements for conversion specifications.

3 For the string conversion specifiers s and [, the optional field width that specifies the size
of the receiving object may have the value a.3) In this case, the receiving argument should
be of type char **, and shall receive a pointer to a dynamically allocated buffer,
allocated as if by a call to malloc, that contains the converted string. The string shall
always be null terminated. If there was insufficient memory to allocate a buffer, the
receiving argument shall receive a pointer to a null value.

5.2.3.3 The vasprintf function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdarg.h>
#include <stdio.h>
int vasprintf(char * * restrict ptr,

const char * restrict format, va_list arg);

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX. The
vasprintf function is equivalent to asprintf, with the variable argument list
replaced by arg, which shall have been initialized by the va_start macro (and
possibly subsequent va_arg calls). The vasprintf function does not invoke the
va_end macro.

3) The choice of the character a conflicts with the usage of a for hexadecimal binary in ISO/IEC
9899:1999. However, this conflict would only arise in unusual circumstances, such as a format string
of %aseconds; %a as a conversion specifier rather than field width continues to mean hexadecimal
binary format.

§5.2.2.2 Library §5.2.3.3

WG14/N1126 Committee Draft — May 10, 2005 12

5.2.4 Character input/output functions
5.2.4.1 The getdelim function
Synopsis

#define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>
ssize_t getdelim(char ** restrict lineptr, size_t * restrict n,

int delimiter, FILE *stream);

Description

1 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

2 The getdelim function shall read from stream until it encounters a character matching
the delimiter character. The argument delimiter (when converted to a char) shall
specify the character that terminates the read process.

3 The delimiter argument is an int, the value of which the application shall ensure is
a character representable as an unsigned char or equal value to the macro EOF. If
the delimiter argument has any other value, the behavior is undefined.

4 The application shall ensure that *lineptr is a valid argument that could be passed to
the free function. If *n is nonzero, the application shall ensure that *lineptr points
to an object containing at least *n characters.

5 The size of the object pointed to by *lineptr shall be increased to fit the incoming
line, if it isn’t already large enough. The characters read shall be stored in the string
pointed to by the argument lineptr.4)

Returns

6 Upon successful completion the getdelim function shall return the number of
characters written into the buffer, including the delimiter character if one was
encountered before EOF. Otherwise it shall return −1.

5.2.4.2 The getline function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>
ssize_t getline(char **lineptr, size_t *n,

FILE *stream);

4) Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

§5.2.4 Library §5.2.4.2

13 Committee Draft — May 10, 2005 WG14/N1126

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

3 The getline function shall be equivalent to the getdelim function with the
delimiter character equal to the newline character.

§5.2.4 Library §5.2.4.2

WG14/N1126 Committee Draft — May 10, 2005 14

5.3 String handling <string.h>
5.3.1 Copying functions
5.3.1.1 The strdup function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <string.h>
char * strdup(const char * str1);

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX. The strdup
function shall return a pointer to a new string, which is a duplicate of the string pointed to
by s1. The returned pointer can be passed to free. A null pointer is returned if the new
string cannot be created.

5.3.1.2 The strndup function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <string.h>
char * strndup(const char * string, size_t n);

Description

2 This interface is derived from LSB. Any conflict between the requirements described here
and LSB is unintentional. This technical report defers to LSB.

3 The strndup function copies not more than n characters (characters that follow a null
character are not copied) from string to a dynamically allocated buffer. The copied
string shall always be null terminated.

Returns

4 The strndup function returns a pointer to the allocated string, or NULL if there was
insufficient space. The application should ensure that the space is subsequently freed by a
call to free.

§5.3 Library §5.3.1.2

15 Committee Draft — May 10, 2005 WG14/N1126

5.3.1.3 The strjoin function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <string.h>
char * strjoin(const char * s1, const char * s2);

Description

2 The strjoin function shall concatenate the two strings s1 and s2, placing the result in
a buffer allocated as if by a call to malloc that is large enough to hold the resulting
string. The resulting string shall always be null-terminated.

Returns

3 On success, the strjoin function shall return a pointer to the newly allocated string.
Otherwise, strjoin shall return NULL.

§5.3.1.3 Library §5.3.1.3

WG14/N1126 Committee Draft — May 10, 2005 16

5.4 Extended multibyte and wide character utilities <wchar.h>
5.4.1 Formatted wide character input/output functions
5.4.1.1 The fwscanf function
Description

1 In addition to the requirements

2 This interface is derived from LSB. Any conflict between the requirements described here
and LSB is unintentional. This technical report defers to LSB.

3 In addition to the requirements in ISO/IEC 9899:1999 clause 7.24.2.2, the fwscanf
function shall support the following requirements for conversion specifications.

4 For the string conversion specifiers s and [, the optional field-width that specifies the size
of the receiving object may have the value a.5) In this case, if the l length modifier is also
specified, the corresponding argument should be of type wchar_t **, and shall receive
a pointer to a dynamically allocated buffer, allocated as if by a call to malloc, that
contains the converted string. If the l length modifier is not specified, the corresponding
argument should be of type char **, and shall receive a pointer to a dynamically
allocated buffer containing characters from the input field, converted as if by repeated
calls to the wcrtomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted.

5 In either case, the string shall always be null terminated. If there was insufficient memory
to allocate a buffer, the receiving argument shall receive a pointer to a null value.

5.4.2 Wide character input/output functions
5.4.2.1 The getwdelim function
Synopsis

#define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>
ssize_t getwdelim(wchar_t ** restrict lineptr, size_t * restrict n,

wint_t delimiter, FILE *stream);

Description

1 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

5) The choice of the character a conflicts with the usage of a for hexadecimal binary in ISO/IEC
9899:1999. However, this conflict would only arise in unusual circumstances, such as a format string
of %aseconds; %a as a conversion specifier rather than field-width continues to mean hexadecimal
binary format.

§5.4 Library §5.4.2.1

17 Committee Draft — May 10, 2005 WG14/N1126

2 The getwdelim function shall read from stream until it encounters a wide character
matching the delimiter character. The argument delimiter shall specify the
character that terminates the read process.

3 The delimiter argument is a wint_t, the value of which the application shall ensure
is a wide character representable as an wchar_t or equal value to the macro WEOF. If
the delimiter argument has any other value, the behavior is undefined.

4 The application shall ensure that *lineptr is a valid argument that could be passed to
the free function. If *n is nonzero, the application shall ensure that *lineptr points
to an object containing at least *n wide characters.

5 The size of the object pointed to by *lineptr shall be increased to fit the incoming
line, if it isn’t already large enough. The wide characters read shall be stored in the string
pointed to by the argument lineptr.6)

Returns

6 Upon successful completion the getwdelim function shall return the number of wide
characters written into the buffer, including the delimiter character if one was
encountered before end of file. Otherwise it shall return −1.

5.4.2.2 The getwline function
Synopsis

1 #define __STDC_WANT_ALLOC_LIB_ _ 1
#include <stdio.h>
ssize_t getwline(wchar_t **lineptr, size_t *n,

FILE *stream);

Description

2 This interface is derived from POSIX. Any conflict between the requirements described
here and POSIX is unintentional. This technical report defers to POSIX.

3 The getwline function shall be equivalent to the getwdelim function with the
delimiter character equal to the wide newline character.

6) Setting *lineptr to a null pointer and *n to zero are allowed and a recommended way to start
parsing a file.

§5.4 Library §5.4.2.2

WG14/N1126 Committee Draft — May 10, 2005 18

Index

<stdio.h> header, 5.2
<string.h> header, 5.3
<wchar.h> header, 5.4
__STDC_ALLOC_LIB_ _ macro, 4
__STDC_WANT_ALLOC_LIB_ _ macro, 5.1.1

asprintf function, 5.2.3.1

buffer
operations, 5.2.2

character input/output functions, 5.2.4
copying functions

string, 5.3.1

end-of-file macro, see EOF macro
errno macro, 5.1.3

file
formatted IO, 5.2.3

fmemopen function, 5.2.2.1
formatted input/output functions, 5.2.3

wide character, 5.4.1
fscanf function, 5.2.3.2
fwscanf function, 5.4.1.1

getdelim function, 5.2.4.1
getline function, 5.2.4.2
getwdelim function, 5.4.2.1
getwline function, 5.4.2.2

header, see also standard headers

identifier
reserved, 5.1.2

IEC 60559, 2.1
input/output functions

character, 5.2.4
formatted

wide character, 5.4.1
wide character

formatted, 5.4.1
input/output header, 5.2
ISO 31−11, 2.1, 3
ISO 4217, 2.1
ISO 8601, 2.1
ISO/IEC 10646, 2.1
ISO/IEC 23360, 2.1, 2.2
ISO/IEC 2382−1, 2.1, 3
ISO/IEC 646, 2.1

ISO/IEC 9899, 2.1, 3, 5.1.2
ISO/IEC 9899Cor 1, 2.1
ISO/IEC 9945, 2.1, 2.2
italic type convention, 3

library, 5
LSB, 2.2

macro name
predefined, 4

memory streams, 5.2.1

open_memstream function, 5.2.2.2
operations on buffers, 5.2.2

POSIX, 2.2
predefined macro names, 4

reserved identifiers, 5.1.2

standard headers
<stdio.h>, 5.2
<string.h>, 5.3
<wchar.h>, 5.4

stdio.h header, 5.2
strdup function, 5.3.1.1
streams, 5.2.1
string

copying functions, 5.3.1
string handling header, 5.3
string.h header, 5.3
strjoin function, 5.3.1.3
strndup function, 5.3.1.2
symbols, 3

terms, 3

vasprintf function, 5.2.3.3

wchar.h header, 5.4
wide character

formatted input/output functions, 5.4.1

Index

19 Committee Draft — May 10, 2005 WG14/N1126

Index

WG14/N1126 Committee Draft — May 10, 2005 20

Index

	Index
	Foreword
	1. Scope
	2. References
	2.1 Normative references
	2.2 Relationship to other standards

	3. Terms, definitions, and symbols
	4. Predefined macro names
	5. Library
	5.1 Introduction
	5.1.1 Standard headers
	5.1.2 Reserved identifiers
	5.1.3 Use of errno

	5.2 Input/output <stdio.h>
	5.2.1 Streams
	5.2.2 Operations on buffers
	5.2.2.1 The fmemopen function
	5.2.2.2 The open_memstream function

	5.2.3 Formatted input/output functions
	5.2.3.1 The asprintf function
	5.2.3.2 The fscanf function
	5.2.3.3 The vasprintf function

	5.2.4 Character input/output functions
	5.2.4.1 The getdelim function
	5.2.4.2 The getline function

	5.3 String handling <string.h>
	5.3.1 Copying functions
	5.3.1.1 The strdup function
	5.3.1.2 The strndup function
	5.3.1.3 The strjoin function

	5.4 Extended multibyte and wide character utilities <wchar.h>
	5.4.1 Formatted wide character input/output functions
	5.4.1.1 The fwscanf function

	5.4.2 Wide character input/output functions
	5.4.2.1 The getwdelim function
	5.4.2.2 The getwline function

