SUMVARY OF VOTI NG ON

Letter Ball ot Reference No: SC22 N3574

Circul ated by: JTC 1/ SC22
Circul ati on Dat e: 2003-05-01
Cl osi ng Date: 2002- 08-01

SUBJECT: Summary of Voting on SC 22 N 3574 - Second Letter Ballot for
| SO | EC PDTR 18037 - C Extensions to Support Enbedded Processors

The followi ng responses have been received on the subject of approval:

"P" Menbers supporting approval w thout comment

8 (Canada, China, Czech Republic, Denmark, Italy, Republic of Korea,
Nor way, Russi an Federati on)

"P" Menbers supporting approval with coments
3 (Japan, Netherl ands, USA)

"P" Menbers not supporting approva

2 (Switzerland, UK)

"P" Menbers abst ai ning

2 (Austria, Cermany)

"P" Menbers not voting

10 (Bel gium Brazil, Egypt, Finland, France, Ireland, DPR of Korea,
Romani a, Sl ovenia, Ukraine)

end of sunmmary, begi nning on NB comments

Japan

Thi s PDTR does not have the formal cover letter on which

the information of the ballot (e.g. the type of the TR) nust
be described. It should be accompanied with the letter ballot.

Net her | ands

Section 7.18a.3 (page 27), 3rd para: replace "The val ues given bel ow'
by "The integer values given bel ow'. Rationale: the current text
requires the pre-processor to be able to do fixed-point arithnetic;
this was never the intention.

Template for comments and secretariat observations

[Date: 30-Jul-2003

[Document: ISQ/IEC PDTR 18037

1

2

(©)]

4

5

(6)

@)

MB*

Clause No./
Subclause No./
Annex
(e.q.3.1)

Paragraph/

Figure/Table/No
te

(e.q. Table 1)

Type of
com-
ment

Comment (justification for change) by the MB

Proposed change by the MB

Secretariat observations
on each comment submitted

CH

General

4.5

ge

te

These comments are the result of an attempt to implement
the different versions of the chapter 4 "Basic 1/0 Hardware
IAddressing" of the TR since the Copenhagen meeting in
2001. This chapter has changed considerably in the
course of its development, and major modifications were
introduced between the first and the second SC22 ballot.

Generally, these modifications are very positive and make
the background and interface usage of I/O HW addressing
much clearer.

But unfortunately, some specific changes in interface
definitions make the usefulness as well as the efficient
implementability of the interface very problematic.

lActually, while an efficient implementation of interface from
the TR of the first ballot was successfully finished, it turned
out as being essentially impossible to create an efficient
implementation of the interface as specified in the TR for
the second ballot.

This does not say that we object the whole restructuring of
chapter 4. But some specific modifications changed the
actual substance of the hardware addressing interface
without any given plausible technical rationale.

The proposed 7.8a.1p1l (p.64) states:

"An I/O register is accessed (read or written) as an
unsigned integer."

This can be misleading. There might be no unsigned
integer type that can accomodate the value of an 1/O
register. l.e. though the underlying register is generally
indeed treated as an unsigned interger value, the actual C
data type to hold it might be something different.

E.g. if the register is 128 bit wide, but the largest unsigned
integer type available holds only 64 bit, one needs a struct
to hold the value. (Arrays are generally also possible but

IWrite the problematic sentence as:

"An I/O register is accessed (read or written) as an
unsigned integer value[1]."

"Note 1: This does not necessarily imply that the
type used is actually one of the set of unsigned
integer types provided by the compiler ."

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment:

NOTE

ge = general

te = technical

Columns 1, 2, 4, 5 are compulsory.

ISO electronic balloting commenting template/version 2001-10

ed = editorial

page of4

Template for comments and secretariat observations

[Date: 30-Jul-2003

[Document: ISQ/IEC PDTR 18037

unsigned integer of its size; this value is returned

1 2 @) 4 5) @

MB* Clause No./ Paragraph/ | Type of Comment (justification for change) by the MB Proposed change by the MB Secretariat observations

Subclause No./ [Figure/Table/No com- on each comment submitted
Annex te ment
(e.q.3.1) (e.q. Table 1)
problematic as they can not be passed by value.)
Or if the register is 24 bit wide, but there is no unsigned
integer type of that width, one might also want to hold the
lvalue in a struct to avoid unnecessary conversions or
paddings.

CH te |The proposed 7.8a.4 (p.67) defines the register access In the proposed 7.8a.4, all the function definitions
interface as functions. Though the proposed introduction [are replaced by respective macro definitions, e.g.
to 7.8a (p.64) and also 4.4.2 (p.59) allow the 7.8a.4.1:
implementation as macros, 4.4.2 explicitely requires that a .
macro-based implementation provides exactly the same replace:
effects as the function implementation. Synopsis
This is a major difference to the previous version that #include <iohw.h>
generally defined the interface as macros and allowed the) o . .
implementation to use (possibly a special kind of) unsigned int iord(ioreg_designator);
functions. The problematic difference is the definition and ; ; ; ; .
handling of parameter types. (Of course, this discussion unsigned long ford(foreg_designator);
applies to return types as well.) Description
Macros allow any type as arguments, even different The functions iord and iordl read the individual I/O
argument types for the same macro, and take the register referred to by ioreg_designator and return
arguments as given. But functions are defined to take the value read. The I/O register is read as an
exactly one argument type for each parameter, and convertfunsigned integer of its size; the read value is then
any other argument types to the parameter type. Even converted to the result type, and this converted
worse (in this specific case), functions require integer type [value is returned.
arguments at least converted to (unsigned) int, i.e. there is by:
no use in defining functions with parameter types of '
unsigned char or unsigned short. So, an 8-bit value is Synopsis
always converted to an integer at least once for each read | #include <iohwh>
and each write, which causes an overhead that is always)))
annoying and sometimes forbidding. Though in theory a | iord(ioreg_designator)
good optimizer could remove any unnecessary Description
conversions, in practice this will rarely be the case, as the The function like makro iord reads the individual /O
implementation of these operations typically implies the register referred to by ioreg_designator and returns
usage of specific assembler instructions that are the value read. The I/O register is read as an

4.5 generallyuntouched by optimizers.

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment:

NOTE

ge = general

te = technical

Columns 1, 2, 4, 5 are compulsory.

ISO electronic balloting commenting template/version 2001-10

ed = editorial

page of4

Template for comments and secretariat observations

[Date: 30-Jul-2003

[Document: ISQ/IEC PDTR 18037

1 2 3) Z

5

(6)

@)

MB* Clause No./ Paragraph/ | Type of
Subclause No./ [Figure/Table/No com-
Annex te ment

(e.q.3.1) (e.q. Table 1)

Comment (justification for change) by the MB

Proposed change by the MB

Secretariat observations
on each comment submitted

long.

Furthermore, the proposed interface functions are provided
as int and long versions, so it's not possible to use these
functions for I/O register values larger than an unsigned

lwitho ut any conversion.
or 7.8a.4.3:
replace:

Synopsis
#include <iohw.h>

void iowr(ioreg_designator, unsigned int a);
void iowrl(ioreg_designator, unsigned long a);
Description

The functions iowr and iowrl write the individual I/O
register referred to by ioreg_designator. The
unsigned integer a is converted to an unsigned
integer of the size of the 1/O register, and this
converted value is written to the 1/O register.

by:
Synopsis
#include <iohw.h>
iowr(ioreg_designator, a)

Description

The function like macro iowr writes the individual I/O
register referred to by ioreg_designator. If the
unsigned integer value 'a' is of the same size as the
size of the register, it is written to the I/O register
\without any conversion.

If 'a’ is of a different size than the size of the
register, it is converted to an unsigned integer value
of the size of the 1/O register, and this converted
\value is written to the 1/O register.

iowr does not return anything.

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge =general

NOTE Columns 1, 2, 4, 5 are compulsory.

te = technical

ISO electronic balloting commenting template/version 2001-10

ed = editorial

page of4

Template for comments and secretariat observations

[Date: 30-Jul-2003

[Document: ISQ/IEC PDTR 18037

1

2

(©)]

4

proposed changes are accepted.

5 (6))]
MB* Clause No./ Paragraph/ | Type of Comment (justification for change) by the MB Proposed change by the MB Secretariat observations
Subclause No./ [Figure/Table/No com- on each comment submitted
Annex te ment
(e.q.3.1) (e.q. Table 1)
CH te |All functions in the proposed section 7.8a define a In the proposed 7.8a.3, replace the function
parameter "iogroup_designator" or "ioreg_designator". Theldefinitions by respective macro definitions, e.g.
types for these parameters are correctly left undefined. 7.8a.3.1:
On a specific platform, these designators might have replace:
completely different types for different kinds of registers. Synopsis
But it is not possible (in C) to have the same function name| . lude <iohw.h
for different types of the same positional parameter. #include <iohw.h>
Therefore, the designators must be unified to a common void iogroup_acquire(iogroup_designator);
type which typically costs additional overhead. As this void iogroup_release(iogroup_designator);
should be avoided, the function approach turns out to be
wrong here as well. by:
Synopsis
#include <iohw.h>
iogroup_acquire(iogroup_designator)
4.5 iogroup_release(iogroup_designator)
CH general ge |An efficient (zero-overhead) implementation of the
interface according to the proposed changes was
successfully accomplished.
CH general ge |[The disapproval will be changed to approval if the

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment:

NOTE

ge = general

te = technical

Columns 1, 2, 4, 5 are compulsory.

ISO electronic balloting commenting template/version 2001-10

ed = editorial

page of4

UK
General ly that we should not build on the maths of C99 until the
current problens in the standard are fixed.

Note that the nmpjority who were against this PDTR work in the enbedded
field.

USA

The US National Body votes to Approve with conments | SO/ | EC PDTR
18037.2 - C Extensions to Sup port Enbedded Processors, SC22 N3574.
Comrents are |isted bel ow.

Comment s:

_X___ technical

p.27, 2.2/7.18a.2: "If there is no ..." points out a
glaring need for test nmacros so that applications can
deternine when there will be a problemusing such a

typedef. HAS INT_R T for exanple, with no requirenent
to provide a typedef when the correspondi ng macro i s not
defi ned.

7.1.3 (overflow and rounding): 1Is there any

rel ati onshi p between the roundi ng done with

fl oati ng-poi nt nunbers and the roundi ng done with

fi xed-point nunbers? |If they are independent, is there
a way to determne and/or alter the fixed-point rounding
met hod (similar to FLT_ROUNDS or fesetround())? |Is the
roundi ng net hod for fixed-point static or dynam c?

7.18a.6.8 (strto*): \What is the order between roundi ng
and negating? To match the spirit of |EEE-754, negating
shoul d conme before rounding. Wat is "correctly rounded"
for conversions fromdeciml to fixed-point nunbers?
Currently, that termis only defined for floating-point
nunbers. Does it have the sane neani ng?

X editorial

p.5, Introduction para.4: Sentence beginning "In order
to all ow' should be adjoined, with a comm, to the
foll owi ng sentence.

p.6, 1.1 Scope para.?2: "standard, necessary" should be
"standard necessary".

p.7, 1.3 Conformance: "free standi ng" should be
"freestandi ng".

pp.9-10, 2.1.2 Spelling ..., the requirenent or |ack
thereof for aliases vs. the keywords is not clear; in
particul ar, "redefined" raises questions and "or to

anot her spelling" suggests that the natural spelling

m ght not be defined. Suggest "... <stdfix.h> these
formal names are used to define the natural spellings as
aliases, and may be used to define other spellings, for
instance ..." (Wile | disagree with the notion that a
standard header shoul d define unspecified nanmes not in

an i npl ementati on-reserved nanmespace, apparently this
was al ready deliberately decided upon. It is not
reflected in the normative wording, however!)

p.10, 2.1.3 Overflow ..., last line: insert "the" before
"correct".

p.13, 2.1.6.2.1 para.2: There is an error in line

filling (the second sentence should start right after
the first).
p.14, 2.1.6.2.1 para.3: Another line filling error

al so, "deprecate" is msspelled.

p.14, 2.1.6.2.1 para.5: "performa nmultiply of" should
be "multiply" and the follow ng "and" would be better as
" by " .

p.14, 2.1.6.2.2: Change "type int" to "integer type" to
mat ch the actual normative text.

p.15, 2.1.6.4 Exanple: The braces { } are unnecessary.
p.18, 2.2 Detailed changes ...: "will get in the new

docunent" should be "may get in the new document”. It
is possible that additional parent-section insertions
change "mi', for exanple. (Also p.47, 3.3.)

p.18, 2.2/5.2.4.2.3 para.3: The radix "dot" is assuned
to be between... what? Between inplies two things, not
just the one nost-significant-digit. Perhaps "between
or" shoul d be del eted.

p.19, 2.2/5.2.4.2.3 para.4: Another line filling error
or perhaps this should be two paragraphs.

p.19, 2.2/5.2.4.2.3 para.5: "exact" should be "exactly".
p.19, 2.2/5.2.4.2.3 para.6: "maxi mal" should be "nost"
(three occurrences). "maxinmal negative" is sinply

wWr ong.

p.20, 2.2/6.2.5 paras. 3-4: Suggest noving "_Sat" just
before " _Fract" in each type, for consistency with other
uses.

p.21, 2.2/6.2.5 para.4: The |ast use of "accunm' should
be italicized.

p.21, 2.2/6.2.6.3 paras.1-2: "values of any paddi ng
bits" should be "contents of any padding bits". (The
term "value" as used in the C standard nust carefully
excl ude padding.)

p.22, 2.2/6.2.6.3 para. 4 first item "bits or" should
be "bits as or" (optional commas around alternative).

p.22, 2.2/6.2.6.3 para. 5. Delete "where practical",
whi ch adds nothing and rai ses an unanswered question

p.24, 2.2/6.4.4.2a Syntax: second form for
deci mal -fi xed- constant should have "opt" suffix on
exponent -part; otherw se 1k (for exanple) is not a valid
fi xed-constant. This also aligns with the strto*
functions.

p.28, 2.2/7.18a.3 list: Expressions such as
(-0.5HR-0.5HR) overflow and t hus have undefined
behavior. The true required mnimmis sonmething |ike
(-0.9921875HR)

p.28, 2.2/7.18a.3 *FRACT_MAX, *ACCUM MAX: The second
(hex) formcontains a spurious "C'. Suggest deleting
all these (redundant) forns, or correcting them and
deleting the first forns.

p.33, 2.2/7.18a.4 Description: "ulp" is not defined in
the changes to the standard. Suggest using snmall caps
("ULP", "ULPs") and defining it here (as in the footnote
to 2.1.3).

p.33, 2.2/7.18a.4 Description: Change "nmultiply and
divide" to "multiplication and division". Nouns, not
ver bs.

p.33, 2.2/7.18a.5 Description: "according to the set
state" is unclear. Should this be "saturating"?

p.35, 2.2/7.18a.6.1 Returns: "saturated" seens wrong
when there's no overflow. Suggest "saturated if it
woul d overfl ow'?

p.35, 2.2/7.18a6.3: Suggest these be called "roundi ng"
functions rather than "round" functions (also in
2.2/7.18a.6.7). Under "Returns", change "The functions"
to "The round[ing] functions". [If "round" is retained,
the latter should be in Courier as used in the countls
Ret ur ns.

p.38, 2.2/7.18a.6.6: Change "The bits functions" to "The

above functions". (There are other functions whose
nanmes contain "bits".)

p.38, 2.2/7.18a.6.5 Returns: Change "bitpattern" to "bit
pattern".

p.41, 2.2/7.19.6.1 'h': Should be insertion before the
| ast sem colon, as specified for "I".

p.41, 2.2/7.19.6.1 'l': Change "sem -colon" to
"semi col on".

p.41, 2.2/7.19.6.2 'h': Inserted text should start with
"or".

p.42, 2.2/7.19.6.2 r,R k,K: Should be a comma before

| ast "or

p.45, 3.1.3 para.4, |ast sentence: Change "any" to
nul | ™.

a

p.46, 3.2.2 para.l: Change "pre-defined" to
"predefined".

p. 46, 3.2.2 Exanples: Make first occurrence of "char"
Couri er.

p.48, 3.3/6.2.4a para.1l: Append "Unl ess ot herw se

speci fied, objects are allocated in the generic address
space."” (Even though this is covered in changes to
6.2.5, it needs to be enphasi zed here.)

p.49, 3.3/6.2.5 para 26, para.l: Last sentence should
have appended "and address space qualifiers".

p.52, 3.3/6.5.16.1: Change "referenced type of" to "type
pointed to by" (four occurrences altogether).

"Ref erenced address space" can remmin, but only because
there is no better way to say that.

p.52, 3.3/6.7.1 syntax: Al so add:

regi ster-nane:

identifier

p.53, 3.3/6.7.1.1 para.1l: Change "Mddifying" to
"Accessing". (Read access might also have side effects.)

p.53, 3.3/6.7.2.1: Seens wong; the nenmbers get
qualified by the address-space qualifier of the
aggregate. Suggest deleting this. (Unnecessary due to
ot her requirenents.)

p.53, 3.3/6.7.3 syntax: Al so add:

addr ess- space- nane:

i dentifier

p.54, 4.1.1 first bullet: Change "market place" to
"mar ket pl ace"

p.55, 4.2: Too nmany italics. | suggest changing al
italics in this section to normal font, then change al
bold to italic, which is consistent with usage in the C
st andar d.

p.55, 4.2: The bullet "Multiple I/Oregisters may form
an 1 /O group.” is redundant with the next bullet and
shoul d be renoved.

p.56, 4.3.1, last line: Change "interleave" to
"“interleaving".

p.57, 4.3.1: Change "<->" to a doubl e- headed arrow
gl yph.

p.57, 4.3.2 figure: Change "users" to "user's" and

"vendors" to "vendor's".

p.59, 4.4.2: Should use so-called "smart quotes" around
"function"; save the "strai ght double quote"” for C code.
(Al'so around "dense" on p.61, 4.4.3, "kind" on p.62,
4.4.5, "acquiring" on p.62, 4.4.6.1, "<iohw h>" and
"function on p.64, 4.5/7.8a, and possibly el sewhere.)
This m ght be present in the PDF docunent, but was not
evident in the selected font.

Annex A? Rationale for 6.2.6.3 should explain why only
si gn-nmagni tude representation is allowed. One would
thi nk that ones- or twos-conpl ement adders woul d be
faster.

Annex A? Rationale for 6.2.6.3 should explain why a
signed accumtype has to have at |east as many integra
bits as the correspondi ng unsi gned accumtype. One
woul d think that it could reasonably be one fewer.

Annex C, general: "lInterleave" is a verb, not a noun or
adj ective. Use "interleaving" for the latter. (Severa
occurrences.)

p.96, D.2.5 title: Change "users" to "user's".
p. 99, E. 4. Change "2's conplenent” to
"t wos-conpl enent .

