ISO/IEC JTC1/5C22
Languages
Secretariat: CANADA (SCC) [SO/IEC JTC1/SC22

R NG73

Summary of Voting and Comments received on :
TITLE: DP9899-Programming Language C

Secretariat ISO/IEC JTC1/SC22
SOURCE:

JTC1.22.20
WORK ITENM:
New
STATUS:
N619

CROSS REFERENCE:

Summary of Voting/Comments on DP
DOCUMENT TYPE:

For information to SC22 Member Bodies.
ACTION: The comments have submitted to SC22/WG14

for recommendation on further processing

of DP9899.

Address reply to: ISO/IEC JTC1/SC22 Secretariat
J.L. Cété, 140 O’Connor St., 10th Floor
Ottawa, Ont., Canada K1A ORS
Telephone: (613)957-2496 Telex: 053-3336

SUMMARY OF VOTING ON:

Letter Ballot Reference No: SC22 N619

Circulated by :JTC1/8C22

Circulation Date :1989-03-03

Closing Date :1989-06-03
SUBJECT:DP9899: Information Processing Systems-

Programming Language C

The following responses have been received:

'"P’ Members supporting the proposal ,
without comments : 07(Austria,Canada,Czechoslovakia,
Finland,Netherlands, New Zealand,
USSR)
‘P’ Members supporting the proposal,
with comments : 04 (Denmark,France,
Japan, UK)
'P’ Members not supporting the proposal:
00
‘P’ Members abstaining : 00
‘P’ Members not voting :O9(Belgium,China,Germany FR,
Hungary,Iran,Italy,Sweden,
Switzerland, USA)
Comments:
Attachment 1 - Denmark
Attachment 2 - France
Attachment 3 - Japan
Attachment 4 - UK

The SC22 Secretariat will forward the attached comments to
WG14 for consideration and recommendation on further
processing of DP9899,

ISO/IEC JTC1/SC22 LETTER BALLOT SUMMARY
EROJECT NO: JTC1.22.20

SUBJECT: DP9899:Information Processing Systems-
Programming Language C

Reference Document No: DP9899 Ballot Documepnt No: N619
Circulation Date: 1989-03-03 Closing Date: 1989-06-30
Circulated To: sc22 P,0,L Circulated By: Secretariat

.-—-——-—n--—-—-—‘---—----—--—--——-—-—-—---—--—-——-—-—-——--——---—

Approve Disapprove Abstain Comments Not Voting
‘P’ Members

Austria (x) () () () ()
Belgium () () () () ()
Canada (x) ol () () i
China =) () () £3 ()
Czechoslovakia (x) () () () ()
Denmark (x) () () (x) £
Finland) (x) () (A () ()
France (x) Bl () (x) ()
Germany F.R.) () () () L]
Hungary G e L) () fan]
Iran () Lo () () (.)
Italy () g9 (s 0 ()
Japan (x) () () (x) g |
Netherlands (x) () () () R
New Zealand (x) () () () ()
Sweden () () () ())
Switzerland () ()) () ()
UK (x) kol £) (x) S
Usa () k3 () () o
USSR (x) () () () ()
'O’ Members
Australia () () () () ()
Brazil () . () () d
German Dem Rep. () () () (- ()
Iceland () () () () ()
India k) i) () {: =l
Korea) £ () () ()
Norway () k23 £} () ()
Poland () &) () () L3
Portugal () () () () ()
Singapore () () () () ()
Turkey {2 {) () () ()
Thailand () () () () ()
i) () | k3 ki)

Yugoslavia

Attachment 1 - Denmark comments is missing

AFNOR'S COMMENTS RELATING TO SECOND DP 9899
PROGRAMMING LANGUAGE "C"
(JTC1/SC22 N 619)

o
AFNOR approves second DP 9899 (doc JTC1/SC22 N 619) with the following
remarks.

1 - Relating to the DP itself, we are pleased to say that our remarks
made at the first DP stage have been taken into account and
fairly solved.

2 - We note with satisfaction that the Rationale is enclosed in the

pPresent Ballot. We think that it might be useful that the document
be part of the final standard."

&5/ 64809

Attachment 3 - Japan comments is missing

Subject: ISO Document DP9899 - N619 QQ/(93 5
' (Second DP9899 - Programming Language C)

Baseq on a review of the subject document, the UK votes YES though with
-considerable misgivings, overcome only by accepting that there is a general
wxsh_ among the 'C' connunity for a standard to be published as socon as
possible, even if it has deficiencies. An excessive number of undefined
 @Spects and ambiguities remain in the docunent and those identified in the Uk
are ll;ted in an attached document. Our yes vote is on the understanding that
WGl4 will proceed inmediately to produce an ancillary document addressing such
1Ssues not already resolved, by the time the primary document reaches DIS
stage, and that this document, once agreed also be adopted by the US neber

body for its domestic standard and by any other member body with .
domestic standards. Y &yuivalent

The UK believes that the first revision of the 'C’ standard, incorpofating the

interpretations in the additional document just referred to, should be

developed by WGl4 directly and that the terms of reference of WGld (Paris

resolution) should be revised accordingly. . a
Comments on the December 7, 1988 Draft Proéosed C standard

1) page 2 line 36, page 3 line 6. Definition of Byte and Character are
self referencing and circular.

' 2) page 2-3. Definitions should be in alphabetic order.

3). page 3 line 30. Paragraph should be given its own heading.

4) page 3 line 32. "... or by the omission ...", but this is “Unspecified
behaviour" as defined on line 21 above.

5) page 6 line 37. 'Preporcessing directives are executes and macro
invocations are expanded" - ,
page 87 line 1-5. "A preprocessing directive ... and is ended by the

next new-line character"

‘page 90 line 40. “within the sequence of preprocessing tokens .. new-
line is considered a nommal white-space character"

These three statements are not sufficient to define the following:

~ #define f(a,b) a+b
#if £(1,
2)

It should be defined whether the preprocessing directive rulé Or macro
expansion wins.

6) page 8. It should be a constraint error or explictly undefined if no
function called main exists in the executable.

7) page 21 Implementation limits. It is currently undefined behaviour if
the implementation does not treat 31 characters as being significant.
It should be a constraint errcr if the implementation does not support
this feature.

8) page 21 line 26. It is undefined behaviour if label nanes are not
) unique within a function. This should be an error.

9) page 32 line 37. "... [], () and {} shall occur in pairs ...". They
need only occur in pairs after translation phase 4.

N . -

Al

10)

12)
13)

14)

15)

16)

page 35 line 13. A nit pick really.

in:
int i;
enum foo{a=1} x;
i=(0,x) +1; /* illegal */
i=x+1 i /* legal */

The type of (0,x) is enum foo. However, it is not an object and the

draft standard does not explicitly allow it to occur in an int context.

Does the committee intend this behaviour?

page 38. .. with the value 0", should refer to the NULL macro.
page 39 footnote 33. Hang over from noalias days?

sizeof has type size t. It should be a constraint error or explicitly
undefined if the definition of size t obtained from an include filé does
not match what the compiler considers the type of sizeof to he (the
compiler has to maintain an internal type for sizeof in case the user
does not include a header that defines this type).

The above conments also apply to ptrdiff t, page 48 line 34.

An inferior implementation may flag a statement as being in error, while

a quality implementation treats it as being legal. Consider:

char *p;
p=1-1;

A quality implementation would fold 1-1 to give zero. If the NULL macro
is defined as 0 then the assigment is legal, it is the null-pointer-
constant.

An inferior implementation wouid not fold the 1-1 and would flag the
assignment as being in error.

The standard should explictly state that in an expression context only
unfolded constants may become null-pointer-constant.

page 41 line 30. Suggest change of "... 1in the innemmwst block
containing ..." be changed to "... in the innermost block, arfter any
explicit declarations, containing ...". Tiils extra wording keeps:

int (*g)()=f;
£();
illegal.

Without it the implicit declaration that occur on encountering the
function call () might make the initialiser given on the declaration ot
g legal. A one pass conpiler would already have flagged the initialiser
on g as being in error.

An even better solution would be to implicitly declare f with file
scope.

’S'— Page 2

< 34C!

~

17) page 53 line 13. "... or differently qualified versions of a compatible
type, the result has the composite type; ...", but no rules are given on
page 26 for crealing a composite type for the expression. ln:

X ? (const int *)y : (int *) z

what is the camposite type of (const int *) and (int *) ?
also in:

x ? (const int *)y : (const void *) z

the result type is (void *), contradicting line 11 above.

18) page 58 line 16. This constraint currently allows zero sized structs,
as in:
struct { struct a{int b;};}

-
.

The reference to "... no named members, ..." in page 6l 1ine 25 ~
presumably refers to bit fields. : o

19) page 68. What is the type of constant-expression in array declarations.
In the following what are the array sizes? '

“int al[32767+1];
int a2[65000%65000];

' 20) page 68 clause 3.5.4.3. An anbiguity in needs resolving in the parsing
of the following:

a) int x(T (U));
b) int x(T (U (int a, char b));:

In (a) U is the type of the parameter to a function returning type T.
From page 69 line 2: "In a paramter declaration, a single typedef nane
in parentheses is taken to be an abstract declarator that specifies a
function with a single parameter, not as redundant parentheses around
the identifier for a declarator.”

Thus in the case of (b):

1) U could be a redundantly parenthesized name of a function which
takes a parameter-type-list and returns type T, or

2) U could be the type returned by a function which takes a
parameter-type-list; which in turn is the single parameter of a
function returning type T.

21) page 71 line 5. it s undefined whether the following 1is legal or
illegal:

typedef t[];
t a={1,2}, b{3,4,5};

The behaviour for this case should be defined.

-r T Page 3

gy eq]b:wc

22)

23

page 72 line 43. Change "... its value is indeteminate." to "... its
value is undefined.".

page 81 line 24. Change "... whose return type is void" to "... whose
unqualified return type is void".

'2;4) page 83 1line 34-35. The fact that the storage-class specitier and

: type-specilier may be omitted, defaulting to extern and int respectively

should be in the semantics clause, not an example.

25) page 84 line 1. The fact that parameter declarations\nay be omitted and
default to int ought to be in the semantics section. '

26) pointer to nulti-dimensional arrays. Neils query.

28) page 82 line 22. Implies that there may be more than one external
definition provided tie cbject does not ccour in an expression. . s
It should be a constraint or explictly undefined if tﬁis situaction
occurs.

29) Thére is no semantics given for the replacement oj object macros. This

: should be defined.

30) page 90. In:
#define f(a) a*g
#define g(a) f(a)
£(2)(3)
it should be defined whether this results in 2*f(9) or 2*9*g

31) page 168 line 36. ... first call ..." should read "... all calls ...

SRB/DJ/srb

29 June 1989 Page 4

	Blank Page
	Blank Page

