ISO/IEC JTC1/SC22 .

Languages

Secretariat: CANADA (SCC) 1SO/IEC JTC1/SC22

FEBRUARY 1989

TITLE:

SOURCE:

WORK ITEM:

STATUS:

CROSS REFERENCE:

DOCUMENT TYPE:

ACTION:

619

Second DP9899:Information Processing-
Programming Language C and Letter Ballot

Secretariat ISO/IEC JTC1/SC22

X ARCULATION |

8<1 1618}2)

G 2€ Apng EET, |
i e et VSIS A \3‘1 s{w
Cltee title ‘P rmwi

A ‘ticn «_szi:-» h PW

" S

JTC1.22.20

recruxmouEXkaan v =,
Supersedes N413 fb\fw | lfj AD\JM (9%

N463

Second DP9899-Programming Language C

For review and comments by SC22 Member Bodies.
SC22 Member Bodies are requested to complete
the enclosed Letter Ballot and return it to

the SC22 Secretariat BY 1989-06-30.

Address reply to: ISO/IEC JTC1/SC22 Secretariat

Telephone: (613)957-2496 Telex: 053-3336 i i 2 T

J.L. Céoté, 140 O’Connor St., 10th Floor

Ottawa, Ont., Canada K1A ORS

I||“'“|Ilmmm.uuum'm'“
h““"""lmm-.uulll""l“"

W

DRAFT PROPOSAL ISO/IEC DP gggq

refﬁce number
ISO/IEC JTC1/22N619

date

1989-03-03

supersedes document
N413

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO CHANGE. IT
SHOULD NOT BE USED FOR REFERENCE PURPOSES.

work item number
JTC1.22.20

Title

LANGUAGES
— discussion at
— commentsby 1989-06-30
. — voting by
Secretariat CANADA, SCC (P-members only) 1989-06-39

Circulated to P- and O-members of the JTC, technical
committees and organizations in liaison for:

Title

INFORMATION PROCESSING - PROGRAMMING LANGUAGES C

Reference language version:

O English C French

Introductory note

- First DP9899, document N413 circulated to SC22 Member Bodies for comments and

and voting by 1988-01-22.

- The Summary of Voting and comments received on DP9899 were contained in

document N&463.

- Document N463 was submitted to SC22/WGl4 - C for review and consideration in

preparing a revised version of DP9899.

- The revised version of DP9899 is hereby circulated to SC22 Member Bodies for

comment and vote.

FORM 8

11000

VOTE ON ISO/IEC DRAFT PROPOSAL

DP9889
date reference number
1989-03-013 ISO/IEC JTC1 /SC22N619

1989-06-03

This ba#h duly completed shall reach the JTC/SC secretariat by

P-members of the ISO/IEC joint technical committee concerned have an obligation to vote.

ISO/IEC JTC 1 /SC 22 Circulated to

Secretariat CANADA, SCC

Thie | LANGUACES ’ SC22 'P' Member Bodies for voting
SC22 '0O' Member Bodies for information

SC22 'L' Organization for comments

Subject of the ballot
SECOND DP .9899,

Please put a cross in the appropriate box(es)

Approval of the draft:
I:] as presented

D with comments as given below (use separate page as annex, if necessary)

E] general
technical

D editorial

D Disapproval of the draft for reasons below (use separate page as annex, if necessary)

D Acceptance of these reasons and appropriate changes in the text will change our vote to approval

D Abstention (for reasons below)

P-member voting:

date signature

atal)

Information Technology Standards Commission of Japan
I" l' Information Processing Society of Japan :A; 5%33-:3.1{.2;%?‘
m Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tukyo 105, JAPAN TXIO2.42534‘(J) P J

M-/j

GENERAL COMMENTS

We will approve the DP9899 pProvided
that the ISO standard . Should be
identical With the ANSI C standar d.

TECHNICAL COMMENTS

l. Editorial Errors

The following editorial errors should be corrected.

1.1 §3.1.2.2 Linkages of identifiers (P.22 L.14 - L.15)

“If the declaration of an identifier for an object or a function has fijle
scope and contains the storage-class specifier static. the identifier has
internal iinkage.”

should be change to

"If an identifier for an object or a function has file scope and it’s
declaration contains the storage-class specifier static, the identifier has
internal |inkage.”

1.2 §3.3.2.3 Structure and union menbers (P.43 L.5-1.7)
The use of the term "common initial sequence” apears before the definition
is given in italics. The term should be defined at the first appearance.

1.3 §4.5 MATHENATICS <math.h> (P.]12 b2 ~1.39)

There is no specification about the relation between the type "double” and
the "double-precision in this Standrd. e

Therefore

"The functions take double-precision arguments and return double-precision
values”.

should be changed to

"The functions take type double arguments and return type double valyes.”

H ‘7' / PR &

Information Technology Standards Commission of Japan

T{J Information Processing Society of Japan Tel :%33-43;]-232633
" AX ~431-6.4
I Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tokyo 105, JAPAN TX:02425340 iS) J

1.4 §4.6.1 Unspecified behavior (P.198 L.15 - 1.16)

[n this Standard there is no specification about the following statement
"The order in which expressions are evaluated — in any order conforming to
the precedence rules, even in the presence of parentheses(§3.23)."

Therefore the above item in appendix should be deleted.

-5 §4.6.2 Undefined behavior ('P.199 L.6 - L.8)

"Header name” is missed in the following sentence.

"A character not in the required character set is encountered in a source
file, except in a prepocessing token that is never converted to a token.
a character constant, a string literal, or & comment (§2.2.1)

Therefore the above sentence should be changed to

"A character not in the required character set is encountered in a source
file, except in a prepocessing token that is never converted to a token,

a character constant, a string literal, a comment, or a header name(§2.2.1)."

.6 §A.6.2 Undefined behavior (P.199 L.17-1.18)

In §3.1.2.2 there is no specification about the following statement

"An identifier with external linkage is used but there does not exist exactly
one external definition in the program for the identifier(§3.1.2.2)."

The concerning description has been moved to §3.7.

Therefore the above statement shouid be changed to

“An identifier with external linkage is used but there deces not exist exactly m»
one external definition in the program for the identifier(§3.7)."

P.7T §4.6.3.9 Structures, unions, enumerations, and bit-fields (P.204 .33)
"The order of allocation of bit-fiels within an int(§3.5.2.1)."

should be changed to
“The order of allocation of bit-fiels within an unit (8$3.5.2.1)."

bY/0a0U9

Information Technoiogy Standards Commission of Japan

N . R -9 2
H'SC Information Processing Society of Japan i i o
J Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tokyo 105, JAPAN TX:0242634C 'PS;

2. PROPOSALS
2.1 Const qualified type and cashing optimization (P.54 L.| - L2

Acording to the Constraints in §3.3.16.1 the following program fragment
seems to be correct. :

int x jip;

const int % cjp;

/% x, j

cip = ip: /5 The right type has no qulifier, so x/

/% left the left type has has all the x-
/% qualifier of the type pointed to x:
/x by the right. x/

Furthermore, we think that an implementation may easily do "cashing
~optimization™ for const qualified type.

const int i =1:

void f(int x b)

{ ’ :
const int X cip = &j:

ef xejn é?
xp = 2;°
h(xcip);

¥
s

[t is tempting to generate the call to g as g((r = xcip)) and the ca!|

to h as h(r) (where r is a register variable). We think optimizationa safe
because the xcip has type const int, and cip is not modified by the assignment™
to xb. &

Is our interpretation correct ?

If it is correct, the folloeing statement will be wrong.
int =1
int x ip = &j:

void f(void)
(4
1
const int x cjp ;

cip = ip: /% Al x/
g(xcip);

£ip = 2;

h(xcip):

)

U9

o
-

-3- _ | 65/64

Information Technology Standards Commission of Japan

. Information Processing Society of Japan TEL : 02-4312505
Kikai Shinko Building No. 3-5-8 Shiba-Koen Minato-ku, Tokyo 105, JAPAN FAX : 03-43i-5493
: TX:02425340 1PSJ J

Actually, the call to g should behave as if the source expression is g(|)
and call to h should behave as if the source expression is h(2).

But an implementation which does "cashing optimization” may generate the call
to g as g((r = xcip)) and the call to h as h(r). Therefore the cali to h
may behave as if the source expression is h(1).

We think it is caused by the assignment expression Al.

Proposal:
rd

Add the following COMMON WARNING.
In simple assignment, both operands are pointer or unqualified version of

compatible types, and the type pointed to by the left has const qualifier.
but the type pointed to by the right does not have it.

69/64609

F N
.
S——
A\ ¥ 4

UK COMMENTS ON ISO/IEC SECOND DP 9899

INFORMATION PROCESSING - PROGRAMMING LANGUAGE C

The UK approves ISO/IEC Second DP 9899 - N619, with comments
attached.

SRB/srb 3
29 June 1989,

die i i 8Y/646uY

Btk T T

v,

ol Tl e #ile0, e
SRR EI RS N

Subject: ISO Document DP9899 - N619
(Second DP9899 - Programming Language ()

Based on a review of the subject document, the UK wvotes YES though with
considerable misgivings, overcome only by accepting that there is a general
wish among the ‘C’ Conmunity for a standard to be published as scon as
possible, even if it has deficiencies. An excessive number of undefined

- aspects and ambiguities remain in the docunent and those identified in the UK

issues not already resolvexi, by the time the primary document reaches DIS
Stage, and that this document, once agreed also be adopted by the US memnber

body for its domestic standard and by any other member body with eyuivalent
domestic standards. ;i

’
The UK believes that the first revision of the 'C’ standard, incorporating the
interpretations in the additional document just referred to, should be
developed by WGl14 directly and that the temms of reference of WG4 (Paris
resolution) should be revised accordingly. ‘

Camments oh the December 7, 1988 Draft Pméosed C standard

1) page 2 line 36, page 3 line 6. Definition of Byte and Character are
self referencing and circular.

' 2) page 2-3. Definitions should be in alphabetic order.

3) page 3 line 30. Paracraph should be given its awn heading.

4) page 3 line 32. *"... or by the omission ---", but this is “Unspecified
behaviour" as defined on line 21 above.

2) page 6 line 37. “Preporcessing directives are executes and macro
invocations are expanded* - ‘

page 87 line 1-5. -~A preprocessing directive ... and is ended 'By the
next new-line character"

page 90 line 40. ‘“within the sequence of preprocessing tokens o e
line is considered a nommal white-space character”

These three statements are not sufficient to define the following:

#define f(a,b) a+b
#1f f(1,
2)

It should be defined whether the preprocessing directive rule or macro
expansion wins.

6) page 8. It should be a constraint error or explictly undefined if no
function called main exists in the executable.

7) page 21 Implementation limits. It is currently undefined behaviour jif
the implementation does not treat 31 Characters as being significant.
It should be a constraint error if the imglementation does not support

8) page 21 line 26. It is undefined behaviour if label nanes are not
unique within a function. This should be an error.

9) Daqge) 1y s T " B o T B | AL

el @ ——e e

10)

page 35 line 13. A nit pick really.

in:
int i;
enum foo{a=1} x;
i=(0,x) +1; /* illegal */
i=x+1 : /* legal */

The type of (0,x) is enum foo. However, it is not an object and the
draft standard does not explicitly allow it to occur in an int context.

Does the camittee intend this behaviour?

12)
13)
14)

15)

16)

page 38. “.. with the value 0", should refer to the NULL macro.
page 39 footnote 33. Hahg over from noalias days?

sizeof has type size_t. It should be a constraint error or explicitly
undefined if the definition of size t obtained from an include il does
not match what the compiler considers the type of sizeof to be (the
campiler has to maintain an internal type for sizeof in case the user

does not include a header chat defines this type).
The above camments also apply to ptrdiff t, page 48 line 34.

‘An inferior implementation may flag a statement as being in error, while
a quality implementation treats it as being legal. Consider:

char *p;
p=1-1;

A quality implementation would fold 1-1 to give zero. If the NULL macro
is defined as 0 then the assigment is legal. it is the null-pointer-
constant. - e e - ' y

An inferior implementation would not fold the 1-1 and would flag the
assigmment as being in error.

The standard should explictly state that in an expression context only

unfolded constants may became null-pointer-constant. _

. -
page 4l line 30. Suggest change of "... in the innemost block
containing ..." ‘be changed to "... in the innermost block, after any
explicit declarations, containing ...". This extra wording keeps:

int (*g)()=f;

£();

illegal.

Without it the implicit declaration that occur on encountering the °

function call () might make the initialiser given on the declaration of

- g-legal. A one pass campiler would already have flagged the_initialiser

on g as being in error.

An even better solution would be to implicitly declare f with file
scope. ..

Page 2

6v/64609

X

!

17)

18)

19)

' 20)

21)

page 53 line 13. "... or differently qualified versions of a compatible
type, the result has the composite type; ...", but no rules are given on
page 26 for creating a conposite type for the expression. 1n: ;
X ? (const int *)y : (int *) z

what is the conposite type of (const int *) and (int *) ?

also in:

X ? (const int *)y : (const void *) z

~ the result type is (void *), contradicting line 11 above.

page 58 line 16. This constraint currently allows zero sized structs,
as in:
struct { struct g{int b;};}

-

The reference to "... no named members, ..." in page 61 ‘line 25
presumably refers to bit fields.

page 68. What is the type of constant-expression in array declarations.
In the following what are the array sizes? : :

int al[32767+1];

int a2{65000*65000];

page 68 clause 3.5.4.3. An ambiguity in needs resolving in the parsing
of the following:

a) int x(T (U));
b) int x(T (U (int a, char b)));

In (a) U is the type of the parameter to a function returning type T.
From page 69 line 2: "In a paramter declaration, a single typedef nane
in parentheses is taken to be an abstract declarator that specifies a
function with a single parameter, not as redundant parentheses around
the identifier for a declarator." X

Thus in the case of (b):

1) U could be a redundantly parenthesized name of a function which
takes a parameter-type-list and returns type T, or

2) U could be the type returned by a function which takes a
parameter-type-list; which in turn is the single parameter of a
function returning type 'I'.

page 71 line 5. It is undefined whether the following is legal or
illegal:

typedef t(];
t a={1,2}, b{3,4,5};

The behaviour for this-case should be defined.

Ghleacgy s e

22)
23)
. 24)

25)

26)
28)

31)

page 72 line 43. Change "... its value is indetemminate.” to “... iLs
value is undefined.".

page 81 line 24. Change "... whose return type is void" to “... whose
unqualified return type is void".

page 83 line 34-35. The fact that the storage-class Specitier and
type-specifier may be omitted, defaulting to extern and int respectively
should be in the semantics clause, not an example.

page 84 line 1. The fact that parameter declarations nay be cmitted and
default to int ought to be in the semantics section.)

-

pointer to multi-dimensional arrays. Neils query.

page 82 line 22. Implies that there may be more than one axternal
definition provided Lhe object does not occur in an expression. A

It should be a constraint or explictly undefined if this situation

occurs.

e TR C e e < fmm mterme Emen — T) 3 3~ > '
Hlere 1s 00 S&nantics gilven for the rsplacement cj object macres. Tiyie

should be defined.

page 90. 1In:

#define f(a) a*g

#define g(a) f(a)

£(2)(9) . om
it should be defined whether this results in 2*£(9) or 2+*9xqy

page 168 line 36. “... first call ..." should read "... all calls ..

SRB/DJ/srb
29 June 1989 Page 4

E§v/84809

