© ISO 2001 – All rights reserved

Reference number of working document: ISO/IEC JTC 1 N 000
Date: 2001-09-07
Reference number of document: ISO/IEC JTC1 TR 22250‑1
Committee identification: ISO/IEC JTC1/SC 34
Secretariat: ANSI

Information technology —
Document Description and Processing Languages —
Regular Language Description for XML (RELAX) — Part 1: RELAX Core
Document type: Technical Report
Document subtype: Type 3
Document stage: Fast-track Procedure
Document language: E
Titre — Titre — Partie n: Titre de la partie
Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester:

[Indicate :

the full address

telephone number

fax number

telex number

and electronic mail address

as appropriate, of the Copyright Manager of the ISO member body responsible for the secretariat of the TC or SC within the framework of which the draft has been prepared]

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Contents

vForeword

1
Scope
1
2
References
1
3
Terms and definitions
2
3.1
XML 1.0
2
3.2
Name Spaces in XML
3
3.3
XML Schema Part 2
3
3.4
XML Information Set
3
3.5
Definitions specific to RELAX Core
3
4
Notations
4
5
Basic concepts
4
5.1
Design principles
4
5.2
Instances, schemas, and meta schemas
4
5.2.1
Instances
4
5.2.2
RELAX schema
5
5.2.3
RELAX meta schema
5
5.3
Modules and frameworks
5
5.4
Islands and instances
5
5.5
Behaviour of the RELAX Core processor
6
5.6
Datatypes
6
5.7
Roles and clauses
7
5.8
Production rules, labels, and hedge models
7
5.8.1
General
7
5.8.2
Element hedge models
8
5.8.3
Mixed hedge models
8
5.8.4
Datatype references
8
5.9
Taxonomy and occurrences of names
8
6
Module Constructs
9
6.1
module
9
6.2
interface
10
6.3
export
10
6.4
tag
10
6.5
attPool
11
6.6
ref with the role attribute
11
6.7
attribute
12
6.8
elementRule
12
6.9
hedgeRule
13
6.10
ref with the label attribute
13
6.11
hedgeRef
14
6.12
sequence
14
6.13
choice
14
6.14
empty
15
6.15
none
15
6.16
mixed
15
6.17
element
15
6.18
include
16
6.19
div
16
6.20
annotation
16
6.21
documentation
17
6.22
appinfo
17
7
Datatypes
17
7.1
General
17
7.2
Built-in datatypes of XML Schema Part 2
17
7.3
Datatypes Specific to RELAX
19
7.3.1
none
19
7.3.2
emptyString
19
7.4
Facets
19
8
Reference model
19
8.1
General
19
8.2
Creation of element hedge models
20
8.3
Expansion of modules
20
8.4
Expansion of element
20
8.5
Expansion of modules
20
8.6
Expansion of tag embedded in elementRule
20
8.7
Interpretation
20
9
Conformance
21
9.1
General
21
9.2
Conformance levels of RELAX modules
21
9.3
Conformance levels of the RELAX Core processor
22
Annex A DTD for RELAX Core
23
Annex B RELAX Module for RELAX Core
27
Bibliography
37

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Committee) together form a system for worldwide standardization as a whole. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organizations to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.
In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC1.

The main task of a technical committee is to prepare International Standards but in exceptional circumstances, the publication of a technical report of one of the following types may be proposed:

· type 1, when the necessary support within the technical committee cannot be obtained for the publication of an International Standard, despite repeated efforts;

· type 2, when the subject is still under technical development requiring wider exposure;

· type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

This specification is a translation of a type-2 technical report "Regular Language Description for XML (RELAX) — RELAX Core" (TR X 0029:2000) published by Japanese Standards Association (JSA) in March, 2000.
This Technical Report consists of the following parts, under the general title RELAX:
· Part 1: RELAX Core

· Part 2: RELAX Namespace
Information Processing — Text and Office Systems — Regular Language Description for XML (RELAX) — Part 1: RELAX Core

1
Scope
This Technical Report specifies mechanisms for formally specifying the syntax of XML-based languages. For example, the syntax of XHTML 1.0 can be specified in RELAX.

Compared with DTDs, RELAX provides the following advantages:

· Specification in RELAX uses XML instance (i.e., document) syntax,

· RELAX provides rich datatypes, and

· RELAX is namespace-aware.

The RELAX specification consists of two parts, RELAX Core and RELAX Namespace. This part of the Technical Report specifies RELAX Core, which may be used to describe markup languages containing a single XML namespace. Part 2 of this Technical Report specifies RELAX Namespace, which may be used to describe markup languages containing more than a single XML namespace, consisting of more than one RELAX Core document.
Given a sequence of elements, a software module called the RELAX Core processor compares it against a specification in RELAX Core and reports the result. The RELAX Core processor can be directly invoked by the user, and can also be invoked by another software module called the RELAX Namespace processor.

The RELAX specification may be used in conjunction with DTDs. In particular, notations and declarations declared by DTDs can be constrained by RELAX.

This part of the Technical Report also specifies a subset of RELAX Core, which is restricted to DTD features plus datatypes. This subset is very easy to implement, and with the exception of datatype information, conversion between this subset and XML DTDs results in no information loss.
NOTE 1
Since XML is a subset of WebSGML (TC2 of ISO 8879), RELAX is applicable to SGML.

NOTE 2
A successor of RELAX Core is being developed at the RELAX NG TC of OASIS.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of this part of the Technical Report.

ISO 8879:1986, Information processing – Text and office systems – Standard Generalized Markup Language (SGML).

ISO 8879:1986 TC2, Information technology – Document Description and Processing Languages – Standard Generalized Markup Language (SGML) WebSGML Adaptations, 1998.

W3C (World Wide Web Consortium), Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, http://www.w3.org/TR/REC-xml, 2000

W3C (World Wide Web Consortium), Name Spaces in XML, W3C Recommendation, http://www.w3.org/TR/REC-xml-names, 1999

W3C (World Wide Web Consortium), XML Information Set, W3C Proposed Recommendation, http://www.w3.org/TR/xml-infoset, 2001

W3C (World Wide Web Consortium), XML Schema Part 2, W3C Recommendation, http://www.w3.org/TR/xmlschema-2, 2001

IETF (Internet Engineering Task Force). RFC2396: Uniform Resource Identifiers (URI): Generic Syntax, 1998.
3
Terms and definitions

3.1
XML 1.0

For the purposes of this part of the Technical Report, the following terms and definitions given in XML 1.0 apply.

a) start tag

b) end tag

c) empty-element tag

d) attribute

e) attribute name

f) content

g) content model

h) attribute-list declaration

i) DTD

j) XML processor

k) validity

l) validating processor

m) non-validating processor

n) whitespace

o) child

p) parameter entity

q) match
NOTE 3
On top of those meanings given in XML 1.0, “match” has another meaning (see 5.8).

3.2
Name Spaces in XML

For the purposes of this part of the Technical Report, the following terms and definitions given in “Name Spaces in XML” apply.

a) namespace

b) namespace name

3.3
XML Schema Part 2

For the purposes of this part of the Technical Report, the following terms and definitions given in "XML Schema Part 2" apply.

a) lexical representation

b) facet

c) datatype

d) built-in datatype

3.4
XML Information Set

For the purposes of this part of the Technical Report, the following terms and definitions given in “XML Information Set” apply.

a) information set

b) document information item

c) element information item

d) property

e) core property

f) reference to skipped entity information item

g) entity information item

h) notation information item

3.5
Definitions specific to RELAX Core
3.5.1

tag name

names in start tags, end tags, and empty-element tags (generic identifiers in ISO 8879)
NOTE 4
This term is adopted from DOM.

3.5.2

hedge
ordered sequences of elements and character data
4
Notations
This part of the Technical Report uses DTD in order to specify the syntax of RELAX modules. However, since DTDs provide no support for XML namespaces, this part of the Technical Report only uses some of the constructs possible in DTDs.

To specify permissible contents of elements, this part of the Technical Report uses content models, which match the non-terminal symbol contentspec in XML 1.0.

EXAMPLE 1
The following content model specifies that an element is constrained to a sequence beginning with a frontmatter element followed by a body element, and finally an optional backmatter element
(frontmatter, body, backmatter?)

To specify permissible attributes of elements, this part of the Technical Report uses fragments of attribute-list declarations, which match the non-terminal symbol AttDef of XML 1.0

EXAMPLE 2
The following attribute-list fragment specifies that an element has an optional attribute class and that any character string can be used as the attribute value.

class CDATA #IMPLIED

There are no constraints on sublements and attributes not belonging to the namespace "http://www.xml.gr.jp/xmlns/relaxCore".

5
Basic concepts

5.1
Design principles

The design principles of RELAX Core are:

a) RELAX Core shall be simple and powerful.

b) The design shall be prepared quickly.

c) The design shall be formal and concise.
d) It shall be possible to implement RELAX Core using existing XML document APIs (e.g., SAX and DOM).

e) RELAX Core shall be upward-compatible with DTDs.

f) RELAX Core shall have a subset such that conversion to and from DTDs loses no information except datatype information.

g) Datatypes of RELAX Core shall be compatible with those in XML Schema Part 2.

NOTE 5
“HOW TO RELAX” [3] is a tutorial of RELAX Core.

5.2
Instances, schemas, and meta schemas

5.2.1
Instances

A document information item is said to be an instance. When an instance satisfies conditions represented by a RELAX schema, the instance is said to comply or be compliant with the RELAX schema. If there is no possibility of confusion, the instance may be considered compliant without mention of the RELAX schema.

NOTE 6
A valid document as defined in XML 1.0 (to be precise, a document information item represented by this document) need not be compliant with a RELAX schema; an instance compliant with a RELAX schema (to be precise, documents representing this instance) need not be valid.

5.2.2
RELAX schema

A RELAX schema is a description of permissible elements, attributes, and their structural relationships..
5.2.3
RELAX meta schema
The RELAX meta schema is a RELAX schema specifying the syntax of RELAX. Any RELAX schema is compliant with the RELAX meta schema.
5.3
Modules and frameworks

A document information item that conforms to RELAX Core is said to be a RELAX module. A RELAX module addresses elements in a single namespace as well as their attributes and contents.
A document information item that conforms to RELAX Namespace is said to be a RELAX framework. A RELAX framework addresses multiple namespaces by specifying a RELAX module per each namespace.
A single-namespace RELAX schema consists of a framework and a single module. Since the framework does not reference to other modules, the module provides the complete schema definition.

A multiple-namespace RELAX schema consists of a framework and modules referenced from the framework.
5.4
Islands and instances

A multi-namespace instance is compared against a RELAX schema comprising multiple modules. Such an instance is first decomposed into multiple islands, each of which is a single-namespace hedge. Each island is then compared against a single RELAX module (Figure 1).

[image: image1.wmf]module

framework

island

instance

compared against

compared against

Figure 1 — The relationship between modules/frameworks and islands/instances
A single-namespace instance is already an island, and thus need not be further decomposed.
5.5
Behaviour of the RELAX Core processor

The RELAX Core processor is a software module that, given an island and a RELAX module, compares the island against the RELAX module in order to determine if the island is compliant with the RELAX module.

[image: image2.wmf]i

s

l

a

n

d

m

o

d

u

l

e

i

n

f

o

r

m

a

t

i

o

n

s

e

t

a

p

p

l

i

c

a

t

i

o

n

p

r

o

g

r

a

m

i

n

f

o

r

m

a

t

i

o

n

s

e

t

u

s

e

X

M

L

p

r

o

c

e

s

s

o

r

X

M

L

p

r

o

c

e

s

s

o

r

e

l

e

m

e

n

t

h

e

d

g

e

m

o

d

e

l

f

o

r

t

h

e

t

o

p

-

l

e

v

e

l

e

l

e

m

e

n

t

s

(

o

p

t

i

o

n

a

l

)

m

e

s

s

a

g

e

(

c

o

m

p

l

i

a

n

c

e

o

r

i

n

c

o

m

p

l

i

a

n

c

e

)

u

s

e

R

E

L

A

X

C

o

r

e

p

r

o

c

e

s

s

o

r

Figure 2 — The RELAX Core processor, the XML processor, and application programs
The RELAX Core processor shall receive islands and RELAX modules as information sets from the XML processor. The RELAX Core processor shall use core properties of information items in the information sets and shall not use other properties.
NOTE 7
Implementations of the RELAX Core processor receive information sets via APIs such as SAX or DOM.
The RELAX Core processor may also receive a hedge model that constrains the top-level elements of islands.

After comparison, the RELAX Core processor shall output a message that the island is compliant or a message that it is not. The RELAX Core processor may output other messages.

Other than such messages, the RELAX Core processor shall have no outputs. Application programs shall receive information sets from the XML processor and may receive messages from the RELAX Core processor.

Both validating processors and non-validating processors may be used by the RELAX Core processor.

When the RELAX Core processor receives references to skipped entity information items, it shall output a message, at user option, and may stop normal processing.
5.6
Datatypes

RELAX Core uses the built-in datatypes of XML Schema Part 2. Datatypes can be used as conditions on attributes or used as hedge models.

Datatypes in RELAX Core represent sets of strings. Given a string and a datatype, it is possible to determine if the string is contained by the set of strings represented by that datatype.

EXAMPLE 3
The datatype named integer defines a set of strings representing integers. It is possible to determine whether or not a string represents an integer.

References to datatypes may have additional conditions called facets.

EXAMPLE 4
A reference to the integer datatype may have facets, which may specify that the value should be equal to or greater than 10, and that it should be equal to or less than 20.
The RELAX Core processor does not convert character strings to data (e.g., conversion of the string "1" to the integer 1). Such conversion is left to application programs.

NOTE 8
Typically, application programs merely invoke conversion libraries.
5.7
Roles and clauses

In RELAX Core, conditions on tag names and attributes are captured by roles and clauses. A role is a name, and is described by a clause. A clause does not have a name.

A clause is either tag or attPool. tag specifies permissible tag name, while attPool does not. When tag or attPool specify a permissible attribute, this attribute is said to be declared by the tag or attPool.

There shall be at most one clause per role.

A clause may reference to another clause via a role. A clause shall not directly or indirectly reference to itself. A referenced clause shall be described by attPool; it shall not be described by tag.

A clause shall not directly or indirectly (via other clause) reference to another clause more than once.

A clause shall not directly or indirectly (via other clause) declare an attribute more than once.
5.8
Production rules, labels, and hedge models

5.8.1
General

In RELAX Core, conditions on element structures are captured by labels and production rules. A label is a name, and is described by a production rule. A production rule shall not have a name.

A production rule is either elementRule or hedgeRule. elementRule is a triplet of a label, role, and hedge model. hedgeRule is a pair, consisting of a label and a hedge model.

Roles referenced by elementRule shall be described by tag clauses. elementRule shall not reference roles described by attPool clauses.

More than one elementRule may share a label, and more than one hedgeRule may share a label. However, elementRule and hedgeRule shall not share a label.

More than one elementRule may share a role.

NOTE 9
Regular grammars comprise production rules and generate sets of strings. The left-hand side of a production rule is a non-terminal symbol, and the right-hand side is either a terminal symbol, a terminal symbol followed by a non-terminal symbol, or a non-terminal symbol. RELAX Core is an extension of regular grammars such that sets of logical structures are generated. A label corresponds to a non-terminal symbol in the left-hand side, and a role corresponds to a terminal symbol. Hedge models extend non-terminal symbols in the right-hand side so that elementRule addresses tree structures rather than strings.
Permissible contents of elements are described by hedge models. A hedge model shall be either an element hedge model, mixed hedge model, or datatype reference.

When more than one elementRule shares a label and role together, one of the following conditions hold:

a) all of them have element hedge models,

b) all of them have mixed hedge models, or

c) all of them reference the same datatype, possibly having different facets.
5.8.2
Element hedge models

An element hedge model generates a regular set of label sequences. Any label sequence in this set, possibly prepended, interspersed with, or followed by whitespace characters, is said to match this element hedge model.
5.8.3
Mixed hedge models

A mixed hedge model is an element hedge model with the mixed wrapper. Any label sequence in the set generated by the wrapped element hedge model, possibly prepended, interspersed with, or followed by arbitrary characters, is said to match this mixed hedge model. Note that not only whitespace characters but also non-whitespace characters are permitted.
5.8.4
Datatype references

A datatype reference specifies a datatype name. It may further specify additional conditions called facets. A sequence of characters matches a datatype reference if the character sequence belongs to the referenced datatype and satisifies the accompanying facets, if any.
5.9
Taxonomy and occurrences of names

Five types of names are used in RELAX Core. They are datatype names, tag names, attribute names, roles, and labels. Names of different types do not collide. For example, although there is a datatype called integer, one may use "integer" as a tag name or label.

The following table shows which types of names appear in instances and where in RELAX modules they appear.
Table 1 — Types of names and their occurrences in instances and RELAX modules
Types of names
In Instances
In RELAX Modules

datatype names
do not occur
occur as conditions on attributes or hedge models (datatype references)

tag names
occur
occur as part of clauses

attribute names
occur
occur as part of clauses

roles
do not occur
occur in clauses (description of roles)

occur in clauses (references to roles)

labels
do not occur
occur in production rules (description of labels)

occur in production rules (reference to labels)

6
Module Constructs

6.1
module
module represents an entire module. This element provides management information about the module.

module has the moduleVersion attribute the relaxCoreVersion attribute, and the targetNamespace attribute.

moduleVersion CDATA #IMPLIED

relaxCoreVersion CDATA #REQUIRED

targetNamespace CDATA #IMPLIED

The version of this module is indicated by the moduleVersion attribute.
The version of RELAX Core is indicated by the relaxCoreVersion attribute. The version number "1.0" shall be used to indicate conformance to Version 1.0 of RELAX Core; it is an error for a document to use the value "1.0" if it does not conform to Version 1.0 of RELAX Core.

NOTE 10
It is the intent of the editing committee to give later versions of this specification numbers other than "1.0", but this intent does not indicate a commitment to produce any future versions of RELAX Core, nor if any are produced, to use any particular numbering scheme. Since future versions are not ruled out, this construct is provided as a means to allow the possibility of automatic version recognition, should it become necessary.

The RELAX Core processor may signal an error if it receives documents labelled with versions that it does not support. It may continue or abort normal processing.

The targetNamespace attribute specifies the target namespace to which elements described by this module belong. When this attribute is specified and this module is included by another module, the value of this attribute shall be identical to the target namespace of that module in effect. When this attribute is not specified and this module is included by another module, the target namespace of that module in effect shall be used as the target namespace. When this attribute is not specified but this module is not referenced by a RELAX framework or module, “” is used as the target namespace
Given that all elements in the module itself belong to the namespace "http://www.xml.gr.jp/xmlns/relaxCore", the module element shall declare this namespace.

Every element in a module shall belong to the namespace "http://www.xml.gr.jp/xmlns/relaxCore". Thus, the module element shall declare this namespace.

The following content model describes the permissible content of module elements:

(annotation?, interface?,

(tag | attPool | elementRule | hedgeRule | div | include)*)

EXAMPLE 5
An example module element is shown below. Child elements are omitted for clarity.
<module

moduleVersion="1.2"

RELAX CoreVersion="1.0"

xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

...

</module>

6.2
interface
interface provides interface information between the module and RELAX frameworks. If a RELAX framework has only a single namespace, interface provides information about the permissible root element of instances.

interface has no attributes.

The following content model describes the permissible content of interface elements:

(annotation?, (export | div)*)

6.3
export
export indicates which information can be referenced from RELAX frameworks.

export has the label attribute.

label NMTOKEN #REQUIRED

The label attribute exposes a label described by elementRule to RELAX frameworks. If a RELAX framework has only a single namespace, this attribute shows that the root of instances may have a specified label.

The following content model describes the permissible content of export elements:
 (annotation?)

EXAMPLE 6
An example of export is shown below.

<export label="doc"/>

6.4
tag
tag specifies the condition that elements play a specified role, by combining a condition on tag names, conditions on attribute values, and references to other roles.

tag has the role attribute and the name attribute.

role NMTOKEN #IMPLIED

name NMTOKEN #IMPLIED

The name attribute specifies the tag name. The role attribute specifies which role is described by the tag.

When the tag is not a child element of elementRule, the name attribute shall be specified but the role attribute need not be specified. If the role attribute is not specified, its value is assumed to be the same as the name attribute.

When the tag is a chid element of elementRule, the name attribute need not be specified and the role attribute shall not be specified. An appropriate role which does not collide with other roles is generated as the value of the role attribute by the RELAX Core processor. If the name attribute is not specified, it is assumed to be the same as the label attribute of the parent elementRule.

The following content model describes the permissible content of tag elements. Subordinate ref shall specify the role attribute.

(annotation?, (ref | attribute)*)

An element e play the role specified by the role attribute if the following three conditions hold:

a) The tag name of e matches the value of the name attribute.

b) Each of the conditions (expressed by the subordinate atttribute elements) on attributes is satisfied by some attribute of e.

c) e plays all roles referenced by the subordinate ref elements.

Observe that e satisfies these conditions even if it has attributes not declared by the tag.
EXAMPLE 7
An example of tag is shown below. The bar1 role is referenced by a subordinate ref element.

<tag name="foo" role="bar">

<ref role="bar1"/>

</tag>

6.5
attPool
attPool specifies the condition that elements play a specified role, by combining conditions on attribute values, and references to other roles.

attPool has the role attribute.

role NMTOKEN #REQUIRED

The role attribute specifies which role is described by the attPool.

The following content model describes the permissible content of attPool elements. Subordinate ref shall specify the role attribute.

(annotation?, (ref | attribute)*)

An element e plays the role specified by the role attribute if the following two conditions hold:

a) Each of the conditions (expressed by the subordinate atttribute elements) on attributes is satisfied by some attribute of e.

b) e plays all roles specified by the subordinate ref elements.

EXAMPLE 8
An example of attPool is shown below. The bar1 role is referenced by a subordinate ref element.

<attPool role="bar">

<ref role="bar1"/>

</attPool>

6.6
ref with the role attribute

ref with the role attribute references a role described by attPool.

ref with the role attribute does not have other attributes.

role NMTOKEN #REQUIRED

The following content model describes the permissible content of ref elements having the role attribute:

EMPTY

Examples of ref with the role attribute are also contained in the examples of tag and attPool.
6.7
attribute
attribute describes conditions on attribute names and values. It further indicates whether the attribute is optional.

attribute has the name attribute, the required attribute, and the type attribute. The name attribute is mandatory.

name NMTOKEN #REQUIRED

required (true) #IMPLIED

type NMTOKEN #IMPLIED

The name attribute specifies the attribute name. The required attribute shows whether this attribute is optional. If "true" is specified, this attribute is mandatory.

Multiple attribute elements in a tag element or the attPool elements directly or indirectly referenced by this tag shall not specify names matching each other.

The type attribute specifies a datatype name. If the type attribute is omitted, the built-in datatype string is assumed.

The following content model describes the permissible content of attribute elements. It is assumed that all element types representing facets are connected by "|" and declared as the value of the facet parameter entity.

(annotation?, (%facet;)*)

The datatype name specified by the type attribute and the facets specified by the child elements collectively form a datatype reference. The value of the attribute specified by the name attribute is required to match this datatype reference.

EXAMPLE 9
An example of attribute is shown below. An attribute element is used as a child element of tag.

<tag name="a" >

<attribute name="href" type="anyURI"/>

</tag>

NOTE 11
In XML 1.0, element types without attributes do not require attribute-list declarations. However, in RELAX Core, tag names occurring in instances always require tag elements.
6.8
elementRule
elementRule represents a production rule which consists of a triplet of a label, role, and hedge model.

elementRule has the role attribute, the label attribute and the type attribute. When elementRule does not have a subordinate tag, the role attribute shall be specified and the label attribute need not be specified. When the label attribute is omitted, it is assumed to have the same value as the role attribute. When elementRule has a subordinate tag, the label attribute shall be specified and the role attribute shall not be specified.

role NMTOKEN #IMPLIED

label NMTOKEN #IMPLIED

type NMTOKEN #IMPLIED

The role attribute specifies a role. The label attribute specifies which label is described by this elementRule. The type attribute references to a datatype. When this elementRule has an element hedge model or mixed hedge model, the type attribute shall not be specified.

The following content model describes the permissible content of elementRule elements. It is assumed that all element types representing facets are connected by "|" and declared as the value of the facet parameter entity. Subordinate ref shall specify the label attribute.

(annotation?, tag?,

((ref | hedgeRef | choice | sequence | element | none | empty | mixed)

 |

(%facet;)*))

Handling of subordinate tag elements is described in 8.5.

elementRule is said to have an element hedge model if either ref, hedgeRef, choice, sequence, element, none or empty is specified as the child element.

elementRule is said to have a mixed hedge model if mixed is specified as the child element.

If elementRule does not have an element hedge model or mixed hedge model, a datatype reference shall be specified by the type attribute. When elementRule has a datatype reference, facets may be specified as the content of the elementRule. Datatypes and facets are described in Clause 7.

6.9
hedgeRule
hedgeRule represents a production rule which consists of a pair of a label and hedge model.

hedgeRule has the label attribute.

label NMTOKEN #REQUIRED

The label attribute specifies which label is described by the hedgeRule.

The following content model describes the permissible content of hedgeRule elements. Subordinate ref shall specify the label attribute.

(annotation?,

(ref | hedgeRef | choice | sequence | element | none | empty))

6.10
ref with the label attribute

ref with the label attribute represents an element hedge model which references to a label not described by hedgeRule.

ref elements with the label attribute have the occurs attribute.

label NMTOKEN #REQUIRED

occurs CDATA #IMPLIED

The value of the occurs attribute shall be either "*", "+", or "?".

The following content model describes the permissible content of ref elements with the label attribute:
EMPTY

Let l be the label referenced by the label attribute of ref. When the occurs attribute is not specified, this ref shall generate a label sequence made up from one occurrence of l only. When the occurs attribute is specified, "*" shall repeat the sequence zero or more times, "+" shall repeat the sequence one or more times, and "?" shall repeat the sequence zero or one time.

6.11
hedgeRef
hedgeRef represents an element hedge model which references to a label described by some hedgeRule element.

hedgeRef has the occurs attribute.

label NMTOKEN #REQUIRED

occurs CDATA #IMPLIED

The value of the occurs attribute shall be either "*", "+", or "?".

The following content model describes the permissible content of hedgeRef elements:
EMPTY

hedgeRef is replaced by element hedge models of those hedgeRule elements which describe the label referenced by this hedgeRef (more about this, see 8.4).
6.12
sequence
sequence represents an element hedge model that concatenates element hedge models.

sequence has the occurs attribute. Permissible values and semantics of the occurs attribute are the same as in ref with the label attribute.

occurs CDATA #IMPLIED

The following content model describes the permissible content of sequence elements:
(ref | hedgeRef | choice | sequence | element | none | empty)*

Suppose that the child elements of sequence are c1, c2,…, cm. Further suppose that c1 generates a label sequence l11, l12,…, l1i; c2 generates a label sequence l21, l22,…, l2j; c3 and the following child elements also generates similar sequences, and cm generates a label sequence lm1, lm2,…, lmj. When the occurs attribute is not specified, this sequence shall generate l11, l12,…, l1i, l21, l22,…, l2j, ..., lm1, lm2,…, lmk . When the occurs attribute is specified, "*" shall repeat the sequence zero or more times, "+" shall repeat the sequence one or more times, and "?" shall repeat the sequence zero or one time.
6.13
choice
choice represents an element hedge model that is a selection from element hedge models.

choice has the occurs attribute. Permissible values and semantics of the occurs attribute are the same as in ref with the label attribute.

occurs CDATA #IMPLIED

The following content model describes the permissible content of choice elements:
(ref | hedgeRef | choice | sequence | element | none | empty)*

Suppose that the child elements of choice are c1, c2,…, cm. Further suppose that c1 generates a label sequence l11, l12,…, l1i; c2 generates a label sequence l21, l22,…, l2j ; c3 and the following child elements also generate similar sequences, and cm generates a label sequence lm1, lm2,…, lmk. When the occurs attribute is not specified, this choice shall generate any of the label sequence l11, l12,…, l1i, the label sequence l21, l22,…, l2j, ..., or the label sequence lm1, lm2,…, lmk. When the occurs attribute is specified, "*" shall repeat the sequence zero or more times, "+" shall repeat the sequence one or more times, and "?" shall repeat the sequence zero or one time.
6.14
empty
empty represents an element hedge model that matches the empty sequence of labels.

empty has no attributes.

The following content model describes the permissible content of empty elements:
EMPTY

6.15
none
none represents an element hedge model that matches no label sequences.

none has no attributes.

The following content model describes the permissible content of none elements:
EMPTY
6.16
mixed
mixed provides a mixed hedge model.

mixed has no attributes.

The following content model describes the permissible content of mixed elements:

(ref | hedgeRef | choice | sequence | element | none | empty)
Suppose that the element hedge model which is the child of a mixed hedge model generates some label sequence. This label sequence, possibly prepended, intervened, or followed by arbitrary characters, matches the mixed hedge model.
6.17
element
element provides a convenient shorthand which is expanded to ref, tag, and elementRule.

element has the name attribute, the type attribute, and the occurs attribute. The name attribute and the type attribute shall be specified. Permissible values and semantics of the occurs attribute are the same as in ref with the label attribute.

name NMTOKEN #REQUIRED

type NMTOKEN #REQUIRED

occurs CDATA #IMPLIED

The following content model describes the permissible content of element. In this content model, it is assumed that all element types representing facets are connected by "|" and declared as the value of the facet parameter entity.

(annotation?, (%facet;)*)

element is expanded to ref, tag, and elementRule according to the following rule.

a) A ref element shall be created, and the element shall be replaced by this ref. An appropriate label which does not collide with other labels shall be created as the value of the label attribute of this ref. The occurs attribute of the element, if any, shall be copied to the ref.

b) An elementRule element shall be created, and shall be added to this module. An appropriate role which does not collide with other roles shall be created as the value of the role attribute of the elementRule. The value of the label attribute shall be the label created in a). The hedge model of the elementRule shall be a datatype reference. The name of the referenced datatype shall be the value of the type attribute of the element. The content of the elementRule shall be the content of the element.

c) A tag element shall be created, and shall be added to this module. The value of the role attribute of this tag shall be the role created in b). The value of the name attribute of this tag shall be the value of the name attribute of the original element.
6.18
include
include provides a mechanism for referencing other modules.

include has the moduleLocation attribute.

moduleLocation CDATA #REQUIRED

The moduleLocation attribute references another module via a URI reference(IETF RFC 2396). The URI reference shall not contain a fragment identifier.

The following content model describes the permissible content of include elements:
(annotation?)

The module which contains include is said to be a referencing module, and a module referenced by the moduleLocation attribute is said to be a referenced module. The referenced module and the referencing module are required to specify the same value by the targetNamespace attribute.

6.19
div
div is introduced as a mechanism for grouping clauses, production rules, and include elements, and grouping of export elements in interface elements.

div has no attributes.

The following content model describes the permissible content of div elements. div may have subordinate export only when interface is an ancestor of the div. When a div element does not have an interface ancestor, it may contain subordinate clauses, production rules, and include elements.

(annotation?, div*,

(((elementRule | hedgeRule | tag | attPool | include),

 (elementRule | hedgeRule | tag | attPool | include | div)*)

 |

(export, (export | div)*))?)

6.20
annotation
annotation is introduced as a mechanism for embedding comments in modules.

annotation has no attributes.

The following content model describes the permissible content of annotation elements:
(appinfo | documentation)*

6.21
documentation
documentation is introduced as a note for human users to read.

documentation has the source attribute.

source CDATA #IMPLIED

When the source attribute is specified, the value shall be a URI reference (see IETF RFC 2396).

The following content model describes the permissible content of documentation elements:
(#PCDATA)

A documentation element specifying the source attribute shall be an empty element. Non-empty documentation elements shall not specify the source attribute.
6.22
appinfo
appinfo is a mechanism for embedding information for user programs that handle modules.

appinfo has the source attribute.

source CDATA #IMPLIED

When the source attribute is specified, the value shall be a URI reference (see IETF RFC 2396).

The following content model describes the permissible content of appinfo elements:
(#PCDATA)

An appinfo element specifying the source attribute shall be an empty element. Non-empty appinfo elements shall not specify the source attribute.
7
Datatypes

7.1
General

Datatypes in this part of the Technical Report shall be either built-in datatypes of XML Schema Part 2 or datatypes specific to RELAX Core.

NOTE 12
At present, users are not allowed to define new datatypes.

7.2
Built-in datatypes of XML Schema Part 2

The built-in datatypes of XML Schema Part 2 are available. Implementation of the following datatypes are strongly recommended.
a) string

b) boolean

c) float

d) double

e) anyURI

f) normalizedString

g) token

h) language

i) NMTOKEN

j) NMTOKENS

k) Name

l) NCName

m) ID

n) IDREF

o) long

p) int

q) short

r) byte

s) unsingedLong

t) unsingedInt

u) unsingedShort, and

v) unsingedByte
The ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN, NMTOKENS datatypes can be referenced by the type attribute of attribute, but cannot be referenced by the type attribute of elementRule or element.

A tag element and those attPool elements referenced from this tag directly or indirectly shall not declare more than one attribute as ID.

If multiple tag elements sharing the same tag name declare ID attributes directly or indirectly, these attributes shall be declared by some attribute element of a single attPool element, which shall be referenced by each of these tag elements directly or indirectly. If multiple tag elements sharing the same tag name declare IDREF attributes directly or indirectly, these attributes shall be declared by some attribute element of a single attPool element, each of which shall be referenced by each of these tag elements directly or indirectly. If multiple tag elements sharing the same tag name declare IDREFS attributes directly or indirectly, these attributes shall be declared by attPool elements, each of which shall be referenced by each of these tag elements directly or indirectly.

In a document information item, more than one element information item shall not specify the same name as values of ID attributes. In other words, the value of an ID attribute shall uniquely identify an element information

item. The value of an IDREF attribute shall match the value of some ID attribute in the document information item. The value of an IDREFS attribute shall consist of names each of which shall match the value of some ID attribute in the document information item.

The value of an ENTITY attribute shall match the name of some entity information item in the document information item. The3 value of an ENTITIES attribute shall consist of names each of which shall match the name of some entity information item in the document information item.
The value of a NOTATION attribute shall match the name of some notation information item in the document information item.

7.3
Datatypes Specific to RELAX

7.3.1
none
This datatype represents an empty set of strings. No character strings belong to this datatype. This datatype has no applicable facets.

7.3.2
emptyString
This datatype represents a singleton set containing the empty string. This datatype has no applicable facets.

7.4
Facets

The facets of the built-in datatypes of XML Schema Part 2 are available. Implementation of the following facets are strongly recommended.

a) length

b) minLength

c) maxLength

d) enumeration

e) maxInclusive

f) maxExclusive

g) minInclusive, and

h) minExclusive
8
Reference model
8.1
General

This part of the Technical Report specifies the reference model in order to clarify the criteria for determining whether an island is compliant with a RELAX module and an optional element hedge model.

NOTE 13
This reference model does not constrain implementations.

8.2
Creation of element hedge models

In the absence of an element hedge model for the top-level elements of an island, an element hedge model shall be created from the label attribute of the export elements in the given module.

First, for each label specified by the label attribute of these export elements, a ref element that reference to this label shall be created. Next, an element hedge model shall be created by wrapping these ref elements with a choice element. The ref elements and choice shall not have the occurs attribute.

8.3
Expansion of modules

Each include element shall be expanded to the referenced module. When a referenced module further references to another module, include elements in the referenced module shall be expanded in advance.

8.4
Expansion of element
element elements in element hedge models shall be expanded to ref, elementRule and tag.
8.5
Expansion of modules
Each hedgeRef element shall be replaced by element hedge models of the hedgeRule elements referenced by the hedgeRef. Details are as below:

a) Locate all hedgeRule elements that describe the label referenced by this hedgeRef element.

b) Wrap the hedge models of these hedgeRule elements by a choice element.

c) Copy the occurs attribute of the hedgeRef element to this choice element.

d) Replace the hedgeRef element with this choice element.

If other hedgeRef elements appear in the choice element, they shall be recursively expanded.

8.6
Expansion of tag embedded in elementRule
Each tag element embedded in elementRule shall be moved so that it becomes a sibling element of this elementRule. A role which does not collide with other roles shall be created, and shall be specified as the value of the role attribute of the tag and that of the elementRule. If the tag does not have the name attribute, it shall have the value of the label attribute of the elementRule.

8.7
Interpretation

An interpretation of a hedge is a mapping from each element in this hedge to a role and a label.

A hedge is compliant if it has at least one sound interpretation. An interpretation is sound if the following conditions hold:

a)
Each element plays the associated role.

b)
Derivation at each element is correct.

c)
The sequence of labels associated with the top-level elements match the given element hedge model.

Consider an element e and its children e1, e2, …, en. Let t0 be the character sequence preceding e1 in e, let ti be the character sequence occurring between ei and ei+1 in e, and let tn be the character sequence following en in e. By definition, t0, e1, t1 , e2, t2, …, en, tn provides the content of e.

Let l be the label associated with e, and let l1, l2, …, ln be the labels associated with e1, e2, …, en, respectively. Derivation at e is correct if there exists some elementRule such that the value of its label attribute is l, the value of its role attribute is the role associated with e, and t0, l1, t1 , l2, t2, …, ln, tn matches its hedge model.

At user option, the RELAX Core processor shall output message, when some of the attributes of e is not directly or indirectly (via some attPool) declared by the tag element describing the role associated with e.

Labels l1 and l2 not described by hedgeRule are said to be contextually indistinguishable when the following conditions hold:

a) The hedge model of some elementRule p1 references to l1.

b) The hedge model of some elementRule p2 references to l2.

c) Either p1 and p2 are identical, or their role and label attributes specify the same role and label, respectively.

NOTE 14
Every label is contextually indistinguishable from itself, if it is described by elementRule and referenced by some hedge model.

If it is possible to construct an element that plays both r1 and r2, they are said to be coexistent.

NOTE 15
Every role is coexistent with itself.

If the role and label attributes of some elementRule specify role r and label l, respectively, r is said to lead to l,.

The RELAX Core processor should but need not continue normal processing, when a RELAX module does not satisfy the following uniqueness condition.

a) If labels l1 and l2 are contextually indistinguishable, roles r1 and r2 are coexistent, and r1 and r2 lead to l1 and l2, respectively, then l1 and l2 are identical and r1 and r2 are identical.

The RELAX Core processor may output message and stop normal processing, when it receives a RELAX module not satisfying this uniqueness condition. The RELAX Core processor should output warning message when the uniqueness condition does not hold.

9
Conformance
9.1
General

This part of the Technical Report defines conformance levels of RELAX modules and conformance levels of the RELAX Core processor.

9.2
Conformance levels of RELAX modules

This part of the technical report defines two conformance levels of RELAX modules: "classic" and "fully relaxed".

The conformance level "classic" shall have restrictions as below:

a) elementRule shall not have the label attribute.

b) more than one elementRule shall not specify the same role.

c) more than one hedgeRule shall not specify the same label.

d) tag shall not specify the role attribute.

e) more than one tag shall not specify the same tag name.

f) element shall not exist

g) tag shall not exist as a child element of elementRule .

h) The child element of mixed shall be either ref with the label attribute, hedgeRef, or choice. They shall specify "*" as the value of the occurs attribute. When choice is the child element, item I) shall apply. When hedgeRef is the child element, item J) shall apply.

i) Child elements of those choice elements shown in item H) shall be either ref with the label attribute or hedgeRef. These child elements shall not specify the occurs attribute. When hedgeRef is a child element, item J) shall apply.

j) hedgeRule referenced by those hedgeRef elements shown in items H) and I) shall have either ref with the label attribute, hedgeRef, or choice as a hedge model. They shall not specify the occurs attribute. When hedgeRef is the hedge model, this item shall apply recursively.

k) Datatypes shall be restricted to string, boolean, float, double, long, int, short, byte, ID, IDREF, ENTITY, NOTATION, IDREFS, ENTITIES, NMTOKEN, and NMTOKENS.

l) Facets shall be restricted to enumeration, maxInclusive, maxExclusive, minInclusive, and minExclusive.

The conformance level "fully relaxed" shall not have any of the above restrictions.

9.3
Conformance levels of the RELAX Core processor

This part of the Technical Report defines two conformance levels for the RELAX Core processor: "classic" and "fully relaxed".

The RELAX Core processor conforms to the conformance level "classic" if it can handle modules conforming to the conformance level "classic" correctly. Given a module containing features beyond the conformance level "classic", the RELAX Core processor may stop normal processing, and, at user option, provide appropriate message.

The RELAX Core processor conforms to the conformance level "fully relaxed" if it handles any RELAX module correctly.

When a RELAX module has syntactical errors (i.e., it is not a document information item or does not meet conditions specified in this part of the Technical Report), further processing shall not occur. At user option, the RELAX Core processor shall report such syntactical errors.

Annex A

DTD for RELAX Core
A.1
The kernel of RELAX Core
<?xml version="1.0" encoding="utf-8"?>

<!--

DTD for RELAX Core (Ver 1.0)

-->

<!ENTITY % p "">

<!ENTITY % annotation "%p;annotation">

<!ENTITY % restriction1 "not_supported">

<!ENTITY % attrDecls "not_supported">

<!ENTITY % datatype-definitions SYSTEM "datatypes.dtd">

%datatype-definitions;

<!--***-->

<!-- -->

<!-- The overall structure of RELAX modules. -->

<!-- -->

<!--***-->

<!ELEMENT interface ((%annotation;)?, (export | div)*)>

<!ENTITY % clause "tag|attPool">

<!ENTITY % rule "elementRule|hedgeRule">

<!ELEMENT module ((%annotation;)?, interface?,

 (%clause; | %rule; | div | include)*)>

<!ATTLIST module

 moduleVersion CDATA #IMPLIED

 relaxCoreVersion CDATA #REQUIRED

 targetNamespace CDATA #IMPLIED

 xmlns CDATA #FIXED "http://www.xml.gr.jp/xmlns/relaxCore"

>

<!--***-->

<!-- -->

<!-- div -->

<!-- -->

<!--***-->

<!ELEMENT div ((%annotation;)?,

 div*,

 (((%rule; |%clause; | include),

 (%rule; |%clause; | include | div)*)

 |

 (export, (export | div)*))?)>

<!--

(%rule; |%clause; | include | div)* is used when a div appears in a

module body, while (export | div)* is used when it appears in an

interface element.

 -->

<!--***-->

<!-- -->

<!-- Interface -->

<!-- -->

<!--***-->

<!ELEMENT export ((%annotation;)?)>

<!ATTLIST export label NMTOKEN #REQUIRED>

<!--***-->

<!-- -->

<!-- Include -->

<!-- -->

<!--***-->

<!ELEMENT include ((%annotation;)?)>

<!ATTLIST include moduleLocation CDATA #REQUIRED>

<!--***-->

<!-- -->

<!-- Hedge Models -->

<!-- -->

<!--***-->

<!-- The parameter entity "particle" is used to describe element hedge

models. It is also used as subordinates of <sequence>, <choice>,

and <mixed>. -->

<!ENTITY % particle "ref | hedgeRef | choice | sequence | element

 | none | empty">

<!ENTITY % hedgeModel

"(%particle; | mixed)">

<!-- The parameter entity "repeatable" is used to specify the "occurs"

 attribute, which is shared by several elements. Permissible values

 are either "?", "+", or "*". -->

<!ENTITY % repeatable

 "occurs CDATA #IMPLIED">

<!ELEMENT hedgeRef EMPTY >

<!ATTLIST hedgeRef

 label NMTOKEN #REQUIRED

 %repeatable;

>

<!ELEMENT ref EMPTY >

<!ATTLIST ref

 label NMTOKEN #IMPLIED

 role NMTOKEN #IMPLIED

 %repeatable;

>

<!ELEMENT empty EMPTY >

<!ELEMENT choice (%particle;)* >

<!ATTLIST choice

 %repeatable;

>

<!ELEMENT sequence (%particle;)* >

<!ATTLIST sequence

 %repeatable;

>

<!ELEMENT none EMPTY>

<!ELEMENT mixed (%particle;) >

<!ELEMENT element ((%annotation;)?, (%facet;)*)>

<!ATTLIST element

 name NMTOKEN #REQUIRED

 type NMTOKEN #REQUIRED

 %repeatable;

>

<!--***-->

<!-- -->

<!-- Rules -->

<!-- -->

<!--***-->

<!ELEMENT elementRule ((%annotation;)?, tag?,

 ((%hedgeModel;) | (%facet;)*))>

<!ATTLIST elementRule

role NMTOKEN #IMPLIED

label NMTOKEN #IMPLIED

 type NMTOKEN #IMPLIED

>

<!ELEMENT hedgeRule ((%annotation;)?, (%particle;)) >

<!ATTLIST hedgeRule

 label NMTOKEN #REQUIRED

>

<!--***-->

<!-- -->

<!-- Clauses -->

<!-- -->

<!--***-->

<!ENTITY % clauseBody "(%annotation;)?, (ref | attribute)*" >

<!ELEMENT tag (%clauseBody;)>

<!ATTLIST tag

 role NMTOKEN #IMPLIED

 name NMTOKEN #IMPLIED

>

<!ELEMENT attPool (%clauseBody;)>

<!ATTLIST attPool

 role NMTOKEN #REQUIRED

>

<!ELEMENT attribute ((%annotation;)?, (%facet;)*) >

<!ATTLIST attribute

 name NMTOKEN #REQUIRED

 required (true) #IMPLIED

 type NMTOKEN #IMPLIED

>

<!--***-->

<!-- -->

<!-- Annotations -->

<!-- -->

<!--***-->

<!ELEMENT annotation (appinfo | documentation)*>

<!ELEMENT appinfo ANY> <!-- too restrictive -->

<!ATTLIST appinfo

 source CDATA #IMPLIED>

<!ELEMENT documentation ANY> <!-- too restrictive -->

<!ATTLIST documentation

 source CDATA #IMPLIED>

A.2
Datatypes

RELAX Core uses “datatypes.dtd” in Appendix B of XML Schema part 2, which defines the syntax for referencing to datatypes and facets. The URL of this DTD is "http://www.w3.org/2001/datatypes.dtd".

Annex B
SEQ aaa \h

SEQ table \r0\h

SEQ figure \r0\h
RELAX Module for RELAX Core
B.1
The kernel of RELAX Core
<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE module SYSTEM "relaxCore.dtd">

<!--

Module for RELAX Core (Ver 1.0)

-->

<module

 moduleVersion="1.0"

 relaxCoreVersion="1.0"

 targetNamespace="http://www.xml.gr.jp/xmlns/
relaxCore"

 xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

 <interface>

 <export label="module"/>

 </interface>

 <include moduleLocation="datatypes.rxm"/>

 <div>

 <annotation>

 <documentation>The overall structure of RELAX modules</documentation>

 </annotation>

 <elementRule role="module">

 <sequence>

 <ref label="annotation" occurs="?"/>

 <ref label="interface" occurs="?"/>

 <choice occurs="*">

 <hedgeRef label="clause"/> <!-- forward references are fine -->

 <hedgeRef label="rule"/> <!-- forward references are fine -->

 <ref label="divInModule"/>

 <ref label="include"/>

 </choice>

 </sequence>

 </elementRule>

 <tag name="module">

 <attribute name="moduleVersion" type="string"/>

 <attribute name="relaxCoreVersion" type="string" required="true">

 <enumeration value="1.0"/>

 </attribute>

 <attribute name="targetNamespace" type="anyURI"/>

 </tag>

 <elementRule role="interface">

 <sequence>

 <ref label="annotation" occurs="?"/>

 <choice occurs="*">

 <ref label="export"/>

 <ref label="divInInterface"/>

 </choice>

 </sequence>

 </elementRule>

 <tag name="interface"/>

 <hedgeRule label="clause">

 <choice>

 <ref label="tag"/>

 <ref label="attPool"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="rule">

 <choice>

 <ref label="elementRule"/>

 <ref label="hedgeRule"/>

 </choice>

 </hedgeRule>

 <elementRule label="divInModule">

 <annotation>

 <documentation>div elements in modules</documentation>

 </annotation>

 <tag name="div"/>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <choice occurs="*">

 <hedgeRef label="rule"/>

 <hedgeRef label="clause"/>

 <ref label="divInModule"/>

 <ref label="include"/>

 </choice>

 </sequence>

 </elementRule>

 </div>

 <div>

 <annotation>

 <documentation>Interface</documentation>

 </annotation>

 <elementRule role="export">

 <ref label="annotation" occurs="?"/>

 </elementRule>

 <tag name="export">

 <attribute name="label" required="true" type="NCName"/>

 </tag>

 <elementRule label="divInInterface">

 <annotation>

 <documentation>div elements in interfaces</documentation>

 </annotation>

 <tag name="div"/>

 <sequence>

 <ref label="annotation" occurs="?"/>

<choice occurs="*">

 <ref label="export"/>

 <ref label="divInInterface"/>

 </choice>

 </sequence>

 </elementRule>

 </div>

 <div>

 <annotation>

 <documentation>Include</documentation>

 </annotation>

 <elementRule role="include">

 <ref label="annotation" occurs="?"/>

 </elementRule>

 <tag name="include">

 <attribute name="moduleLocation" type="anyURI" required="true"/>

 </tag>

 </div>

 <div>

 <annotation>

 <documentation>Hedge Models</documentation>

 </annotation>

 <hedgeRule label="particle">

 <annotation>

 <documentation>This is used to describe element hedge models.

It is also used as subordinates of sequence,

choice, and mixed.

</documentation>

 </annotation>

 <choice>

 <ref label="refWithLabel"/>

 <ref label="hedgeRef"/>

 <ref label="choice"/>

 <ref label="sequence"/>

 <ref label="element"/>

 <ref label="none"/>

 <ref label="empty"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="hedgeModel">

 <choice>

 <hedgeRef label="particle"/>

 <ref label="mixed"/>

 </choice>

 </hedgeRule>

 <attPool role="repeatable">

 <annotation>

 <documentation>This is used to specify the "occurs" attribute,

which is shared by several elements.</documentation>

 </annotation>

 <attribute name="occurs" type="string">

 <enumeration value="?"/>

 <enumeration value="*"/>

 <enumeration value="+"/>

 </attribute>

 </attPool>

 <elementRule role="hedgeRef" type="emptyString"/>

 <tag name="hedgeRef">

 <ref role="repeatable"/>

 <attribute name="label" required="true" type="NCName"/>

 </tag>

 <elementRule label="refWithLabel" type="emptyString">

 <annotation>

 <documentation>ref elements with the label attribute</documentation>

 </annotation>

 <tag name="ref">

 <ref role="repeatable"/>

 <attribute name="label" required="true" type="NCName"/>

 <attribute name="role" type="none"/>

 </tag>

 </elementRule>

 <elementRule role="empty" type="emptyString"/>

 <tag name="empty"/>

 <elementRule role="choice">

 <hedgeRef label="particle" occurs="*"/>

 </elementRule>

 <tag name="choice">

 <ref role="repeatable"/>

 </tag>

 <elementRule role="sequence">

 <hedgeRef label="particle" occurs="*"/>

 </elementRule>

 <tag name="sequence">

 <ref role="repeatable"/>

 </tag>

 <elementRule role="none" type="emptyString"/>

 <tag name="none"/>

 <elementRule role="mixed">

 <hedgeRef label="particle"/>

 </elementRule>

 <tag name="mixed"/>

 <elementRule label="element">

 <annotation>

 <documentation>with the type attribute</documentation>

 </annotation>

 <tag name="element">

 <ref role="repeatable"/>

 <attribute name="name" required="true" type="NCName"/>

 <attribute name="type" required="true" type="NCName"/>

 </tag>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <hedgeRef label="facet" occurs="*"/>

 </sequence>

 </elementRule>

 </div>

 <div>

 <annotation>

 <documentation>Rules</documentation>

 </annotation>

 <elementRule label="elementRule">

 <annotation>

 <documentation>without an embedded tag element</documentation>

 <documentation>with the type attribute</documentation>

 </annotation>

 <tag name="elementRule">

 <attribute name="role" required="true" type="NCName"/>

 <attribute name="label" type="NCName"/>

 <attribute name="type" type="NCName" required="true"/>

 </tag>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <hedgeRef label="facet" occurs="*"/>

 </sequence>

 </elementRule>

 <elementRule label="elementRule">

 <annotation>

 <documentation>with an embedded tag element</documentation>

 <documentation>with the type attribute</documentation>

 </annotation>

 <tag name="elementRule">

 <attribute name="role" type="none"/>

 <attribute name="label" required="true" type="NCName"/>

 <attribute name="type" type="NCName" required="true"/>

 </tag>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <ref label="tagInRule"/>

 <hedgeRef label="facet" occurs="*"/>

 </sequence>

 </elementRule>

 <elementRule label="elementRule">

 <annotation>

 <documentation>without an embedded tag element</documentation>

 <documentation>with a hedge model</documentation>

 </annotation>

 <tag name="elementRule">

 <attribute name="role" required="true" type="NCName"/>

 <attribute name="label" type="NCName"/>

 <attribute name="type" type="none"/>

 </tag>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <hedgeRef label="hedgeModel"/>

 </sequence>

 </elementRule>

 <elementRule label="elementRule">

 <annotation>

 <documentation>with an embedded tag element</documentation>

 <documentation>with a hedge model</documentation>

 </annotation>

 <tag name="elementRule">

 <attribute name="role" type="none"/>

 <attribute name="label" required="true" type="NCName"/>

 <attribute name="type" type="none"/>

 </tag>

 <sequence>

 <ref label="annotation" occurs="?"/>

 <ref label="tagInRule"/>

 <hedgeRef label="hedgeModel"/>

 </sequence>

 </elementRule>

 <elementRule role="hedgeRule">

 <sequence>

 <ref label="annotation" occurs="?"/>

 <hedgeRef label="hedgeModel"/>

 </sequence>

 </elementRule>

 <tag name="hedgeRule">

 <attribute name="label" required="true" type="NCName"/>

 </tag>

 </div>

 <div>

 <annotation>

 <documentation>Clauses</documentation>

 </annotation>

 <hedgeRule label="clauseBody">

 <sequence>

 <ref label="annotation" occurs="?"/>

 <choice occurs="*">

 <ref label="refWithRole"/>

 <ref label="attribute"/>

 </choice>
 </sequence>

 </hedgeRule>

 <elementRule role="tag">

 <hedgeRef label="clauseBody"/>

 </elementRule>

 <tag name="tag">

 <attribute name="role" type="NCName"/>

 <attribute name="name" required="true" type="NCName"/>

 </tag>

 <elementRule label="tagInRule">

 <annotation>

 <documentation>tag elements embedded in
elementRules</documentation>

 </annotation>

 <tag name="tag">

 <attribute name="role" type="none"/>

 <attribute name="name" type="NCName"/>

 </tag>

 <hedgeRef label="clauseBody"/>

 </elementRule>

 <elementRule role="attPool">

 <hedgeRef label="clauseBody"/>

 </elementRule>

 <tag name="attPool">

 <attribute name="role" required="true" type="NCName"/>

 </tag>

 <elementRule label="refWithRole" type="emptyString">

 <annotation>

 <documentation>ref elements with the role attribute</documentation>

 </annotation>

 <tag name="ref">

 <attribute name="role" required="true" type="NCName"/>

 <attribute name="label" type="none"/>

 </tag>

 </elementRule>

 <elementRule role="attribute">

 <sequence>

 <ref label="annotation" occurs="?"/>

 <hedgeRef label="facet" occurs="*"/>

 </sequence>

 </elementRule>

 <tag name="attribute">

 <attribute name="name" required="true" type="NCName"/>

 <attribute name="type" type="NCName"/>

 <attribute name="required" type="NMTOKEN">

 <enumeration value="true"/>

 </attribute>

 </tag>

 </div>

<div>

 <annotation>

 <documentation>Annotations</documentation>

 </annotation>

 <elementRule role="annotation">

 <choice occurs="*">

 <ref label="appinfo"/>

 <ref label="documentation"/>

 </choice>

 </elementRule>

 <tag name="annotation"/>

 <elementRule role="appinfo" type="string"/>

 <tag name="appinfo">

 <attribute name="source" type="string"/>

 </tag>

 <elementRule role="documentation" type="string"/>

 <tag name="documentation">

 <attribute name="source" type="string"/>

 </tag>

 </div>

</module>
B.2
Datatypes

This module is informational. The authoritative description is the schema for datatype definitions in Appendix A of XML Schema part 2.

<?xml version="1.0" encoding="utf-8"?>

<!--

Module for XML Schemas: Part 2: Datatypes

-->

<!DOCTYPE module SYSTEM "relaxCore.dtd">

<module

 moduleVersion="1.0"

 relaxCoreVersion="1.0"

 targetNamespace="http://www.xml.gr.jp/xmlns/
relaxCore"

 xmlns="http://www.xml.gr.jp/xmlns/relaxCore">

 <hedgeRule label="minBound">

 <choice>

 <ref label="minInclusive"/>

 <ref label="minExclusive"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="maxBound">

 <choice>

 <ref label="maxInclusive"/>

 <ref label="maxExclusive"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="bounds">

 <choice>

 <hedgeRef label="minBound"/>

 <hedgeRef label="maxBound"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="numeric">

 <choice>

 <ref label="totalDigits"/>

 <ref label="fractionDigits"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="ordered">

 <choice>

 <hedgeRef label="bounds"/>

 <hedgeRef label="numeric"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="unordered">

 <choice>

 <ref label="pattern"/>

 <ref label="enumeration"/>

 <ref label="whiteSpace"/>

 <ref label="length"/>

 <ref label="maxLength"/>

 <ref label="minLength"/>

 </choice>

 </hedgeRule>

 <hedgeRule label="facet">

 <choice>

 <hedgeRef label="ordered"/>

 <hedgeRef label="unordered"/>

 </choice>

 </hedgeRule>

 <attPool role="facetAttr">

 <attribute name="value" required="true"/>

 </attPool>

 <attPool role="fixedAttr">

 <attribute name="fixed" type="boolean"/>

 </attPool>

 <hedgeRule label="facetModel">

 <ref label="annotation" occurs="?"/>

 </hedgeRule>

 <elementRule role="maxExclusive">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="maxExclusive">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>
 </tag>

 <elementRule role="minExclusive">

 <hedgeRef label="facetModel"/>
 </elementRule>

 <tag name="minExclusive">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>
 </tag>

 <elementRule role="maxInclusive">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="maxInclusive">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="minInclusive">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="minInclusive">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="totalDigits">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="totalDigits">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="fractionDigits">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="fractionDigits">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="length">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="length">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="minLength">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="minLength">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="maxLength">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="maxLength">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="enumeration">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="enumeration">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="whiteSpace">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="whiteSpace">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

 <elementRule role="pattern">

 <hedgeRef label="facetModel"/>

 </elementRule>

 <tag name="pattern">

 <ref role="facetAttr"/>
 <ref role="fixedAttr"/>

 </tag>

</module>

Bibliography

[1]
W3C (World Wide Web Consortium), XML Schema Part 0: Premier, W3C Recommendation, http://www.w3.org/TR/xmlschema-0, 2001
[2]
W3C (World Wide Web Consortium), Document Object Model (DOM) Level 2 Core Specification Version 1.0, W3C Recommendation, http://www.w3.org/TR/DOM-Level-2-Core/, 2000

[3] MURATA Makoto, HOW TO RELAX, http://www.xml.gr.jp/relax/, 2000

_1058775218.unknown

_1031517902.unknown

