
C2y, proposal N3546 - Phrase bool as bool 1

Author: Javier A. Múgica

Purpose: Clarification

Date: 2025 - may - 8

This paper proposes a rewording of the description of the value of for certain operands,

replacing comparison to zero by the more natural conversion to bool.

Analysis

Take for example the specification of the logical OR operator:

The || operator shall yield 1 if either of its operands compare unequal to 0; otherwise,
it yields 0. The result has type int.

This text was written when only numbers (integers and floating-point) and pointers could

be its operands.What it meant was that “is not zero (for arithmetic types) or not null (for point-

er types)”. Instead of plainly saying this, it takes the roundabout of expressing it via compar-

ison against zero. Thereby the description is shorter, and back then comparison of pointers

against a literal zero was more common than is today.

Years have passed; comparison of a pointer against zero has become questioned and,

although that possibility may never be removed, phrasing nowadays “the value is not null” as

“compares unequal to 0” does not seem a good choice.

More important, the types bool and nullptr t have been added, making the description via

comparison against zero more complicated than it was when it was originally written. (Thrice

as complicated, wemay say, since besides numbers, the other types do not compare naturally

to a number, zero inlcluded).

Curiously, the description of the assert macro uses the word “false”, but insists in compar-

ing to zero: “[...] is false (that is, compares equal to 0)”. This clearly predates the introduction
of the constant false.

Wemay compare those wordings with the wording for conversion to bool, which is newer:

When any scalar value is converted to bool, the result is false if the value is a zero (for
arithmetic types), null (for pointer types), or the scalar has type nullptr_t; otherwise,
the result is true.

This is the natural way to express it. Further, comparison of nullptr against zero hangs
on a very slender thread: In contrast to pointers, that can be naturally represented as an inte-

ger, and compared to any integer if one is cast to the type of the other, as in p == (void*)1
or (uintptr_t)p == 1, whereby the lack of need of a cast for the constant 0 is just a shortcut,
nullptr cannot. It can be compared against zero not because nullptr can be transformed

to an integer or vice-versa, but because comparison to a null pointer is allowed for it.

Instead of repeating the words used for describing conversion to bool, we can take advan-

tage of their existence there, to phrase the semantics of those operators based on it, on the

conversion to bool of their operands. This is how these operators are universally described:

“the result is true if any of the operands is true”, for example, for the OR operator.

We have also taken advantage of the change in the wording to suppress the “shall be” in

the semantics of the OR and AND operators, where it is used with the meaning “is”.

C2y, proposal N3546 - Phrase bool as bool 2

We have not modified the wording for static assert, where it should plainly say “with a

nonzero value” (the expression has integer type), because there is already a proposal fixing

that (static assert without UB).

NaN

For implementations that conform to annex F, or at least carry out comparisons as speci-

fied by F.9.4, the following holds: “The expression x = x is false if x is a NaN”. Therefore, a NaN

compares unequal to zero (previous wording) and gets converted to true (new wording).

For any implementations whatsoever, the standard already imposes, with respect to the

== and != operators, that “For any pair of operands, exactly one of the relations is true”. Al-
thought it does not mention which one of the two is true when one of the operands is a NaN,

given that a NaN is a value different from zero, we understand the wording as implying that

NaN == 0 is false, in any implementation. (Just as it is implied that 1 != 0 without any need to

an explicit mention that for finite values the relation == is true if the values are the same).

For conversion to bool it is specified that any value other than zero converts to true.

The new wording imposes the obvious choice where previously a forced interpretation of the

standard could imply that the result was unspecified.

Wording

Unary arithmetic operators (6.5.4.4):

5 The result of the logical negation ! operator is 0 if its operand becomes true when converted
to bool; otherwise it is 1. The result has type int. The expression !E is equivalent to (0==E).

The last sentence may be removed. It is still true, but may not be pertinent any more. This

would be a further change, that we leave up to the committee.

Logical AND operator (6.5.14):

Semantics

3 The result of the logical AND expression is 1 if both of its operands are true when converted
to bool; otherwise, it is 0. The result has type int.

4 Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation. If the
first operand is false when converted to bool, the second operand is not evaluated. If the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands.

Logical OR operator (6.5.15):

Semantics

3 The result of the logical OR expression is 0 if both of its operands are false when converted
to bool; otherwise, it is 1. The result has type int.

4 Unlike the bitwise binary | operator, the || operator guarantees left-to-right evaluation. If
the first operand is true when converted to bool, the second operand is not evaluated. If the
second operand is evaluated, there is a sequence point between the evaluations of the first and
second operands.

C2y, proposal N3546 - Phrase bool as bool 3

Conditional operator (6.5.16):

Semantics

5 The first operand is evaluated and its value converted to bool. There is a sequence point after
this conversion. If the boolean value is true, the second operand is evaluated; otherwise, the
third operand is evaluated. The result is the value of the second or third operand (whichever
is evaluated), converted to the type described subsequently in this subclause.

The if statement (6.8.5.2):

Semantics

2 The controlling expression is evaluated and converted to bool. In both forms, the first sec-
ondary block is executed if the result of the conversion is true. In the else form, the second
secondary block is executed if the result is false. If the first secondary block is reached via a
label, the second secondary block is not executed.

Example 2 for the if statement is

EXAMPLE 2 The controlling expression of any if statement is always implicitly compared to 0 by the
statement itself:

double x = DBL_SNAN;
if (x) {

// fetestexcept (FE_INVALID) is nonzero because of the comparison
}

It can be adapted to the new wording. But we propose its removal. Now the semantics says

that the controlling expression is converted to bool, whereas the previous wording said “if the

controlling expression compares unequal to 0”, thereby making a clarification appropriate: “is

always implicitly compared to 0”.

Iteration statements (6.8.6):

Semantics

3 An iteration statement causes a secondary block called the loop body to be executed repeatedly
until the value of the controlling expression is false when converted to bool. The repetition
occurs regardless of whether the loop body is entered from the iteration statement or by a
jump.

The for statement (6.8.6.4):

2 Both clause-1 and expression-3 can be omitted An omitted expression-2 is replaced by true.

Also, in the text of the footnote immediately preceeding this paragraph, replace “compares
equal to 0” by “is false” (no fixed-wdith font).

The assert macro (7.2.2.1):

Description

2 The assertmacro puts diagnostic tests into programs; it expands to a void expression. When
it is executed, if the value of expression (which shall have a scalar type) is false (when
converted to bool), [...]

