
 1

WG14 N3101

Title: Issues with CFP response to NB comments
Author, affiliation: C FP group
Date: 2023-01-31
Reference: N3054, N3067, N3082

This note follows up on requests from WG14 regarding CFP response (N3082) to NB comments USA42-169,
GB-286 and GB-287 (N3067).

USA42-169

The comment in N3067 is “7.12.11.4 (nexttoward): Should a ‘Returns’ paragraph be added?” and the proposed
solution is “If added, it should be similar to the ‘nextafter’ one.” The CFP response in N3082 is “Add the Returns
paragraph as suggested. Similar 7.24.1.3 has a Returns section.” Since 7.24.1.3 doesn’t seem similar, WG14
requested clarification.

The only purpose of the reference to 7.24.1.3 was to show that in similar cases–where one function is described
as equivalent to another function–a Returns section is provided for both functions. We support US42-169 and
adding a Returns section (similar to nextafter) in 7.12.11.4 as proposed in the comment, specifically:

Returns
3 The nexttoward functions return the next representable value in the specified format after x in the
direction of y.

GB-286

WG14 requested CFP provide specification for wcstofN and wcstodN functions. To add the specification,
make the changes highlighted in yellow below.

H.12.2 String to floating

1 This subclause expands 7.24.1.5, 7.31.4.1.2, 7.24.1.6, and 7.31.4.1.3 to also include functions for the
interchange and extended floating types. It adds to the synopsis in 7.24.1.5 the prototypes

_FloatN strtofN(const char * restrict nptr, char ** restrict endptr);
_FloatNx strtofNx(const char * restrict nptr, char ** restrict endptr);

It adds to the synopsis in 7.31.4.1.2 the prototypes

_FloatN wcstofN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_FloatNx wcstofNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

It encompasses the prototypes in 7.24.1.6 by replacing them with

_DecimalN strtodN(const char * restrict nptr, char ** restrict endptr);
_DecimalNx strtodNx(const char * restrict nptr,

char ** restrict endptr);

 2

It encompasses the prototypes in 7.31.4.1.3 by replacing them with

_DecimalN wcstodN(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

_DecimalNx wcstodNx(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

2 The descriptions and returns for the added functions are analogous to the ones in 7.24.1.5, 7.31.4.1.2,
7.24.1.6 and 7.31.4.1.3.

Paragraph 3 will need to be changed too. See further below.

Considering the principle behind GB-286, specification for wide character versions of the string to encoding
functions should also be added. To add it, make the changes highlighted in yellow below.

H.12.4 String to encoding

1 An implementation shall declare the strtoencfN and wcstoencfN functions for each N equal to the
width of a supported IEC 60559 arithmetic or non-arithmetic binary interchange format. An implementation
shall declare the strtoencdecdN, strtoencbindN, wcstoencdecdN and wcstoencbindN functions
for each N equal to the width of a supported IEC 60559 arithmetic or non-arithmetic decimal interchange
format.

H.12.4.1 The strtoencfN functions
Synopsis
1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

void strtoencfN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Description
2 The strtoencfN functions are similar to the strtofN functions, except they store an IEC 60559
encoding of the result as an N/8 element array in the object pointed to by encptr. The order of bytes in the
array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12.4.2 The wcstoencfN functions
Synopsis
1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <wchar.h>

void wcstoencfN(unsigned wchar_t encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstoencfN functions are similar to the wcstofN functions, except they store an IEC 60559
encoding of the result as an N/8 element array in the object pointed to by encptr. The order of bytes in the
array follows the endianness specified with __STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

 3

H.12.4.3 The strtoencdecdN and strtoencbindN functions

Synopsis
1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <stdlib.h>

void strtoencdecdN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

void strtoencbindN(unsigned char encptr[restrict static N/8],
const char * restrict nptr, char ** restrict endptr);

Description
2 The strtoencdecdN and strtoencbindN functions are similar to the strtodN functions, except they
store an IEC 60559 encoding of the result as an N/8 element array in the object pointed to by encptr. The
strtoencdecdN functions produce an encoding in the encoding scheme based on decimal encoding of the
significand. The strtoencbindN functions produce an encoding in the encoding scheme based on binary
encoding of the significand. The order of bytes in the array follows the endianness specified with
__STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

H.12.4.4 The wcstoencdecdN and wcstoencbindN functions

Synopsis
1 #define __STDC_WANT_IEC_60559_TYPES_EXT__

#include <wchar.h>

void wcstoencdecdN(unsigned wchar_t encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

void wcstoencbindN(unsigned wchar_t encptr[restrict static N/8],
const wchar_t * restrict nptr, wchar_t ** restrict endptr);

Description
2 The wcstoencdecdN and wcstoencbindN functions are similar to the wcstodN functions, except they
store an IEC 60559 encoding of the result as an N/8 element array in the object pointed to by encptr. The
wcstoencdecdN functions produce an encoding in the encoding scheme based on decimal encoding of the
significand. The wcstoencbindN functions produce an encoding in the encoding scheme based on binary

encoding of the significand. The order of bytes in the array follows the endianness specified with
__STDC_ENDIAN_NATIVE__ (7.18.2).

Returns
3 These functions return no value.

Changes to H.12.2 #3 depend on the resolution of GB-287. The following change assumes support for
hexadecimal input is not moved to the main body of the standard. Changes for moving hexadecimal input to the
main body of the standard allow removing #3 entirely.

3 For implementations that support both binary and decimal floating types and a (binary or decimal) non-
arithmetic interchange format, the strtodN, strtodNx, wcstodN and wcstodNx functions (and hence
the strtoencdecdN, strtoencbindN, wcstoencdecdN and wcstoencbindN functions in H.12.4.3

and H.12.4.4) shall accept subject sequences that have the form of hexadecimal floating numbers (excluding
any digit separators (6.4.4.1)) and otherwise meet the requirements of subject sequences (7.24.1.6). Then the
decimal results shall be correctly rounded if the subject sequence has at most M significant hexadecimal
digits, where M ≥ ⌈(P − 1)/4⌉ + 1 is implementation-defined, and P is the maximum precision of the supported
binary floating types and binary non-arithmetic formats. If all subject sequences of hexadecimal form are

 4

correctly rounded, M may be regarded as infinite. If the subject sequence has more than M significant
hexadecimal digits, the implementation may first round to M significant hexadecimal digits according to the
applicable rounding direction mode, signaling exceptions as though converting from a wider format, then
correctly round the result of the shortened hexadecimal input to the result type.

GB-287

WG14 requested CFP provide specification to allow hexadecimal input into strtod* in the main body of the

standard. To add the specification, make the changes highlighted in yellow below. Note that with this change the
strtodN functions and the strtof, strtod, and strtold functions accept the same input.

There was considerable WG14 and CFP email discussion about whether strtodN needs to accept hexadecimal
input at all. It was noted that IEC 60559 does not require conversions of hexadecimal strings to decimal formats.
See [Cfp-interest 2662] Re: GB-287 . However, IEC 60559 does require correctly rounded conversions between all
supported formats (arithmetic and non-arithmetic). We haven’t found any other as feasible way of converting
from non-arithmetic binary formats to decimal formats without the hexadecimal support in strtodN. See H.4.3
and the example in H.12.2. Difficulties with other approaches are explained in [Cfp-interest 2657] Re: GB-287 .

7.24.1.6 The strtodN functions

Synopsis
1 #include <stdlib.h>

#ifdef __STDC_IEC_60559_DFP__

_Decimal32 strtod32(const char * restrict nptr,

char ** restrict endptr);

_Decimal64 strtod64(const char * restrict nptr,

char ** restrict endptr);

_Decimal128 strtod128(const char * restrict nptr,

char ** restrict endptr);

#endif

Description
2 The strtodN functions convert the initial portion of the string pointed to by nptr to decimal floating type
representation. First, they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters; a subject sequence resembling a floating constant or representing an infinity or NaN;
and a final string of one or more unrecognized characters, including the terminating null character of the
input string. Then, they attempt to convert the subject sequence to a floating-point number, and return the
result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point character, then an
optional exponent part as defined in 6.4.4.2, excluding any digit separators (6.4.4.1)

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a decimal-point
character, then an optional binary exponent part as defined in 6.4.4.2, excluding any digit separators
(6.4.4.1)

— INF or INFINITY, ignoring case

http://mailman.oakapple.net/pipermail/cfp-interest/2023-January/002676.html
http://mailman.oakapple.net/pipermail/cfp-interest/2023-January/002671.html

 5

— NAN or NAN(d-char-sequenceopt), ignoring case in the NAN part, where:
d-char-sequence:

digit
nondigit
d-char-sequence digit
d-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject sequence contains no characters if the
input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) is interpreted as a floating
constant according to the rules of 6.4.4.2, including correct rounding and determination of the coefficient c
and the quantum exponent q, with the following exceptions:
— It is not a hexadecimal floating number.

— The decimal-point character is used in place of a period.

— If neither an exponent part nor a decimal-point character appears in a decimal floating-point number, an
exponent part of the appropriate type with value zero is assumed to follow the last digit in the string.

except that the decimal-point character is used in place of a period, and that if neither an exponent part nor a
decimal-point character appears in a decimal floating-point number, or if a binary exponent part does not
appear in a hexadecimal floating-point number, an exponent part of the appropriate type with value zero is
assumed to follow the last digit in the string. If the subject sequence begins with a minus sign, the sequence is
interpreted as negated before rounding and the sign s is set to −1, else s is set to 1.

5 If the subject sequence has the expected form for a decimal floating-point number, the value resulting from
the conversion is correctly rounded and the coefficient c and the quantum exponent q are determined by the
rules in 6.4.4.2 for a decimal floating constant of decimal type.

6 If the subject sequence has the expected form for a hexadecimal floating-point number, the value resulting
from the conversion is correctly rounded provided the subject sequence has at most M significant
hexadecimal digits, where M ≥ ⌈(P − 1)/4⌉ + 1 is implementation-defined, and P is the maximum precision of
the supported radix-2 floating types and binary non-arithmetic interchange formats*). If all subject sequences
of hexadecimal form are correctly rounded, M may be regarded as infinite. If the subject sequence has more
than M significant hexadecimal digits, the implementation may first round to M significant hexadecimal digits
according to the applicable rounding direction mode, signaling exceptions as though converting from a wider
format, then correctly round the result of the shortened hexadecimal input to the result type. The preferred
quantum exponent for the result is 0 if the hexadecimal number is exactly represented in the decimal type;
the preferred quantum exponent for the result is the least possible if the hexadecimal number is not exactly
represented in the decimal type.

*) Non-arithmetic interchange formats are an optional feature in Annex H.

7 If the subject sequence begins with a minus sign, the sequence is interpreted as negated before rounding
and the sign s is set to −1, else s is set to 1. A character sequence INF or INFINITY is …
…

Returns
10 The strtodN functions return the correctly rounded converted value, if any. …

 6

11 EXAMPLE
…

"0x1.8p+4" (+1, 0, 0), and a pointer to "x1.8p+4" is stored in the object pointed to by endptr, provided

endptr is not a null pointer

"0x1.8p+4" (+1, 24, 0)

Moving hexadecimal input into the main body of the standard allows removing H.12.2 #3:

3 For implementations that support both binary and decimal floating types and a (binary or decimal) non-
arithmetic interchange format, the strtodN and strtodNx functions (and hence the strtoencdecdN and
strtoencbindN functions in H.12.4.2) shall accept subject sequences that have the form of hexadecimal
floating numbers (excluding any digit separators (6.4.4.1)) and otherwise meet the requirements of subject
sequences (7.24.1.6). Then the decimal results shall be correctly rounded if the subject sequence has at most
M significant hexadecimal digits, where M ≥ ⌈(P − 1)/4⌉ + 1 is implementation-defined, and P is the maximum
precision of the supported binary floating types and binary non-arithmetic formats. If all subject sequences of
hexadecimal form are correctly rounded, M may be regarded as infinite. If the subject sequence has more than
M significant hexadecimal digits, the implementation may first round to M significant hexadecimal digits
according to the applicable rounding direction mode, signaling exceptions as though converting from a wider
format, then correctly round the result of the shortened hexadecimal input to the result type.

