
P3676R0: Enhanced inline Keyword with
Configurable Inlining Levels

Author: Stephen Berry, Khalil Estell
Date: 2025-4-17
Audience: C++ Standards Committee

Introduction
The C++ language provides the inline keyword as a hint to the compiler to inline a function, but it does not
guarantee that the function will be inlined. Modern performance-critical applications and libraries often need
more explicit control over inlining behavior. Currently, developers must rely on compiler-specific attributes or
pragmas to enforce inlining (__forceinline , __attribute__((always_inline)) , [[clang::always_inline]]
etc.), which harms portability and leads to conditional compilation based on the target compiler. Compilers also
have compiler-specific attributes for avoiding inlining code (__declspec(noinline) ,
__attribute__((noinline))), and this proposal would standardize the no-inline syntax to inline(0) or
inline(std::noinline) .

This proposal aims to enhance the inline keyword to accept a parameter that communicates the
programmer’s desired inlining behavior:

inline(0) or inline(false) would mean "noinline" (i.e., a request to not inline the function).

inline(1) or inline(true) would retain the current behavior, serving as a hint rather than a strict
requirement. inline without parentheses would be equivalent, maintaining backwards compatibility.

inline(2) would strongly indicate "always inline" – instructing the compiler to inline the function
whenever possible.

To improve clarity and self-documentation of code, the C++ standard library can introduce named integers (e.g.,
std::noinline , std::normal_inline , and std::always_inline) so that developers can write
inline(std::always_inline) instead of raw integers. However, raw integers work well with template meta-
programming.

Examples
Performance-Critical Code:

This enforces that multiply is always inlined for maximum performance.

Toggling Inlining Modes:

inline(2) int multiply(int a, int b) {
 return a * b;
}

Using std Names for Clarity:

Motivation
1. Portability and Standardization: Current solutions rely on non-standard attributes. By providing a

standardized set of inlining modes through the inline keyword, code becomes more portable and less
reliant on compiler-specific extensions.

2. Explicit Control Over Inlining: Developers who require guaranteed inlining for performance-critical
sections can use inline(2) , while those who want to prevent inlining can use inline(0) . This provides
developers with direct control and removes guesswork and reliance on the compiler’s heuristics.

3. Compile-Time Configuration: By allowing a constexpr integral value for the inlining mode, developers
can conditionally choose inlining behavior at compile time without resorting to macros or multiple function
definitions. Libraries that depend upon template meta-programming currently have no way to
conditionally enable noinline or always_inline attributes.

4. Consistency and Familiarity: The existing inline keyword’s behavior remains intact and behaves the
same with inline(1) . With inline(0) and inline(2) , we simply extend the existing concept in a
manner akin to how noexcept can take a boolean. The extension is intuitive, backward compatible, and
uses established language features.

Macros cannot be exported with C++20 modules. This poses a serious issue with always inline declarations,
because there is no cross-platform solution without macros. Hence, it is more difficult and requires more ugly
code to write performant C++20 modules.

Motivating Library Development Experience

The author of this paper develops the C++ Glaze library. Performance improvements from always inline code

template <int Mode>
inline(Mode) int heavy_function(int x) {
 return complex_calculation(x);
}

int forced = heavy_function<2>(10); // strong request to always inline
int optional = heavy_function<1>(10); // normal inline hint
int none = heavy_function<0>(10); // request no inlining

inline(std::always_inline) int add(int a, int b) {
 return a + b;
}

inline(std::noinline) int slow_function(int x) {
 // Some complex logic we don't want inlined
 return complex_calculation(x);
}

https://github.com/stephenberry/glaze

The author of this paper develops the C++ Glaze library. Performance improvements from always inline code
are often 10% - 30% faster for reading and writing JSON. However, build times can be significantly affected
(MSVC build times can increase ten-fold) by always inlining. This feature would be extremely helpful to provide
compile time options for users to either choose peak performance or faster compilation times and smaller
binaries. The desire is for developers to be able to opt into and out of peak performance where desired.

Consider a function to serialize an integer into a character buffer. If code is serializing large arrays of integers
then we typically want to inline this function to avoid the function call overhead. But, this often results in
significantly more binary across the codebase and probably doesn't need to be inlined everywhere in the code
(some use cases might only be serializing a single integer). If we can selectively turn on and off the force inlining
of a function, then we can choose to only force inline where it is necessary, and thus avoid the extra binary and
compilation costs of inlining this serializaing function everywhere in the codebase.

Template Interations with Specifiers
This proposal allows inline arguments to use template parameters in the same manner as noexcept .

The code below showcases the current valid C++ mechanism for changing noexcect behavior based on
template parameters.

Proposed Changes

Syntax

The inline keyword is extended to accept an integer parameter describing the inlining mode:

inline(0) — This requests that the compiler not inline the function (similar to [[noinline]] attributes
in some compilers).

inline(1) — This is the default behavior of inline as we know it today, serving as a hint rather than a
guarantee.

inline(2) — This requests that the compiler attempt to always inline the function, making non-inlining
scenarios exceptional and potentially warranting diagnostics.

Additionally, the standard library may provide named integers such as:

// This proposal would allow performance options that might take longer to build
write_json<opts{.peak_performance = true}>(...);

// Template function with a boolean non-type template parameter
// that controls whether the function is noexcept
template <bool IsNoexcept>
void may_throw_function() noexcept(IsNoexcept) {
 if (!IsNoexcept) {
 throw std::runtime_error("Exception thrown");
 }
 std::cout << "Executed without throwing\n";
}

https://github.com/stephenberry/glaze

Additionally, the standard library may provide named integers such as:

Developers could then write:

Semantics

1. inline(0) (No Inline): This mode requests the compiler not to inline the function, effectively negating
any other inlining requests. It aligns with some compilers’ noinline attributes. The compiler can still
decide to inline if mandated by other rules (unlikely in practice), but this mode strongly suggests that no
inlining should occur.

2. inline(1) (Normal Inline): This remains unchanged from the current meaning of inline – a suggestion
(not a demand) to the compiler that inlining may be beneficial.

3. inline(2) (Always Inline): The compiler is instructed to inline the function at every call site where
possible. If it cannot inline the function (due to technical limitations like recursion, address-taking, or linker
constraints), the compiler should be encouraged to emit a diagnostic. This behavior is similar to non-
standard __forceinline or __attribute__((always_inline)) .

4. Compile-Time Toggling: Much like noexcept(expr) , we can write:

Changing mode changes the inlining strategy without modifying the function’s body or resorting to macros.

Diagnostics

If a function specified as inline(2) cannot be inlined, compilers are encouraged (though not required) to emit
a warning.

Backward and Forward Compatibility

Backward Compatibility: Existing code using without arguments or just keyword

namespace std {
 constexpr int noinline = 0;
 constexpr int normal_inline = 1;
 constexpr int always_inline = 2;
}

inline(std::always_inline) int add(int a, int b) {
 return a + b;
}

constexpr int mode = 2;

inline(mode) int critical_function(int x, int y) {
 return x * y;
}

Backward Compatibility: Existing code using inline without arguments or just inline keyword
behaves as inline(1) . There is no breaking change to existing code.

Forward Compatibility: A feature-test macro (e.g., __cpp_inline_modes) can be introduced to allow
libraries and codebases to conditionally use this feature.

Relationship with Existing Mechanisms

inline vs. inline(2) :
inline without parameters remains a suggestion. inline(2) elevates this to a requirement for the
compiler to inline the function when possible, turning what was once a weak hint into a strong directive.

No Need for Compiler-Specific Attributes:
Standardizing an inlining mode removes the need for __attribute__((always_inline)) ,
__forceinline , or other vendor-specific methods.

Consideration of inline for Linkage
The inline keyword is used for linkage control to avoid ODR violations. If In these header scenarios
inline(0) should behave in the same terms of linkage as the current inline . ODR violations should be
prevented, but the compiler should take this as a request to call the function and not insert (inline) the code at
the call site.

Global inline Variables
Global inline variables must also respect the inline arguments.

A global lambda's inline arguments must apply to the operator()() call.

Compiler Extensions?
All positive integers are reserved by the standard for the inline argument. Negative integers may be used by
compiler vendors to add experimental inlining features (e.g. inline(-5)). Implementations may error on any
integer arguments other than 0, 1, and 2, and should produce warnings for invalid inputs.

How Often Is Always Inline Used?

Almost every C++ library that is found on most popular lists uses always inline macros (just search the codebase

// A request to directly embed the table rather than access via a memory lookup
inline(2) constexpr std::array<int8_t, 4> table{ 5, 6, 7, 8 };

// A request to always inline the caller's contents wherever invoked
inline(std::always_inline) constexpr auto caller = []{
 // some logic
};

Almost every C++ library that is found on most popular lists uses always inline macros (just search the codebase
for always_inline). A small sample of popular libraries that use always inline macros:

bitcoin (82K+ stars) ALWAYS_INLINE macro

godot (95K+ stars) _ALWAYS_INLINE_ macro

llama.cpp (77K+ stars) ALWAYS_INLINE macro

opencv (81K+ stars) CV_ALWAYS_INLINE macro

react-native (121K+ stars) RCTREQUIRED_INLINE macro

tensorflow (189K+ stars) EIGEN_ALWAYS_INLINE macro

terminal (97K+ stars) __attribute__((always_inline)) attribute

Typically the macro is like that of llama.cpp:

Comparison with Attribute Approach
While [[always_inline]] and [[noinline]] attributes could be standardized, the proposed inline(N)
syntax offers several advantages. It is more consistent with the current use of inline . It allows compile time
customization through template parameters like noexcept , which is critical to achieve full inlining control. And,
it is more natural syntax, being similar to noexcept syntax.

Conclusion
Enhancing the inline keyword to accept an integral inlining mode (0, 1, 2) provides a portable, standardized,
and expressive way to control function inlining. This change preserves backward compatibility, aligns with
existing language design patterns, and eliminates the need for non-standard compiler-specific attributes.

By adopting this proposal, developers gain improved portability, clearer intent, and the ability to fine-tune their
code’s performance characteristics without resorting to macros or vendor lock-in.

#if (defined(_WIN32) || defined(_WIN64))
#define ALWAYS_INLINE __forceinline
#elif __has_attribute(always_inline) || defined(__GNUC__)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else

https://github.com/bitcoin/bitcoin
https://github.com/godotengine/godot
https://github.com/ggml-org/llama.cpp
https://github.com/opencv/opencv
https://github.com/facebook/react-native
https://github.com/tensorflow/tensorflow
https://github.com/microsoft/terminal

	P3676R0: Enhanced inline Keyword with Configurable Inlining Levels
	Introduction
	Examples
	Motivation
	Motivating Library Development Experience
	Template Interations with Specifiers
	Proposed Changes
	Syntax
	Semantics
	Diagnostics
	Backward and Forward Compatibility
	Relationship with Existing Mechanisms

	Consideration of inline for Linkage
	Global inline Variables
	Compiler Extensions?
	How Often Is Always Inline Used?
	Comparison with Attribute Approach
	Conclusion

